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Order from Chaos 
Nonlinear science is one of a number of emerging methodological and theoretical 

constructs that make up what is often called the "science of complexity." The popular name for 
this new science is "chaos theory." The chaos referred to in the theory is not a lack of 
organization or order but is, instead, a complex state in which apparent randomness of a system 
is really constrained by a type of order that is nonlinear. Chaos is defined as the quality of a 
deterministic mathematical system in which an extreme sensitivity to initial conditions exists. 

While chaos is the study of how simple systems can generate complicated behavior; 
complexity is the study of how complicated systems can generate simple behavior. An example 
of complexity is the synchronization of biological systems, ranging from fireflies to neurons. 
Complex systems are spatially and/or temporally extended nonlinear systems characterized by 
collective properties associated with the system as a whole, and that are different from the 
characteristic behaviors of the constituent parts. 
The critical principles of this new science are as follows: 

• Nonlinear systems can, under certain conditions, display highly chaotic behavior. 
• The behavior of a chaotic system can change drastically in response to small changes in 

the system's initial conditions. 
• A chaotic system is deterministic. 
• System output is not proportionate to system input. 

Introduction to Dynamic Systems 
A dynamic system is a set of functions (rules, equations) that specify how variables 

change over time. One example is shown below: 
Xnew = Xold + Yold 

Ynew= Xold 

This example illustrates a system with two variables, x and y. Variable xis changed by 
taking its old value and adding the current value of y. And y is changed by becoming X's old 
value. This is a silly system, but it does show that a dynamic system is any well-specified set of 
rules. 

There are some important distinctions, which are outlined here. Variables that change 
over time, or are self-referring can be seen as dimensions (see below). This is in contrast to 
parameters, which are constant through time and are not self-referring. Discrete variables are 
restricted to integer values. This should be distinguished from continuous variables, which can 
have non-integer values. Stochastic refers to our usual ideas of probability, one outcome out of 
many, while deterministic dynamic systems have no random aspect to them (one to one). In the 
past, stochastic models have been the mathematics of choice to describe the long-term status of 
dynamical systems. 

The current state of a dynamic system is specified by the current value of its variables, x, 
y, z, .. . The process of calculating the new state of a discrete( integer) system is called iteration. 
To evaluate how a system behaves, we need the functions, parameter values, and initial 
conditions or starting state. To il/ustrate .. . Consider a classic learning theory, the alpha model, 
which specifies how q., the probability of making an error on trial n, changed from one trial to 
the next 
qn+J = 0 qn 
The new error probability is diminished by J3 (which is less than 1, greater than 0). For example, 
let the probability of an error on trial 1 be equal to 1, and J3 equal .9. Now we can calculate the 
dynamics by iterating the function, and plot the results. 
q, = 1 
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q2 = 13ql = (.9)(1) = .9 
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Error probabilities for the alpha model, assuming q1=1,fl =.9. 
This "learning curve" is referred to as a time series. Certainly the idea that systems change in 
time is not new. Nor is the idea that the changes are probabilistic. As we will see, these systems 
give us: 

• A new meaning to the term unpredictable. 
• A different attitude toward the concept of variability. 
• Some new tools for exploring time series data and for modeling such behavior. 
• And, some argue, a new paradigm. 

Nonlinear Dynamic Systems 
A linear function is one that can be written in the form of a straight line, as in the formula: 
y=mx+b 
where m is the slope and b is the y-intercept. 
What's a nonlinear function? 
The Alpha model above is a linear model because qn+I is a linear function of qn. Just because its 
output, the plot of its behavior over time (Figure 1 earlier), is not a straight line doesn't make it a 
nonlinear system. What makes a dynamic system nonlinear is whether the function specifying 
the change is nonlinear. Not whether its behavior is nonlinear. Andy is a nonlinear function ofx 
if x is multiplied by another (non-constant) variable or by itself (that is, raised to some power). 
We can illustrate nonlinear systems using a logistic difference equation. This is a model often 
used to introduce chaos. The Logistic Difference Equation, or Logistic Map, though simple, 
displays the major chaotic concepts. We start with a model of growth (population, etc.): 
Xnew = r Xnid 

We can write this like a formula in terms ofn: 
Xn+l = rx.,. 
This says x changes from one time period, n, to the next, n+l, according tor. If r is larger than 
one, x gets larger with successive iterations if r is less than one, x diminishes. If we set r to be 
larger than one, say 1.5, then we start year 1 (n=1), with a population of 16 [x1=l6], and since 
r=l.5, each year xis increased by 50%. So years 2, 3, 4, 5, ... have magnitudes 24, 36, 54, ... Our 
population is growing exponentially. By year 25 we have over a quarter million. 
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Years 
Iterations of Growth model with r = 1.5 
Notice that this is a linear model that produces unlimited growth. 
Limited Growth model - Logistic Map. 
The Logistic Map can be made to prevent unlimited growth by inhibiting growth whenever it 
achieves a high level. This is achieved with an additional term, [I - x.]. The growth measure (x) 
is also re-scaled so that the maximum value x can achieve is transformed to 1. (So if the 
maximum size is 25 million, say, x is expressed as a proportion of that maximum.). Our new 
model is 
Xn+l = r Xn (1 - Xn) 

[r between 0 and 4.] The [1-xn] term serves to inhibit growth because as x approaches 1, [1-Xn] 
approaches 0. Plotting Xn+I vs. Xn, we see we have a nonlinear relation. 

+ c 
>< 

Xn 

Limited growth (Verhulst) model. Xn+J vs. Xn. r = 3. 
We have to iterate this function to see how it will behave. 
Suppose: r=3, and x1=.1 
X2 = TXI[l•XJ) = 3(.1)(.9) = .27 
x3= r x2[l-x2]= 3(.27)(.73) = .591 
X4= r XJ[l•XJ)= 3(.591)(.409) = .725 
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Behavior of the Logistic map for r = 3, x 1 = .1, iterated to give x2. XJ, and X4 

It turns out that the logistic map gives a very different appearance, depending on the control 
parameter r. To see this, we next examine the time series produced at different values of r, 
starting near 0 and ending at r=4. Along the way we see very different results, revealing and 
introducing major features of a chaotic system. 
When r is less than 1 
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Behavior of the Logistic map for r=.25, .50, and. 75. In all cases x1=.5. 
The same fate awaits any starting value. So long as r is less than I, x goes toward 0. This 
illustrates a one-point attractor. 
When r is between 1 and 3 
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Behavior of the Logistic map for r=J.25, 2.00, and 2. 75. In all cases xJ=.5. 
Now, regardless, of the starting value, we have what are called non-zero one-point attractors. In 
other words, the system settles down to a single value. 
When r is larger than 3 
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Behavior of the Logistic map for r=3.2. 
Moving just beyond r=3, the system settles down to alternating between two points. This is 
called a two-point attractor. This illustrates the concept of a bifurcation, or period doubling. If 
we increase the control parameter again, we get another bifurcation. 
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Behavior of the Logistic map for r= 3.54. Four-point attractor 
The concept: an N-point attractor. However, if we keep increasing the parameter, we will 
finally be unable to distinguish the pattern of the attractor. We then consider the map chaotic. 
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Chaotic behavior of the Logistic map at r= 3.99. 
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An attractor is whatever the system "settles down to". This is a very important concept from 
nonlinear dynamics: A system eventually "settles down" . But what it settles down to, its 
attractor, need not have 'stability'; it can be very 'strange'. 

Bifurcation Diagram 
A bifurcation is a period-doubling, a change from an N-point attractor to a 2N-point 

attractor, which occurs when the control parameter is changed, as above. A Bifurcation Diagram 
is a visual summary of the succession of period-doublings produced as r increases. The next 
figure shows the bifurcation diagram of the logistic map, r along the x-axis. For each value of r 
the system is first allowed to settle down and then the successive values ofx are plotted for a few 
hundred iterations. 
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We see that for r Jess than one, all the points are plotted at zero. Zero is the one point attractor for 
r less than one. For r between I and 3, we still have one-point attractors, but the 'attracted' value 
ofx increases as r increases, at least to r=3. Bifurcations occur at r=3, r=3.45, 3.54, 3.564, 3.569 
(approximately), etc., unti l just beyond 3.57, where the system is chaotic. However, the system is 
not chaotic for all values ofr greater than 3.57. Let's zoom in a bit. 
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Bifurcation Diagram r between 3.4 and 4 
Notice that at several values of r, greater than 3.57, a small number ofx values are visited. These 
regions produce the 'white space' in the diagram. Look closely at r=3 .83 and you will see a three­
point attractor. In fact, between 3.57 and 4 there is a rich interleaving of chaos and order. A small 
change in r can make a stable system chaotic, and vice versa. 

Sensitivity to initial conditions 
Another important feature emerges in the chaotic region. To see it, we set r=3 .99 and 

begin at x1=0.3. The next graph shows the time series for 48 iterations of the logistic map. 
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Time series for Logistic map r=3.99, x1=0.3, 48 iterations. 
Now, suppose we alter the starting point a bit. The next figure compares the time series for 
Xt=0.3 (solid) with that for x1=0.301 (dashed). 

cycle (n) 

Two time series for r=3.99, x1=0.3 compared to x1=0.301 
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The two time series stay close together for about 10 iterations. But after that, they diverge and 
take their own paths. We next set the starting points orders of magnitude closer together. We 
compare starting at 0.3 with starting at 0.3000001 . 
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Two time series for r=3.99, x1=0.3 compared to x1=0.3000001 
This time they stay close for a longer time, but after 24 iterations they diverge. The curves stay 
together only twice as long despite the starting conditions being four thousand times closer 
together. To see just how independent they become, the next figure provides scatter-plots for the 
two series before and after 24 iterations. 
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Scatter-plots of series starting at 0. 3 vs. series starting at 0. 3000001. The first 24 cycles on the 
left, next 24 on the right. 
The correlation after 24 iterations (right side), is essentially zero. Unreliability has replaced 
reliability. We have illustrated here one of the symptoms of chaos. A chaotic system is one for 
which the distance between two trajectories from nearby points in its state space diverges over 
time. The magnitude of the divergence increases exponentially in a chaotic system. This means 
that a chaotic system, even one determined by a simple rule, is in principie unpredictable. It is 
unpredictable, "in principle" because in order to predict its behavior into the future we must 
know its current value precisely. We have here an example where a slight difference (in the sixth 
decimal place) resulted in prediction fai lure after 24 iterations. And six decimal places far 
exceeds the kind of measuring accuracy we typically achieve with natural biological systems. 

Symptoms of Chaos 
This begins to sharpen our definition of a chaotic system. First of all, it is a deterministic 

system. If we observe behavior that we suspect to be the product of a chaotic system, it will also 
be difficult to distinguish from random behavior sensitive to initial conditions. We should note 
that neither of these symptoms, on their own, are sufficient to identify chaos. In a recent review, 
Rapp(l3) listed the ways one can get a false impression about detecting chaos in biological 
systems. Uncontrolled shifts in the generator invalidate measures of the correlation dimension. 

10 



Furthermore, filter noise can be low-dimensional, have high determinism, and contain at least 
one positive Lyapunov exponent (see below). Over-sampling of data can produce spurious low­
dimensional estimates due to the presence of too many near neighbors. Under-sampling can 
produce stroboscopic effects that also produce spurious results. The presence of noise, a high or 
low digitization rate, filter effects, nonstationarity, and short data epochs are all problems in data 
acquisition that can lead to spurious results. Because of these problems, Rapp claims that no 
single study has proven that chaos is actually in biological data. 

Two- and Three-Dimension Systems 
In order to investigate the distinction between variables (dimensions) and parameters, let us 
again consider the Logistic map 
Xn+l = r Xn(l- Xn] 

Multiply the ri~ht side out, 
Xn+!= r Xn- r Xn , 

and replace the two r's with separate parameters, a and b, 
Xn+!= a Xn- b Xn

2
. 

Now, two separate parameters, a and b, govern growth and suppression, but we still have only 
one variable, x. When we have a system with two or more variables: 

• its current state is the current values of its variables, and is 
• treated as a point in phase (state) space, and 
• it has a trajectory or orbit in time. 

Predator-prey system 
This is a two-dimensional dynamic system in which two variables grow, but one grows at the 
expense ofthe other. The number of predators is represented by y, the number of prey by x. We 
plot next the phase space of the system, which is a two-dimension plot of the possible states of 
the system. 
A = Too many predators. 
B =Too few prey. 
C =Few predator and prey; prey can grow. 
D F d I = ewpre ators, amp. e prey. 
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The phase-space of the predator-prey system. 
Four states are shown. At Point A there are a large number of predators and a large number of 
prey. Drawn from point A is an arrow, or vector, showing how the system would change from 
that point. Many prey would be eaten, to the benefit of the predator. The arrow from point A, 
therefore, points in the direction of a smaller value ofx and a larger value ofy. At Point B there 
.are many predators but few prey. The vector shows that both decrease; the predators because 
there are too few prey, the prey because the number of predators is still to the prey's 
disadvantage. At Point C, since there are a small number of predators the number of prey can 
increase, but there are still too few prey to sustain the predator population. Finally, at point D, 
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having many prey is advantageous to the predators, but the number of prey is still too small to 
inhibit prey growth, so their numbers increase. The full trajectory (somewhat idealized) is 
shown next. 
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The phase-space of the predator-prey system. 
An attractor that forms a loop like this is called a limit cycle. However, in this case the system 
doesn't start outside the loop and move into it as a final attractor. In this system any starting state 
is already in the final loop. This is shown in the next figure, which shows loops from four 
different startin states. 

Numbor of Pro!l 

Phase-portrait of the predator-prey system, showing the influence of starting state. 
Points 1-4 start with about the same number of prey but with different numbers of predators. 
Let's look at this s stem over time, that is, as two time series. 
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Time 
The time series of the predator-prey system. 
This figure shows how the two variables oscillate, out of phase. 
Continuous Functions and Differential Equations 

• Changes in discrete variables are expressed with difference equations, such as the 
logistic map. 
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• Changes in continuous variables are expressed with differential equations. 
For example, the Predator-prey system is typically presented as a set of two differential 

equations: 
dx/dt = (a-by)x 
dy/dt = (cx-d)y 

Although measles has nearly gone the way of smallpox in this country, it exhibited 
periodic epidemics prior to immunization. The dynamics were the same as the predator-prey 
example above. The infection was easily seen as deterministic. The recurrent epidemics occurred 
because measles infection during an epidemic immunizes individuals against further episodes. 
Measles has a short infectious period, so that a cohort of susceptible children had to build up 
before the next epidemic could occur. Epidemics occurred in two-year cycles, but showed 
bifurcations as well when viewed over time (see figure) . The simplest description is the SEffi. 
model (Susceptible, Exposed, Infectious, Recovered). This model can be expressed as a set of 
three nonlinear ordinary differential equations(64): 

dS I 
dt = f./N(l- p)-(f.J+ p N)S 

dE S 
-=PI --(J.J+a)E 
dt N 

dJ - = aE -(J.J+r)I 
dt 

Where N is the size of the population. The average mortality rate from all causes is 11 per 
year. During a measles epidemic, susceptible individuals move through the Exposed class at a 
rate of o per year, and through the Infectious class at a rate of y per year. 

(a) New York, pre-vaccination 

Tine~) 

Types of two-dimensional interactions 
Other types of two-dimensional interactions are possible: 

• mutually supportive - the larger one gets, the faster the other grows 
• mutually competitive - each negatively affects the other 
• supportive-competitive - as in Predator-prey 

Basins of attraction 
For a given set of parameter values, the fate of the variable is determined entirely by where it 
starts, the initial values of x and y. In two dimensional phase space, each point can be classified 
according to its attractor. The set of points associated with a given attractor is called that 
attractors' basin of attraction. 
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Three-dimensional Dynamic Systems 
The Lorenz System 
Lorenz's model of atmospheric dynamics is a classic in the chaos literature. The model nicely 
illustrates a three-dimensional system. 
dx/dt = a(y-x) 
dy/dt = x(b-z) - y 
dz/dt = xy-cz 
There are three variables reflecting temperature differences and air movement, but the details are 
irrelevant to us. We are interested in the trajectories of the system in its phase space for a=lO, 
b=28, c=8/3. Here we lot art of a trajectory starting from (5,5,5). 

The Lorenz system. Only a portion of one trajectory is shown. 
Although the figure suggests that a trajectory may intersect with earlier passes, in fact it never 
does. Although not demonstrated here, the Lorenz system shows sensitivity to initial conditions. 
This is chaos, the first strange attractor, and it has become the icon for chaos. 
Phase space - Limit Points 
In order to discuss applications, some other entities need to be mentioned, however, they will not 
be discussed in detail. There are three kinds oflimit points. 

• Attractors - where the system 'settles down' to. 
• Repellors - a point the system moves away from. 
• Saddle points - attractor from some regions, repellor to others. 

Fractals and the Fractal Dimension 
The Concept of Dimension 
We have used "dimension" in two senses: 

• The three dimensions ofEuclidean space (D=l,2,3) 
• The number of variables in a dynamic system 

Fractals, which are irregular geometric objects, require a third meaning: 
The Hausdorff Dimension 
If we take an object residing in Euclidean dimension D and reduce its linear size by 1/r in each 
spatial direction, the measure (length, area, or volume) of the original object in terms of the new 
form would increase by N = r0 times. This is pictured in the next figure. 
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Consider N=r0
, take the log of both sides, and get 

log(N) = D log(r). 
If we solve for D. 
D = log(N)/log(r) 

D=3 

N=8 

N = 27 

If dimensions are examined this way, D need not be an integer, as it is in Euclidean 
geometry. It could be a fraction, as it is in fractal geometry. This generalized treatment of 
dimension is named after the German mathematician, Felix Hausdorff. It has proved useful for 
describing natural objects and for evaluating trajectories of dynamic systems. A strange attractor 
is a fractal, it is bounded to the phase space, the trajectory does not fill the phase space, and its 
fractal dimension is less than the dimensions of its phase space. 

Low Dimensional Chaos in Biological Systems 
This calculation of a correlation dimension is one of the ways to quantify a chaotic 

system. In other words, determine from the data how many independent variables are at work in 
the generator of the data points. If there is an exclusion of points on one or more of the 
continuous scales, then the dimension will be fractional, or fractal. All fractional dimensional 
systems are chaotic, giving data points that are aperiodic, complex, and seemingly unpredictable. 
These qualities are similar to what would be seen with noise, however there are important 
differences. A noise generator has an infinite number of variables and its calculated correlation 
dimension is extremely high. Chaotic systems with only a few variables will have a low 
correlation dimension that will be fractional (fractal)(6, 14). 
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As discussed above, the phase or state space provides another way to quantify a chaotic 
system. If a system is deterministic, then its average trajectory in phase space wi ll be more 
predictable than if its movement is random. A two-dimensional phase plot is made by plotting 
each data point in the series on the X-coordinate vs another data point on the Y-coordinate 
located a fixed number (Tau, 't) of data points away. Since the data is bounded between upper 
and lower limits, loops will form in the phi!Se plot for all values of Tau. If two adjacent points on 
two different loops are marked, their distance from one another may continuously increase as the 
plot runs through the data. This divergence will occur in all chaotic systems and can be 
calculated by determining the Laypunov exponents(6), one ofwhich will be positive if the points 
diverge in phase space. 

Deterministic vs Stochastic Accuracy 
Skinner, et. ai.(S), performed experiments on serial heartbeats in patients at high risk for 

arrhythmia. They found a unique discrimination of outcome using the deterministic, chaos-based 
measure that was not present in several stochastic measures. The correlation dimension of the 
serial heartbeat intervals decreased in 24 of24 high-risk patients that developed lethal ventricular 
fibrillation . This decrease in dimension occurred in the 24 hours prior to their arrhythmia, and 
did not occur in any of the equally high-risk patients that did not manifest the arrhythmia. The 
sensitivity and specificity of the measure as predictors of outcome were both very high. 
However, stochastic measures, such as the standard deviations of serial 5-minute heartbeat 
interval fluctuations and the power spectra of the entire intervals were unable to make significant 
predictions (5). 
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The real difference between these two methods can be seen in how predictions can be 
made from them. Both the standard deviations and the power spectra (stochastic measures) were 
significantly different when viewed in large groups of patients, however neither was specific. In 
other words, for any given individual patient, these measures had no real predictive value. They 
work in large groups without specificity. In contrast, the deterministic, chaos-based measure 
identified all patients that developed the lethal arrhythmia. It worked in small groups with 
individual specificity. It is more helpful to know that the individual patient will develop an 
arrhythmia than that the patient is in a high-risk group and may develop an arrhythmia. 

Simplicity of Control 
One of the hallmarks of chaotic systems is their sensitivity to initial conditions (see 

above). This attribute causes headaches when attempting to predict the course of the system. 
However, it can be used with facility to alter the present course of the system. Garfinkel, et. al., 
showed this for heartbeat dynamics(21 ). They injected an electrical impulse at the right time and 
place (a saddle point in the phase space, see above) to effect a change in the heart from a wildly 
shifting pattern to a stable rhythmic one and vice versa. Instead of using many pulses to entrain a 
simple oscillatory dynamics, a single pulse will do the same job. Also, the single pulse can 
produce very complicated long-lasting dynamics. This suggests that the control signal is 
amplified in intensity, from a low-energy input to a high-energy output. 

Quantification of Determinism 
Deterministic systems provide information about the generator of the data. For 

example, rather than providing the familiar mean, standard deviation, or power distribution of the 
time series it can provide how many variables operate together to provide the data found . In the 
example of the heartbeat, one variable exists for each minute wave within the electrocardiogram. 
Classical descriptions of the conductance describe multiple, independent controllers of the same 
ion species, thus expanding the list of model variables to account for. In contrast, precise 
measurement of the correlation dimension of the heartbeat dynamics reveals that there are only a 
few variables in the generator. What this means is that while one can envision many variables 
interacting to produce the heartbeat, the system acts as though only a few are important 
(complexity theory). 
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Skinner, et at. used this approach and found, on average, three variables at work in the 
heartbeat generator and that the system is completely deterministic (see above figure)(33). They 
arrived at a three dimensional deterministic model of the heartbeat, which accurately predicted a 
feature of the plot of heartbeat intervals not previously described. The model was able to explain 
how lethal ventricular fibrillation can be produced in a normal, healthy heart as a dynamical 
accident. 

Goldberger, et at. used a simple-to-understand algorithm and suggested that shifts from 
moderately low dimensional dynamics to either higher dimensional noise or lower dimensional 
periodicity was a definitive sign of underlying pathology in many physiologic systems(23). 
Recently, a German research team, Lehnertz and Elger, demonstrated that a loss of complexity 
due to coordinated nerve firing is detectable in brain waves an average of II minutes before the 
onset of a seizure(66). Because of the sensitivity to initial conditions the team is already testing 
whether patients whose seizures originate in the hippocampus, a region associated with memory 
and learning, can avoid the seizure by means of mere remembrances or learning tasks(73). 

Peng et at. used those algorithms to point to chaotic features in gene structure(60). Since 
the processes of gene expression and translation result from a series of dynamical interactions, 
their investigation with the tools of chaos theory could lead to novel ways of controlling protein 
production by introducing simple pulses at critical times or places. The figure below suggests 
the fractal character within the exon structures of DNA. 
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Cytokines are small peptide hormones secreted by cells for communication and 
recruitment. In normal, healthy individuals this cytokine network is in a state of stable 
equilibrium with low levels of most of the cytokines. Many ofthe cytokine molecules are active 
as dimers, and they often are autocrine, that is they induce their own synthesis. This allows their 
concentration to increase very fast. However, it also describes a deterministic system exquisitely 
dependent on initial conditions. Lewis et at. modeled cytokine synthesis which can be displayed 
graphically in the figure below and described the differential equation shown(76). All the points 
on the surface are in a steady state and most are stable. However, in the region of the fold there 
are three levels, the upper and lower are stable and the middle level is unstable. 
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dV= x3 - ax • b 
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Daames et al. demonstrated that a similar mechanism may exist for tumor necrosis factor, 
which is active as a trimer(77). The combination of the two equations gives a rather complicated 
system of two simultaneous differential equations that cannot be solved. By numerical analysis, 
however, they found that there were two stable points, one a concentration near zero, the other at 
a rather high concentration shown in the figure below. They suggest that the cytokine network is 
a chaotic system, normally behaving in a controlled manner. However, under special 
circumstances this system may acquire instability ·so that small fluctuations in the value of a 
parameter cause large changes in cytokine synthesis. This could have important implications for 
patients with diseases known to be associated with cytokine excesses, such as sepsis, ARDS, 
multi-organ failure, and even inflammatory arthritis. A small perturbation in the cytokine 
network appropriately timed could affect large lasting changes within the cytokine network due 
to the sensitivity to initial conditions: 

Equations can model simple systems like a pendulum, and statistics can describe 
huge, disorganized systems like gas molecules in a jar. But math staggers with biological or 
humanistic systems. The problem has to do with the tremendous complexity of living organisms. 
This complexity is orders of magnitude greater than that of the most complex inanimate systems 
made or observed by man. Even though a deterministic equation can model very complex 
systems, if the number of variables is much above I 0, then it is better to use a stochastic model. 
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Binary Logic 
Aristotle (384-323 B. C.), more than any other thinker, determined the orientation and the 

content of western intellectual history. He was the author of a philosophical and scientific system 
that through the centuries became the concepts and ideas of our western culture. Aristotle's 
intellectual range was immense, covering most of the sciences and many of the arts. He worked 
in physics, chemistry, biology, zoology, and botany; in psychology, political theory, and ethics; 
in logic and metaphysics; in history, literary theory, and rhetoric. He invented the study of formal 
logic, devising for it a finished system, known as Aristotelian syllogistic, that for centuries was 
regarded as the sum total of logic. Even though Aristotle's zoology is now out of date and his 
thoughts on the other natural sciences have long been left behind, his writings in metaphysics 
and in the philosophy of science are read and argued over by modern philosophers. 

Aristotle's logic is binary and contains the law of the excluded middle. This logic was 
also the foundation for present day set theory. Simply stated, something either belongs to a set or 
does not belong to the set. There can be no middle ground. 

Set Theory 
Mathematicians and logicians depict classes with formal models. These formal models 

are built on set theory, which the German, Georg Cantor ( 1845-1918) developed in the later 19th 
century. Cantor sets are crisp. Each potential number either belongs or it doesn't belong and 
none straddle the line. Interactions between sets and relationships between sets are done or 
described through operations. Four such operations are shown in the figure below. 

Complement 

Union 

• Complement: The complement of a set is its opposite. Whatever is not in the set "A" 
is in its complement. 

• Containment: Sets can contain other sets. The smaller set is called a subset. 
• Intersection: If some members of set "A" belong to set "B" and vice versa, then those 

elements represent the intersection of the two sets A and B. This corresponds to the 
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Boolean logical operator "and". 
• Union: Union merges sets together. This would be all the elements of "A" along 

with all the elements of"B". This corresponds to the Boolean logical operator "or". 

Trouble with Set Theory 
Mathematicians were very fond of Cantor's set theory, however it has always been 

associated with paradoxes. One of the famous paradoxes is called "sorites" often attributed to 
Zeno ofEiea (490-430 B.C.), the "paradox ofthe heap." This paradox asks you to take a grain of 
sand from a heap and tell if you still have a heap. Take another grain from it and it remains a 
heap, and so on. Eventually, one grain is left. Is it still a heap? Remove it and you have 
nothing. Is that a heap? If not, then when did it cease being one? In Cantor's theory, one 
resolves such dilemmas by dictating a break point. A certain number of grains constitute a heap. 
That number minus one is not a heap. Of course, in our every day speech we do not use the 
word so precisely, however we do precisely define it if we are speaking about logic, 
mathematics, and science, and in our case, medicine. If a heap has vague boundaries, the 
assumptions of set theory dissipate. We have, over a lifetime, simply drawn a line somewhere 
and pretended. We tolerate this tiny sacrifice for the convenience of thinking in crisp sets. 

Vagueness 
The first philosopher to grapple seriously with vagueness was Charles Sanders Peirce 

{I839-I9I4). Peirce held that everything exists on a continuum, and such continuums govern 
knowledge. For instance, size is a continuum as sorites shows. Peirce asserted that vagueness is 
a ubiquitous presence and not a mark of faulty thinking. He said, "vagueness is no more to be 
done away with in the world of logic than friction in mechanics". 

Bertrand Russell (I872-I970) also pursued the topic of vagueness. In I923 he published 
a short paper discussing vague.ness and precision in language and reality. However, Jan 
Lukasiewicz (1878-I955) made the first move toward a formal model of vagueness. In I920 he 
published a brief paper describing early logic based on more values than true and false. This 
changed traditional propositional logic and led to the apparent absurdity of opposites equaling 
each other. In the paper, he let "one" stand for true and "zero" for false. However, in addition, 
"one-half" stood for possible. In logic, the operation :called negation defines opposites. In 
true/false logic, the true (I) becomes false (0) and the false, true. This can be demonstrated in 
the following table. 

Statement 
I 
0 

Negation 
0 
I 

Statement 
I 

I/2 
0 

Negation 
0 

1/2 
I 

In the three valued logic of Lukasiewicz the table gains an extra line. The values for 
binary logic remain intact at the comers. Lukasiewicz saw no reason to insert just one extra 
value. He could have an infinite number of values strung out between zero and one with true and 
false at the extremes. The sliding scale yielded greater precision. Instead of merely 
acknowledging an intermediate value, multi-valued logic conveyed its size. It could, therefore, 
quantify degrees of truth. Max Black (I909-I989) published a paper in I937 in which he 
described a continuum of degrees ofusage ofterms. 

Bertrand Russell described a paradox, which literally removed the underpinnings of 
mathematics. The trouble with a paradox in mathematics is that it would then allow you to prove 
anything (or prove nothing). Russell's paradox had to do with set theory. The set of all apples 
does not contain itself, since it is a set and not an apple. However, as you might imagine some 
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sets (of sets) do contain themselves as one of the sets. Russell 's paradox concerned the set of all 
sets, which do not contain themselves as a member. Does this set contain itself? If it does not 
contain itself as a member, then by definit ion it must, since it is the set of all sets, which do not 
contain themselves as members. If it does contain itself as a member, then it can not. There is the 
paradox. This led to a crisis in mathematics. Russell himself suggested a solution, which was to 
do away with the law of the excluded middle, although this was too radical and was not generally 
accepted. 

Fuzzy Sets 
In 1965 Lotfi Zadeh, who was at the time Chairman of the University of California at 

Berkeley's electrical engineering department, published a paper called "Fuzzy Sets". In this 
paper, Zadeh set down formal logical operations on fuzzy sets and explained their importance. 
The key to Zadeh's paper was the concept of graded memberships. A set could have members 
who belonged to it partly, in degrees. Fuzzy sets discriminate much better and supply more 
information than "crisp" sets. They are, despite the name, more precise than crisp sets. The figure 
below demonstrates an example of a fuzzy set. 

Fuzzy Set vs Crisp Set 

Binary (Crisp) set 

No Disease Disease 
Disease 

1.0 

0.8 
c 
~ 0.6 -5 
.E 
'0 0.4 .. 
~ 

0.2 2' 
0 No Disease 

0.0 
0 2 ' 6 8 10 

PArameter 

In this instance there is a gradual progression from "no disease" to "disease." The 
parameter could be diastolic blood pressure for the disease Hypertension, or fasting blood 
glucose level for the disease Diabetes Mellitus. Most diseases can be expressed this way. The 
slope that indicates the degree of inclusion can be adjusted to span whatever distance of the 
parameter is necessary. If the slope is completely vertical, then you have a crisp set. From this, 
one can see that a crisp set is a special case of fuzzy sets (OJ:te with infinite slope). If there is 
more than one "linguistic variable" then there will be more than one sloping line and there can be 
overlap as well: 
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"Young", "middle age", and "old" are sets where the variable (or parameter) is "age". 
The degrees of membership in each set ranges from zero, no membership, to 1.0, exclusive 
membership. A fundamental element of fuzzy logic is the "linguistic" variable that Zadeh 
introduced. A linguistic variable is a variable whose values are words instead of numbers. For 
example, "age" is a linguistic variable if the possible values are "young", "middle age", and 
"old". Each value refers to a membership function . A membership function assigns a degree of 
membership to any numerical age fitting the perception of "young", "middle age", and "old". 
Fuzzy sets appear to more closely reflect the way people naturally categorize the world. In this 
figure the membership functions overlap so that ages of 57 to 65 years are to a certain degree 
both "middle aged" and "old" at the same time. An age of 65 is comparatively less "middle 
aged" and more "old". The transition from "middle age" to "old" is gradual as age increases. 

Membership functions are not the same as probabilities. An age of 60 is not "middle 
age" with a certain probability. Instead, it is both "middle aged" and "old" at the same time. 
The degree to which it is, "middle aged" and the degree to which it is "old" reflect the context 
and subjectivity underlying the membership functions. Increased precision in the specification 
of age or the membership functions would not alter the inherent fuzziness in classifying age. 
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This figure demonstrates age-grouping using sets of binary logic. The shape of the 
membership functions is rectangular with a height of one. In comparison with the fuzzy set 
above, binary sets are a special case of the fuzzy sets. The differences lie at the boundaries 
between the sets. Membership functions of binary sets do not overlap, so that the transition 
between sets is abrupt. An age of 62 years is· "middle aged" whereas an age of 63 is "old". In 
binary logic, people are either old or they are not old. 

Fuzzy sets easily resolve the paradox of the heap. With each grain of sand removed, the 
heap has less membership in the set of heaps. It drops from 1.0 through 0.8 and 0.2 to, finally, 0. 
Fuzzy sets glide smoothly across the truth continuum. Estimating the memberships in fuzzy sets 
is a subjective task. However, the placement of the crisp or binary divisions is likewise a 
subjective task. Fuzzy sets, with their decimal values, yield better estimates than just 1 and 0. 
Fuzzy sets include crisp sets. A crisp set is just a fuzzy one with membership values of 1 and 0. 
Crisp sets imply that the crux of the argument is the existence of membership, while for fuzzy 
sets it is the extent of membership. 

Fuzzy sets can be used by complex disciplines. Zadeh recognized the role of fuzziness in 
managing complexity and described a law of incompatibility( 54): 

As complexity rises, precise statements lose meaning and meaningful statements lose 
precision. 
" ... as the complexity of a system increases, our ability to make precise yet significant 
statements about its behavior diminishes until a threshold is reached beyond which 
precision and significance (or relevance) become almost mutually exclusive 
characteristics". 

When people face complex information, they use the strategy of summarization. For 
example, a patient with bilateral amputations, proteinuria, characteristic retinopathy, and, an 
extremely elevated hemoglobin A1c on large doses of insulin may be summarized as a "bad 
diabetic" on rounds, particularly if diabetes was not the primary reason for hospitalization. 

The brain itself is constantly summarizing sense data. Television utilizes this 
summarization by transmitting only half of each image. If the television screen has 200 
horizontal lines, then each image is transmitted as only 100 lines filling in every other line. Our 
brains fill in the rest of the image. This works well for moving pictures such as those that occur 
on television, however when people began to use computer monitors where most of the image 
does not change from second to second, people began to notice the flicker of the image and 
developed headaches and symptoms from this. This led to the development of what is called 
non-interlaced monitors for computers so that the entire image is refreshed each time, freeing the 
brain of its summarization task. 

Anyone who has ever proofread a document understands the phenomenon of reducing 
massive detail to chunks of perception. Proofreading is very difficult because the mind normally 
races races over sentences, picking up just enough information to extract the meaning of the text. 
This also helps explain the fuzziness of words. Words centralize concepts that may have blurred 
bounds. Language is our ultimate shorthand, demonstrating our ability to summarize. 

Zadeh felt fuzzy logic could handle complexity in a similar way. As members in a set 
grow, they eventually exceed human comprehension. The brain responds by summarizing the 
set into "chunks," labeled with words. For instance, it might divide the myriad hues of the 
spectrum into red, orange, yellow, green, blue, purple, violet, and other categories. Because each 
of these sub-classes is a fuzzy set with degrees of membership, members can describe them. By 
summing up words mathematically, fuzzy sets could help bring complex systems like the visual 
apparatus under control. 

Fuzzy sets are representations of real-life groups. Binary logic (or formal logic or 
Aristotelian logic) calls for a division of absolute degree. It makes little sense to consider 
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someone with a diastolic blood pressure of 89 as normal, and someone with a diastolic BP of 90 
as hypertensive. This absolute division causes problems when we study diseases. Even though 
the patient with a diastolic BP of 89 is very close to our binary "Hypertension," he would not be 
considered to have that risk factor for coronary artery disease, since he was not labeled as such. 
On the other hand, the patient with the diastolic of 90 is labeled as "Hypertensive, " and her 
insurance premiums will be higher because of this label. We lump patients into groups without 
accounting for the severity of the illness within the group. In the example below, I have drawn a 
fuzzy set of diastolic hypertension based solely on the severity of the blood pressure. Each 
category overlaps another category and the severity is graded. The terms are my own and the cut­
off for normal, high, etc. are also my own and are only for illustrative purposes. I have still 
lumped patients together (all patients with a diastolic BP of 140 or higher). The fuzzy groups are 
drawn as equal in size and symmetrical and gradual, however there is no reason that they can not 
be S-shaped or asymptotic. I have also shown them as overlapping. Again, not all fuzzy sets 
would have to overlap. Some sets may be very narrow while others would be broad-based. This 
division is only important if the treatments at various levels are different. Differences in therapy 
might be diet, then diuretics and other mild drugs, then more potent drugs and combinations, 
then urgent hospital treatment, etc. 
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Attractors as Fuzzy Sets 
Just as we looked at Attractors in Chaos theory, we can look at Fuzzy sets in a similar 

way. The Attractor keeps the system bounded to a certain region of phase space. This bounded 
region could be considered a "fuzzy" set of the system and include all of the region the system 
occupies. This would relieve us of having to know the deterministic equation that defines the 
attractor. It would also allow us to use easily understood variables and parameters. 
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This graph shows a "diagnostic space" using frequency and tidal volume. There are 
regions within the space which are physiologically difficult for patients to maintain without the 
help of mechanical ventilation. Studies have been performed (78} which show that there are 
boundaries to weaning patients off the ventilator. 

Fuzzy Sets (Attractors) of Respiratory Failure 
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However, the space is not filled up randomly with patients. This graph shows that 
patients fall into areas on the graph. These areas can be considered as being around the location 
of attractors or they can be considered fuzzy sets of patients with different diseases. Considering 
the groups as fuzzy sets allows us to treat them with linear approximations. This fuzzy 
approximation is no different than the deterministic view when predicting, since the initial 
conditions can not be known close enough to predict more than a short time anyway. 

Conclusion 
We know deterministic mechanisms for many diseases. Those mechanisms will not 

change, although our ability to measure them and refine them and add to them will hopefully 
increase. But the vagueness will remain and that vagueness will only increase as our knowledge 
increases. It is to our benefit and the benefit of our patients to deal with this vagueness and 
include it in our understanding of medicine. · 
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