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Oncogenic lesions arising during cancer progression provide an attractive target for 

chemical intervention strategies. The extreme molecular heterogeneity of tumors, 

however, makes it difficult to identify authentic intervention targets and to link patients to 

the most appropriate treatment. To confront this challenge, we launched a full scale 

investigation to identify the genetic lesions that arise during cancer progression together 

with a computational approach to link novel compounds to these lesions. A panel of 103 

non-small cell lung cancer cell lines was screened with over 200,000 uncharacterized 



 

synthetic chemical compounds and natural products fractions in a tiered HTS approach. 

Statistical and machine learning procedures were then used to link drug activity to the 

complexity of cancer genomes by systematically assigning enrollment biomarkers to each 

compound from measures of gene expression, gene mutation, gene copy number, protein 

expression, and metabolomics datasets. Using this approach, we have found that genetic 

vulnerabilities that are not currently actionable can be linked to novel chemicals. 

Experimental mechanism of action hypotheses can be derived from these 

chemical/biomarker relationships and were validated for a subset. Notably, we are able 

to parse KRAS mutant cancers into multiple, distinct molecular subtypes defined by co-

occurring mutations. This indicates that KRAS lung cancers are representative of diverse 

mechanistic subtypes, and we are able to identify putative novel compounds that may 

target each subtype. Collectively, we are using this approach as a data driven way to 

parse mechanistic cancer subtypes and identify a diverse cohort of therapies capable of 

contending with cancer heterogeneity together with enrollment biomarkers that can 

specify sensitivity. 
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1 

CHAPTER ONE 

INTRODUCTION 

 

The future of cancer treatment lies in a personalization of medicine, where each 

patient’s treatment regime is tailored to the genetic diversity of their individual tumors [1]. 

To accomplish this requires a “therapeutic triad”, where appropriate context-specific 

intervention targets tightly linked to response biomarkers are coupled to agents that can 

engage these targets. Obviously, this is easiest to accomplish in cancer types that exhibit 

the lowest molecular heterogeneity and that are driven by a druggable oncogenic driver. 

However, many of the more prevalent and most lethal cancers do not have this 

phenotype. Non-small cell lung cancer (NSCLC) is a leading cause of cancer related 

death in the United States and is a clinically heterogeneous disease [2]. An important 

contributor to this variability in clinical responses is the extreme molecular heterogeneity 

of NSCLC tumors. Specifically, lung squamous carcinoma (LUSC) and lung 

adenocarcinoma (LUAD) represent the second and the third most highly mutated tissue 

subtypes in The Cancer Genome Atlas (TCGA), with a mean non-synonymous mutation 

burden of ~250 mutations per tumor (www.tcga.org). This greatly increases the challenge 

for understanding the molecular drivers in any NSCLC tumor, knowledge that is usually 

the starting point for hypothesis driven design of new therapeutic approaches. However, 

the mutation load in NSCLC also presents an opportunity that NSCLCs will contain 

vulnerabilities not found in normal cells, which might be exploited therapeutically. The 

problem is how to discover these vulnerabilities. 
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To confront the challenge of the molecular diversity in NSCLC, we launched an 

effort to characterize the genetic and metabolic diversity within NSCLC and then took an 

unbiased screening approach to discover chemicals that were toxic to subsets of cells. 

This was followed by a computational approach to link novel chemicals to biomarkers and 

several different methods for identifying the targets and mechanism of action of the 

chemicals. As proof of concept, we can use our methods to recover already known 

aspects of biology. We can re-discover ALK expression and EGFR 

mutations/amplifications as predictors of sensitivities to the targeted ALK and EGFR 

kinase inhibitors crizotinib and erlotinib. We also classified unknown chemical, 

SW008135, as a novel NAMPT inhibitor with mRNA expression of NAPRT1 acting as a 

potent biomarker of response. Additionally, our methods can link activity of known 

chemotherapies to novel biomarkers predicting responses. We found that loss of function 

mutations in the NOTCH receptor, NOTCH2, can predict sensitivities to glucocorticoid 

therapies. Finally, we can integrate sensitivities of uncharacterized chemicals to 

biomarkers to discover new chemicals effective against subsets of NSCLC that are tightly 

linked to response biomarkers. Notably, we are able to parse KRAS mutant cancers into 

multiple, distinct molecular subtypes defined by co-occurring mutations. This indicates 

that KRAS lung cancers are representative of diverse mechanistic subtypes, and we are 

able to identify putative novel compounds that may target each subtype. Collectively, we 

have used our approach to uncover the underlying vulnerabilities promoting chemical 

sensitivities for a wide breadth of uncharacterized chemicals. Understanding overall 

chemical sensitivity patterns together with cellular mechanisms promoting the sensitivity 
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will allow for a better understanding of processes that support cancerous growth in the 

lung that are potentially targetable in a clinical setting.  
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CHAPTER TWO: PRECISION ONCOLOGY PROBE SET FOR NOMINATION OF 

BIOMARKER DRIVEN INTERVENTION OPPORTUNITIES IN LUNG CANCER 

 

RESULTS 

Identifying chemicals selectively toxic for subsets of NSCLC cell lines 

We assembled a panel of 96 NSCLC cell lines and 4 immortalized human bronchial 

epithelial cell lines (HBECs), derived from largely lung adenocarcinomas and, to a smaller 

extent, lung squamous cell carcinomas. To define how well our cell line panel represented 

human tumors, we generated a gene set consisting of the 507 most highly variant in our 

cell line panel, in the TCGA LUAD’s and LUSC’s, and in an independent MD Anderson 

NSCLC tumor panel. We correlated each cell line in our panel with each lung cancer 

tumor line in the TCGA and MDACC panel, and found our LUAD and LUSC cell lines 

were highly correlated with the LUAD’s and the LUSC’s in the tumor panel. The few 

mesothelioma cell lines correlate with the mesotheliomas in the TCGA. As a control, none 

of the cell lines in our panel correlated highly with breast tumors in the TCGA (Figure 1A). 

We first undertook a full and complete characterization of the genomic landscape 

in our lung cancer panel.  Mutational statuses for were determined for 16,130 genes for 

in each cell line using whole exome sequencing. 34 of our cell lines corresponded to 

samples with both tumor and matched normal DNA. For the remaining 62 NSCLC cell 

lines, we developed a computational pipeline using publically available datasets to filter 

out probable germline and enrich for somatically acquired mutations (Figure 2A, 2B). 

Indeed, the number of mutations identified in the filtered tumor cell line panel is 
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comparable to the number of mutations per cell line in cell lines where we can definitively 

call somatic lesions (Figure 1C).  Gene expression of every cell line in our panel was 

measured using RNAseq to identify expression levels for 26,875 detectable genes. We 

had previously assayed gene expression for 90 of these cell lines using Illumina V3 Bead 

Arrays [3]. These two assays were performed years apart, however, we still note a 

significant correlation between the two different platforms (Figure S1C). DNA copy 

number for 17,917 genes was measured in 63 cells in our panel with array based single 

nucleotide polymorphism profiling (SNP) with Illumina Human1M-Duo DNA Analysis 

BeadChip. Raw values were normalized to generate segmented copy number profiles 

with circular binary segmentation [4]. We curated protein expression data from published 

reverse phase protein array datasets (RPPA), assaying a total of 154 unique antibodies 

for 65 of the cells in our panel [5]. Recent reports have highlighted the metabolic diversity 

in cancer, demonstrating differential addiction to metabolic pathways can specify 

independent mechanistic cancer subtypes, and targeting these pathways may provide a 

therapeutic window for treatment [6]. Steady-state flux through major metabolic pathways 

in 74 cell lines was determined by uniformly labeling [13C6] glucose and glutamine and 

then measuring patterns of heavy carbon incorporation into different metabolites (lactate, 

citrate, malate, fumurate, serine, glycine) at 6 hours and 24 hours post-incubation for a 

total of 98 features whose relative values will give a glimpse of differential flux into overall 

cellular metabolism. 

Deterministic clustering methods [7] revealed our cell line panel can broadly cluster 

into at least 15 distinct clusters when clustered according to a gene expression signature 
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(Figure S1D). Based on this, we devised a tiered high-throughput screening strategy to 

enrich for chemicals that could collectively target the variation across the clusters (Figure 

2A). We selected 12 cell lines whose expression was representative of overall phenotypic 

diversity (Figure 2D) and screened them with a library of ~230,000 mostly synthetic 

chemicals (Figure 2E) in a step-wise approach to eventually reduce the chemical space 

to 218 chemicals that we call our precision oncology probe set (POPS) (Figure 2 F-H).  

These were screened in a 12 point dose-response across the full cell line panel together 

with a set of 16 common chemotherapeutics and known chemicals in which we have a 

pre-conceived idea about mechanism of action. The compounds were ranked for potency 

using both AUC and ED. While we observed statistically significant correlations between 

AUC and ED50 values, there was a proportion of chemicals in which AUC was uncoupled 

with ED50 values (Figure 2I). ED50 values allow for a larger dynamic range of chemical 

response and take into account inflection point of response while AUC values take into 

account curve shape.  We reasoned that both will provide valuable sources of information 

and took both into account.   

The cell line panel had quite diverse responses to our POPS (Figure 2K). We found 

there was a chemical subset that were behaving as ‘private’ hits, only toxic to a few of the 

cell lines. For these groups of chemicals, the biology predicting sensitivities is too sparse 

to be able to identify a biomarker that would adequately stratify patient populations. In 

contrast, a small chemical subset acted as ‘public’, broadly toxic chemicals (Figure 1C). 

Some of these were found to be broadly toxic to normal cell lines when tested over longer 

periods in larger well format, suggesting that all of these public toxins were likely to be 
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less interesting. However, the large majority of chemicals were selectively toxic to subsets 

of NSCLC cell lines. For this group, we can determine genomic and metabolic correlates 

of response [1, 8, 9]. We reasoned that in addition to having potential for stratifying patient 

groups, biomarkers that predicted sensitivity to an uncharacterized chemical could hint at 

a common, perturbed biology in the sensitive versus resistant cell lines that would allow 

us to formulate hypotheses for mechanism of drug action.   

 

Predicting sensitivity to probe compounds 

Clustering the chemicals together revealed at least 38 distinct clusters (Figure 2J), 

and we found that every cell line in our panel was targetable by at least one chemical, 

demonstrating the ability of our pipeline to recover a non-redundant, mechanistically 

diverse set of chemicals that can collectively target the biological space represented in 

our cell line panel. We clustered our cell lines into over 15 clusters based on the 

responses to POPS (Figure 1D). We can then overlay information of how these cell lines 

behave when clustered according to a gene expression signature and color the nodes 

based on where they cluster in the RNAseq dataset. Doing so demonstrates that these 

clusters have unimpressive correspondence to RNAseq based clusters, indicating global 

gene expression patterns are not responsible for the diversity in the chemical responses 

(Figure 1E). We clustered the cell lines together according to how they behave in each 

dataset we assayed and then overlaid information about dataset specific clustering on the 

chemical clusters (Figure 2L-S). We observed overall discordance (Figure 1F). This tells 

us, in fact, that none of the datasets on a global level are wholly responsible for explaining 
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chemical activity across our panel (Figure 2L-S). Our cell line panel also behaved 

discordantly across different datasets (Figure 1F), leading us to believe that each dataset 

would contribute useful, unique information to identification of the biology responsible for 

predicting sensitivities to each chemical.  

We reasoned that small numbers of features may be more predictive of individual 

chemical responses and used a combination of machine learning and statistical 

procedures to identify small numbers of features from each dataset capable of predicting 

sensitivity to each chemical, which we term scanning KS and elastic net. The scanning 

KS employs a modification to a Kolmogorov-smirnov statistic to scan through 186,464 

single gene and pairwise combinations of co-occurring mutations with a frequency in the 

panel greater than 5 to rank those that predict the best selective sensitivity to each 

chemical. The elastic net is a machine learning protocol that will select for the features 

from each dataset whose additive patterns best predict sensitivities, which we have 

previously employed to successfully associate chemicals with predictive markers [9, 10]. 

As proof of concept, our methods linked high ALK expression as a predictor of sensitivity 

to the ALK inhibitor crizotinib (Figure 1G). We also found EGFR mutations and 

amplifications as a predictor to sensitivity to EGFR inhibitor Erlotinib (Figure 1H). The 

three EGFR mutant, Erlotinib-sensitive cell lines have mutations in the kinase domain 

known to affect EGFR function. Importantly, we found 4 cell lines which have mutations 

in EGFR but are resistant  (Figure 1H). Two of these cell lines, H1975 and H820, have 

the mutation in T790M, known to be a cell-autonomous adaptive mechanism promoting 

resistance to EGFR inhibitors [11]. The other two EGFR mutant, Erlotinib-resistant cell 
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lines have mutations outside the kinase domain and are most likely representative of 

coincidental non-deleterious mutations (Figure 2T). Thus, our methods are not only able 

to find biomarkers that speak to mechanism, but also allow for the annotation of possible 

resistance mechanisms.  

 

NAPRT1 mRNA expression is predictive of sensitivity to novel NAMPT inhibitor, 

SW008135 

Among the uncharacterized small molecules showing a selective toxicity to a 

subset of NSCLC’s, we found that cell lines deficient in expression of nicotinic acid 

phosphoribosyltransferase (NAPRT1) mRNA were selectively sensitive to SW008135 

based on an elastic net analysis (Figure 3A). This correlation is preserved at the protein 

level (Figure 3B). We observed almost a 100-fold difference in ED50 values (Figure 3C) 

between NAPRT1 deficient and NAPRT1 proficient cell lines due to a cytotoxic effect 

(Figure 4A). Nicotinamide adenine dinucleotide (NAD) is indispensable for cell viability 

since it is involved in maintaining cellular energy, redox homeostasis, and DNA integrity. 

NAD can be synthesized by salvage pathways in one of two parallel branches from either 

nicotinamide or nicotinic acid (NA) via nicotinamide phosphoribosyltransferase (NAMPT) 

or NAPRT1, respectively (Figure 4B). Despite the presence of a de-novo biosynthetic 

pathway in which NAD is generated from tryptophan, cancer cells seem to be more reliant 

on the NAD salvage pathway to satiate their high metabolic demands [12]. While NAMPT 

is ubiquitously expressed, NAPRT1 expression is lost in multiple tumor types [13], making 

these cells more dependent on NAMPT to synthesize NAD and survive [14].  
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The biomarker, lack of NAPRT1 expression, suggested the hypothesis that 

SW008135 might be a novel NAMPT inhibitor. In support of this, the chemical structure 

of SW008135 resembles a mimetic of NAD (Figure 4C). Cellular pools of NAD were 

rapidly and significantly reduced when H322 cells were treated with SW008135 (Figure 

3D), and toxicity could be rescued in an NAPRT1 deficient cell lines with pre-treatment of 

NAD and nicotinamide, but not with nicotinic acid (NA) (Figure 3E and Figure 4D). 

SW008135 directly abolished the enzymatic activity of purified recombinant NAMPT 

(Figure 3F). Thus, we have identified a structurally distinct, novel inhibitor of NAMPT 

(Figure 4C) in which expression of NAPRT1 can act as a potent biomarker of response.  

While NAPRT1 expression is mostly the sole factor responsible for predicting 

sensitivity to SW008135, there was a small number of exceptions to the rule. We found 5 

resistant cell lines (H1651, H2452, HCC364, H1975, H460) with minimal to no expression 

of NAPRT1 (FPKM <1), 2 of which we confirmed to be missing protein expression (Figure 

3G) and were moderately resistant to SW008135. Using a signal to noise metric, we found 

these cells (NAPRT1 low, resistant) have exceptionally high expression of NAMPT 

(Figure 3H) when compared to NAPRT1 low, sensitive cell lines. This will alter the 

stoichiometry of chemical to protein and render these cells resistant to higher doses of 

the chemical.  

 Two NAMPT inhibitors, FK-866 and GMX-1778, encountered dose limiting 

thrombocytopenia in phase I clinical trials [15, 16]. One approach suggested for 

increasing the therapeutic window for NAMPT inhibitors was to co-treat with NA in 

NAPRT1 deficient tumors as human platelets can convert NA to NAD via NAPRT1 and 
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may be rescued from the toxic effects of NAMPT inhibition [14]. Indeed, in non-tumor 

bearing mice, supplementation with NA and FK866 did rescue murine thrombocytopenia 

[17]. However, a recent study evaluated the toxicity of NAMPT inhibition with GMX-1778 

and a similar scaffold, GNE-617, and found that NA co-administration with NAMPT 

inhibitors, surprisingly, reversed the efficacy of NAMPT inhibitors in multiple, cross-

lineage NAPRT1 deficient xenograft models. The precise mechanism of protection is 

unknown, but the authors proposed that NA supplementation may cause increases in 

NAD production in normal tissue, including the liver, which may be then provided to the 

tumor cells to allow them to grow in the absence of an intact NAD biosynthetic pathway.    

 We characterized the in-vivo efficacy of SW008135 in NOD/SCID mice bearing 

established, NAPRT1 deficient, H322 subcutaneous xenografts. Mice were exposed to 

SW008135 (100mg/kg/day, n=7) or vehicle for two weeks, at which time the SW008135-

treated tumors were 3 fold smaller than in animals treated with vehicle (p=.028), and this 

difference was not due to a difference in body mass (Figure 3I). We observed that in-vitro 

efficacy is preserved in-vivo and did not observe a statistically significant reduction in 

tumor mass in a NAPRT1 proficient xenograft mouse model, H2122 (Figure 4E). Most 

importantly, we did not note any thrombocytopenia in-vivo (Figure 3J). We evaluated 

cultured hepatocytes with intact NAPRT1 expression, and found that our chemical is 

innocuous (Figure 4F,G). Thus, we can use our methods to rapidly identify SW008135 as 

a novel inhibitor of NAMPT, distinct in its innocuousness for normal cells, especially 

platelets.  
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A subset of chemicals behave as ‘prodrugs’ and drug efflux substrates 

For 11 of the chemicals in our screen, sensitivity was predicted by high expression 

of one of eight known drug metabolism enzymes (Figure 5A, 6A). These are 

representative of mechanistically diverse classes and target different groups of cell lines 

(Figure 6B). For these groups of chemicals, we hypothesized that sensitivity may not be 

due to a selective vulnerability but rather due to selective metabolism of the chemical in 

the sensitive cell lines. To test this possibility, we looked at a time course of metabolism 

of the chemical in groups of sensitive and resistant cell lines using LC/MS based 

approaches. For seven of these chemicals, we saw increased metabolism of the chemical 

selectively in the sensitive cell lines (Figure 5B-E, Figure 6C-D). For the three of the 

chemicals, the chemical was metabolized to an equal extent in sensitive and resistant cell 

lines, despite the enzyme being expressed solely in the sensitive cell lines (Figure 6E-G), 

raising the possibility that chemical metabolism in the resistant lines is due to an alternate 

enzyme that does not produce a toxic product. Out of the 11 chemicals we tested that 

were linked to expression of a drug metabolizing enzyme, we only found one, SW147739, 

in which we observed no chemical metabolism in any cell line tested (Figure 6H).  

 Sensitivity to SW157765 in particular was associated with high expression of the 

cytochrome p450 enzyme, CYP4F11, and we could recapitulate cell line sensitivities for 

a smaller panel upon retest (Figure 6I). To directly test that SW157765 is a prodrug, we 

pretreated with a non-toxic dose of HET0016, a CYP4F family inhibitor, and observed an 

ablation of chemical metabolism in sensitive cell lines (Figure 5F). Additionally, CRISPr 
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knockout of CYP4F11 completely reversed toxicity in two sensitive cell lines (Figure 5G, 

6J-L).    

 Predictive capacity of the biomarkers can be assessed by using the elastic net 

derived model to predict chemical sensitivities outside the training set. We assembled a 

panel of 26 NSCLC cells to be used as a test set and predicted sensitivity to SW001286 

and SW126788 based on RNAseq gene expression of CYP4F11 and CES1/CES1P1, 

respectively. We found expression of CES1 and CES1P1 was perfectly predictive of 

sensitivity to SW126788 outside the training set (Figure 5H). However, prediction 

accuracy of SW001286 sensitivities was lower (Figure 5I). While low expression of 

CYP4F11 was predictive of resistance, there were 4 unanticipated non-responders. We 

verified SW001286 behaves as a prodrug, and found that treating with HET0016 can 

completely rescue toxicity in two sensitive cell lines (Figure 5J). These observations led 

us to consider that the metabolized product of SW001286 may not be behaving as a 

general toxin, but rather is targeting a specific function that is perturbed in the sensitive 

cells but either is not perturbed or not necessary in the resistant cells.  Using a scanning 

KS test, we identified mutations in LKB1 as being an additional marker that can better 

stratify response in CYP4F11 high cells. Mutations in LBK1 and high expression of 

CYP4F11 predict sensitivities better than either marker alone (Figure 5K, 6M).  

 LKB1 plays a role in various contexts. In metabolically stressed conditions, it can 

activate AMPK to suppress anabolic pathways and activate catabolic pathways to 

maintain energy homeostasis. As a part of this process, NADPH is one of the key 

molecules that is preserved by activated AMPK through inhibition of acetyl-coA 
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carboxylase 1 and 2 (ACC1, ACC2) [18]. NADPH is a major source of cellular reducing 

power to maintain redox homeostasis from ROS stress. In CYP4F11-expressing, LBK1 

mutant lines, depletion of ACC1 significantly reduced toxicity of SW001286 (Figure 5L), 

arguing that ACC1 driven ROS contributes to added toxicity of SW001286. This was 

further supported by the observation that ROS scavenger N-acetylcysteine (NAC) 

phenocopies the ACC1-depletion (Figure 6N). Taken together, SW001286, activated by 

CYP4F11, seems to generate ROS stress which is aggravated by concomitant mutations 

in LKB1, thus further generating a therapeutic window of response.  

 One of the known chemicals included in our screen was THZ1, an irreversible and 

potent selective inhibitor of CDK7. Our methods found that high expression of the ATP-

binding cassette subfamily member B1, ABCG2, predicts resistance to THZ1 (Figure 5M). 

Though ABCG2 is commonly associated with multi-drug resistance, it has not been 

previously described as an intrinsic resistance mechanism associated with THZ1. We 

proposed that cells may be resistant because they are effluxing THZ1 out of the cells. 

Indeed, siRNA knockdown of ABCG2 promotes chemical sensitization (Figure 5N).  THZ1 

has not yet been evaluated in human clinical trials, though recent work has shown very 

promising results in pre-clinical models of small cell lung cancer [19]. Identification of a 

resistance marker could aid in stratifying patient groups in eventual clinical trials. In 

summary, the prodrugs and drug efflux substrates represent chemicals whose selective 

activity be due solely to selective metabolism or selective efflux. However, we are able to 

use our methods to rapidly flag these to guide further mechanistic studies. 
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Notch2 mutations are predictive of glucocorticoid sensitivities  

Among our selectively toxic compounds, we found a group of 5 chemicals which 

were highly correlated and in which mutations in NOTCH2 were predictive of sensitivity 

(Figure 7A,B). The Notch receptor family consists of three transmembrane receptors, with 

Notch1 most well studied. While Notch2 is not as well characterized, Notch2 and Notch1 

expression is inversely correlated with prognosis in colorectal cancer, where low 

expression of Notch2 and high expression of Notch1 is predictive of lower survival 

probability [20]. Additionally, in mouse models of lung cancer, Notch2 but not Notch1 loss, 

results in increased colony formation in vitro and decreased survival in vivo [21]. 

Consistent with these studies, we see in our lung cancer panel a mutational pattern in 

NOTCH2 reminiscent of a tumor suppressor (Figure 8A) and a downregulation of 

expression of the notch pathway family members in the sensitive cells (Figure 7C).  

The 5 chemicals correspond to glucocorticoid agonists (GC’s), a group of 

chemicals that mimic endogenous glucocorticoids. GC’s are able to diffuse into the 

cytoplasm where they interact with the ubiquitously expressed nuclear hormone receptor, 

GR, eliciting a transcriptional program with one effect being dampening of the 

inflammatory response. We found response to GC in lung was receptor dependent, as 

siRNA knockdown of the gene encoding GR, NR3C1, rescued toxicity (Figure 7D, 8B). 

GC’s are routinely used in treatment of hematopoietic malignancies, most commonly in 

the treatment of ALL. However, the routine use of GC therapy in patients with solid tumors 

is much less common. Both routine use of GC’s in clinic for lung cancer and an accurate 

description of the efficacy of GC’s in lung cancer models is not well described.   
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Several studies have linked GC response to activity of the Notch pathway. In T-

ALL, activation of Notch signaling is associated with glucocorticoid resistance [22], and 

gamma-secretase inhibitors, which block the activation of NOTCH, increases sensitivity 

to GC [23]. A mutually antagonistic relationship exists between Notch effector, HES1, and 

NR3C1, in which each represses transcription of the other [23, 24]. Consistent with these 

observations, we found significantly higher basal expression levels of NR3C1 mRNA in 

NOTCH2 mutant, GC responsive cell lines (Figure 7E). NR3C1 transcription is described 

as being responsive to GC induction. Interestingly, we found a much more significant 

upregulation of NR3C1 in response to GC stimulation in the sensitive cells (Figure 7F). 

These observations suggest cells that are GC responsive cells are primed to propagate 

the signal so that GC stimulation will initiate a positive feedback loop to further amplify 

the response.  

We sought to probe the mechanism by which differential activity of notch signaling 

could promote better response to the GC signal.  HES1 is a general transcriptional 

repressor which has recently been described to occupy the promoters of GC inducible 

genes and act as a master negative regulator of GC response. HES1 downregulation in 

the context of T-ALL is required to induce a GC transcriptional response [24]. Treatments 

with GC reduced cellular HES1 protein levels in sensitive NSCLC cells, as has been 

described for T-ALL (Figure 7G) and caused a complete depletion of HES1 from the 

nucleus (Figure 8C). Significantly, we did not observe a similar ablation of HES1 protein 

levels in resistant cell lines.   
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 GC treatment did not kill sensitive lung cancer cells but was cytostatic. We 

examined GC effects on cell cycle progression by flow cytometry found an induction G1/S 

arrest selectively in sensitive cell lines (Figure 8D).  A canonical function of activated GR 

is to suppress inflammation through transcriptional activation of anti-inflammatory genes 

and direct inhibition of nuclear factor-kB (NFKB) and activator protein 1(AP-1) [25, 26]. A 

well-known target of both pathways is cyclin D1 [27], which we found to be selectively 

reduced in sensitive lines treated with GC (Figure 7H). Stable overexpression of HES1-

pCMV-AC-GFP prevented the reduction of HES1 protein in sensitive cells treated with 

GC (Figure 8E) and prevented cell cycle arrest by GC (Figure 4G, 8F). Taking this 

information together, we propose that loss of function NOTCH2 mutations results in 

overall lower levels of NOTCH signaling and higher basal GR expression, priming cells 

to respond to GC. Upon GC stimulation, HES1 will be selectively depleted and expression 

of GR will be amplified. HES1 will no longer be able to repress the GC transcriptional 

program, and one outcome of induction of GR signaling will be a selective loss of cyclin 

D1, arresting cells in G1.  

 While GC therapy is not commonly used in therapeutic doses to treat patients with 

lung cancer, 4.3% of LUAD tumors and 5.1% of LUSC’s in the TCGA have mutations or 

deletions in NOTCH2 and are predicted to be sensitive to GC’s. This corresponds to 

thousands of patients a year that could be treated with a FDA approved therapy.  

 

In-vitro sensitivity is mostly preserved in 3D organoid models of lung cancer 
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Although screening cancer cell lines in 2D cell culture is useful for chemical 

stratification and mechanistic follow-up, this approach lacks many characteristics that 

might affect the response to chemicals by tumors. Thus, there has recently been interest 

in 3D cell culture systems that include additional environmental parameters, such as 

changes in oxygen and nutrient availability [28]. This raises the question of how well the 

responses to chemicals identified as selectively toxic for NSCLC cell lines in 2D cell 

culture would replicate in a 3D model. To answer this, we modified a hanging drop 

organoid culture system and adapted a subset of our cell line panel to grow in three-

dimensional spheroids. We selected a group of chemicals with ideal patterns of selective 

sensitivities and compared ED50 values obtained in 2D format to 3D format in groups of 

sensitive and resistant lines. There was a good correlation between the two culture 

conditions for the response to a majority of the chemicals, though we did see a trend for 

higher ED50 values in 3D format compared to the same cell line in 2D (Figure 9A).  

 

Biomarkers can predict chemical sensitivities and mechanisms  

For each of the chemicals in our screen showing a selective toxicity across our 

lung cancer panel, we used strict inclusion criteria to associate potential predictive 

biomarkers. For each chemical, we validated the predictive capacity of each feature set 

with receiver operating characteristic curve analysis. For those that passed our filters, we 

integrated the results into a searchable web-based GUI. One association we observed 

was that co-occurring mutations in TP53 and KEAP1 predict sensitivity to the centromere 

associated protein E inhibitor, GSK-923295 (Figure 9B). Upon retest in an independent 
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cell line cohort, we found that our biomarker predicted sensitivities outside the training set 

(Figure 9C). GSK-923295 entered phase I clinical trials, where the incidence of adverse 

effects was low [29]. Identification of a biomarker might greatly aid in stratifying patient 

groups for further clinical evaluation of this or similar inhibitors.  

In addition to finding novel biomarkers for known compounds and using our 

methods to uncover already annotated biology, we are also able to use POPs compounds 

to discover novel vulnerabilities in lung cancer and potential leads to effective chemicals. 

Though in-depth mechanistic follow-up of each chemical is beyond the scope of this 

manuscript, we selected a small number and found that the associated biomarkers could 

reveal which pathways were perturbed by the chemicals. A scanning KS test found that 

mutations in the cilia retrograde transport protein, TTC21B, predicted sensitivity to 

SW036310 (Figure 9D). Although not well characterized in a cancer setting, loss of 

function mutations in TTC21B in developing mouse forelimb cells was found to upregulate 

cilia dependent processes [30, 31], and shown to be a causal mutation in human 

ciliopathies [32]. A variety of cancer related pathways are known to be at least partly 

regulated at the cilia, including sonic hedgehog [33], NFKB [34], VHL [35], and TGF-Beta 

signaling [36]. We found mRNAs associated with all of these processes to be selectively 

upregulated in the TTC21B mutant, SW036310-sensitive cells (Figure 10A). Cells that 

were sensitive to SW036310 also selectively formed cilia (Figure 10B). Given our 

association, we proposed that SW036310 may affect cilia function and that TTC21B 

mutant cells may be addicted to processes regulated at the cilia level, making them 

vulnerable. Consistent with this, SW036310 sensitivities almost perfectly phenocopied 
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sensitivity to the cytoplasmic dynein inhibitor, ciliobrevin, known to perturb trafficking to 

the cilia leading to their malformation [37] (Figure 9E).  

We also found two chemicals which were anti-correlated (Figure 9F) and in which 

activity of proteins that differentially regulate the host defense response predicted 

sensitivities. For SW140154, high expression of the negative regulator of Toll like receptor 

signaling (TLR) pathway, SARM1 [38], and low expression of the cytokine receptor, 

IL18R1,  predicts sensitivity (Figure 9G). For SW151511, high expression of the positive 

regulator of the TLR pathway, PELI2 [39], predicts sensitivity (Figure 9H). A GSEA 

analysis confirmed that SW151511 sensitive cells and SW140154 resistant cells were 

associated with higher overall expression of the TLR pathway as a whole (Figure 9I). For 

both compounds, we predicted additional sensitive and resistant cells outside the training 

set and found that opposite expression levels of TLR related genes could perfectly predict 

SW151511 and SW140154 sensitivities (Figure 9J, 10C,D). Finally, we treated 2 sensitive 

and 2 resistant cells with 10 μM of SW151511 and looked for changes in gene expression 

24 hrs post-treatment. Indeed, we found that the genes that changed the most in response 

to treatment in sensitive cell lines were all related to the host defense response (Figure 

10E). Surprisingly, however, we found that expression of these genes increased even 

further with SW151511 treatment. The exact mechanism for why SW151511 would 

promote upregulation of these already elevated genes and whether that is contributing to 

compound toxicity is an intriguing question, but beyond the scope of this manuscript.  

 

KRAS mutant cells behave phenotypically diverse in our chemical screen  
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Given the frequency with which KRAS promotes lung carcinogenesis, we 

examined the distribution of KRAS mutant cell lines after clustering according to POPs 

ED50 values. KRAS mutant cells parsed into multiple, distinct clusters together with 

KRAS wild-type cells (Figure 11A). We also note a similar phenomenon when clustering 

together cell lines according to an expression signature in an RNAseq dataset (Figure 

11B). In fact, a 2 way hierarchical cluster of solely KRAS mutant cell line responses to 

our POPs reveals heterogeneous responses to chemicals with no clear, delineated 

cluster structure (Figure 11C).  This indicates that NSCLC cells with mutant KRAS are 

not a single subtype, but rather multiple, mechanistically diverse subtypes defined, we 

propose, by mutations or other oncogenic lesions that co-occur with KRAS. In support of 

this, we and other groups have previously defined co-occuring lesions with KRAS to 

distinct mechanistic subclasses [9, 40, 41].  

 

SW157765 sensitivity is predicted by co-occurring mutations in KEAP1 and KRAS 

In line with this notion, we defined co-occurring mutations in KRAS and KEAP1  as 

predicting sensitivity to SW157765 (Figure 11D). KEAP1 is a major regulator of the NRF2 

antioxidant response. Under normal physiological conditions, NRF2 is constantly 

ubiquitinated in the cytoplasm by the CUL3 E3 ligase and its substrate adaptor, KEAP1. 

Upon stress, KEAP1 is inactivated and NRF2 is translocated into the nucleus, where it 

acts to upregulate the anti-oxidant response and cytoprotective genes. The NRF2 

pathway has been described as being a pro-survival pathway for various cancer types 

and inactivating mutations or deletions in KEAP1 are present in ~19% of LUAD’s and 
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12% of LUSC’s in the TCGA. Although co-occurring mutations in KEAP1 and KRAS are 

present in ~8% of patients with LUAD’s in the TCGA (www.tcga.org), significantly more 

than expected by chance (hypergeometric p=.007), a dependence on the NRF2 

antioxidant pathway in KRAS mutant lung adenocarcinoma has not been described.  

However, multiple cell lines were sensitive to SW157765 despite being KEAP1 

wild-type. Of these lines, two have mutations in NRF2 annotated as being in the 

degradation domain, rendering the protein constitutively active (Figure 12A). Another 

does not express KEAP1 due to a deletion (Figure 12B). In the remaining unanticipated 

sensitive cell lines, we were unable to find variants in genes related to the NRF2 pathway. 

However, we defined a NRF2 regulated gene signature using publically available datasets 

and found that both NRF2 mutant and wild-type sensitive cell lines had significantly 

increased mRNA for these genes (p<2.2E-16) (Figure 12C).  

SW157765 falls into the ‘prodrug’ class where high expression of CYP4F11 is 

predictive of toxicity. CYP4F11 was found to be required for toxicity and chemical 

metabolism, (Figure 5E-G, 6J-L), and has been reported as being upregulated in NRF2 

dependent non-small cell lung cancer [42]. Given this association, we probed for NRF2 

dependent regulation of CYP4F11 and found that siRNA knockdown of NRF2 resulted in 

downregulation of CYP4F11 (Figure 11E). Interestingly, we found one resistant line, 

HCC44, with high expression of CYP4F11 in which the chemical is being metabolized at 

a similar rate as sensitive cell lines. This lead us to believe that once our chemical is 

cleaved it may not act as a general toxin, but rather, is targeting a specific vulnerability to 

sensitive cell lines.  
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Additionally, we found that mutations in both KEAP1 and KRAS are required for 

toxicity. siRNA knockdown of NRF2 significantly rescued toxicity. Deconvolution of 

siRNA’s into individual oligos revealed 2 out of 3 oligos rescued toxicity, with the only 

exception being an oligo that was not effective in reducing NRF2 mRNA expression. 

(Figure 11F 12D). Similarly, siRNA knockdown of KRAS could completely rescue 

chemical toxicity indicating sensitivity is driven by a vulnerability converged upon by both 

pathways (Figure 11G). Interestingly, KRAS knockdown modestly decreased protein 

levels of both NRF2 and CYP4F11 (Figure 11H). However, knockdown did not 

significantly affect chemical metabolism (Figure 12E). Thus, both KRAS and NRF2 are 

playing an instructive role in defining the vulnerability targeted by the metabolized 

chemical.  

 

Addiction to the serine biosynthetic pathway defines a distinct metabolic subtype 

in NSCLC 

To identify this vulnerability, we utilized a large-scale mass spectrometry based 

screening strategy to identify potential binders of SW157765 from a list of ~14,000 

candidate proteins. We found SW157765 binds to the non-canonical glucose transporter, 

GLUT8 with a high affinity (Kd = 100nM) and binding was confirmed with thermal-stability 

shift assays (Figure 14A). GLUT8 is a member of the class III glucose transporters. It’s 

role in cancer has not been well studied, though it has been found to be significantly 

upregulated in endometrial cancer [43] and in multiple myeloma [44] relative to normal 

tissue. However, most glucose intake in cancer is thought to occur through the glucose 
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transporter, GLUT1. Class III glucose transporters are non-canonical glucose 

transporters thought to mainly be involved in translocation of glucose across the 

blastocyst membrane [45], although it has been proposed that cancer cells have 

upregulated class III glucose transporters to support higher energy demands [46]. 

Supporting this notion, glucose intake and viability of a subset of multiple myeloma cell 

lines was found to be dependent on the continued expression of GLUT8 but not GLUT1 

[44]. In our panel, cell lines sensitive to SW157765 were selectively sensitive to glucose 

withdrawal (Figure 14B) and to knockdown of GLUT8 (Figure13A). Knockdown of GLUT1 

could not stratify chemical sensitive and resistant cell lines (Figure 14C).  

We investigated the effect of SW157765 on cellular glucose intake using 

fluorescently labeled 2-deoxy glucose (2DG).  2DG is routinely used to measure glucose 

uptake as it can be transported into cells normally through the GLUT transporters, but 

does not enter metabolic pathways. SW157765 inhibited 2DG uptake selectively in the 

SW157765-sensitive cells in a dose-dependent manner (Figure 13B). Given that glucose 

intake is mainly thought to occur through GLUT1, we selected one sensitive cell line that 

was insensitive to GLUT1 knockdown and looked for effects of GLUT1 knockdown. 

Surprisingly, complete knockdown of GLUT1 at the mRNA and protein level (Figure 

14D,E) did not affect glucose uptake in the H647 sensitive cell line, whereas knockdown 

of GLUT8 significantly reduced uptake (Figure 13C). This data suggests that subsets of 

NSCLC may be addicted to alternate routes of glucose cellular intake.  

 We sought to determine why KEAP1, KRAS mutant cells are more sensitive to 

GLUT8 mediated glucose transport by integrating large scale metabolomics flux datasets 



25 

 

to look at differences in basal glucose incorporation. We found that an increase in flux 

through the serine biosynthetic pathway was predictive of chemical sensitivity. Uniformly 

labeled [13C6] glucose is metabolized via the glycolytic cycle to 3-phosphoglutarate (3PG), 

which can enter the serine biosynthetic pathway where it is converted in a series of steps 

to serine, which is subsequently cleaved to produce glycine and a one-carbon 

intermediate that can enter the folate cycle to ultimately result in the production of purines 

and thymidines (Figure 14F). Steady state flux through this pathway can be determined 

via incorporation of [13C6] into all three carbons of serine (SerM3) and both carbons of 

glycine (GlyM2). By this measurement, cells sensitive to SW157765 had higher steady 

state flux through the pathway (Figure 13D). De novo serine biosynthesis has been 

described as being upregulated in lung cancer [47],breast cancer [48], glioma [49], and 

melanoma [50], and genetic ablation of this pathway is toxic to cancer cell lines in which 

it is upregulated, even in the presence of exogenous serine.  Recently,  NRF2 was 

reported to upregulate and promote a dependence on flux through the serine pathway 

through upregulation of expression of the major serine pathway genes (PHGDH, PSAT1, 

PSPH, SHMT1, and SHMT2) indirectly via induction of their direct transcriptional regulator 

ATF4 [47]. Consistent with this, we see a statistically significant increase in expression of 

serine biosynthetic pathway genes in the SW157765 sensitive cell lines (Figure 14G), 

and a selective addiction in the sensitive cells to knockdown of both ATF4 (Figure 13E) 

and PHGDH (Figure 13F), the enzyme that catalyzes the first committed step in the 

pathway [40].  
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These observations led us to consider that SW157765 may be acting to reduce 

flux through the serine biosynthetic pathway so that cells with an addiction to this pathway 

will be selectively targeted. To test this, we pretreated H647 cells with SW157765 for 24 

hrs, an interval where we do not observe significant induction of cell death but we do 

observe ~85% chemical cleavage. We then incubated cells with media in which the first 

2 carbons of glucose ([13C2]) were labeled to look at heavy label incorporation at different 

time points post-incubation. Labeling of serine reached steady state levels after 2 hrs 

(SerM2), and this was reduced 5-fold with chemical treatment (Figure 13G). We repeated 

this experiment in an expanded panel of sensitive and resistant cell lines. Basal flux 

through the serine biosynthetic pathway was higher in sensitive cell lines compared to the 

SW157765-insensitive cells and 6 h treatment with the chemical selectively reduced 

serine labeling only in the sensitive cell lines (Figure 13H).  Flux through the pentose 

phosphate pathway (PPP) (LacM1) (Figure Figure 14H-I) and the citric acid cycle (CitM2) 

(Figure 14I) was not affected, despite numerous reports that both KRAS and NRF2 can 

shunt glucose towards the PPP [51, 52]. Thus, inhibition of GLUT8 mediated glucose 

intake seems to preferentially affect glucose flux into the serine biosynthetic pathway.  

While KEAP1 and KRAS mutations were mostly predictive of response, there were 

4 cell lines (DFCI024, HCC44, H2030, HCC4019) with co-occurring mutations in KEAP1 

and KRAS and high expression of CYP4F11 that were resistant to SW157765. We found 

protein expression of PHGDH was greatly reduced or absent in all 4 cell lines (Figure 

13I). Additionally, cell line H2030 is completely missing mRNA expression of PSAT1.  We 

proposed that these cells are resistant to the chemical because they have acquired an 
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adaptation to lower flux of glucose to the serine biosynthetic pathway that reduces 

dependence on the pathway for survival. To test this, we stably expressed either full 

length PHGDH or a hypomorphic mutant (PHGDHV490M) [53] in HCC44 cells under the 

control of a dox inducible promoter, though the promoter was quite leaky (Figure 14J). 

We found that overexpression of PHGDH, but not PHGDHV90M, could sensitize HCC44 

cells to SW157765 (Figure 13J). In summary, we have shown co-occurring mutations in 

KEAP1 and KRAS define a vulnerability to continued function of GLUT8. Inhibition of 

GLUT8 is associated with a reduction of glucose intake leading to a selective shunting of 

glucose from serine biosynthesis, specifically. We found that overexpression of wild-type 

PHGDH can re-sensitize HCC44 cells to SW157765. Perhaps most intriguingly, re-

introduction of both PHGDH and PHGDHV490M also can sensitize cells to GLUT8 

inhibition. This opens up the possibility of a cooperativity between GLUT8 mediated 

glucose intake and increase in flux through the serine biosynthetic pathway.  

 To test for cross lineage efficacy of SW157765, we tested for toxicity in a panel of 

27 breast cancer cell lines whose expression and mutational profiles had been assayed 

in the CCLE [1]. Both KEAP1 and KRAS are not well characterized as being involved in 

breast cancer progression, and, indeed, we did not see a correlation with status of these 

genes and sensitivity to the chemical. Instead, we found that amplifications and/or high 

expression of PHGDH together with high expression of CYP4F11 can predict a selective 

sensitivity (Figure 7K). This indicates that there are multiple mechanisms for creating a 

dependency targeted by a chemical. The frequencies by which these occur may vary in 
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different cell linages. Thus, tissue specific biomarkers may be required to predict 

sensitivity to a chemical.  
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Figure 1: Genomic characterization and chemical sensitivities of NSCLC cell line panel  

(A)  p-values for pairwise correlations (Pearson) between tumor datasets from two 

sources (MDACC=orange; TCGA=purple) and UTSW cell line panel based on 

expression data. Tissue sources include LUAD (light green), LUSC (blue), 

mesothelioma (yellow), breast (pink), unannotated NSCLC (forest green), NSCLC-

neuroendocrine (green).  

(B) Number of somatically acquired mutations annotated for cancer cell lines with 

matched normal DNA and number of mutations for cell lines with only tumor DNA 

post-filtering. 

(C) NSCLC sensitivity to the precision oncology probe set (POPS). Each row 

represents one chemical, where cell line ED50’s are rank ordered for each 

chemical. Red dashes indicate cherry picked chemicals with known mechanism.    

(D) APC of NSCLC cell lines based on POPs ED50 values. Nodes are colored 

according to cluster membership 

(E)  APC of NSCLC cell lines based on POPs ED50 values. Nodes are colored 

according to cluster membership in RNAseq based APC. 

(F)  APC clustering across all datasets. Cell lines are ordered the same in each row 

and are ordered according to cluster membership in chemical APC. Each cell line 

is colored according to membership in chemical, illumina BeadArray, 

metabolomics, RNAseq, RPPA, and SNP 6.0 copy number APC’s (Figure S1L-F). 

Cell lines absent from a dataset are colored in white.  
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(G)  Elastic Net modeling indicated ALK mRNA expression as a feature predicting 

sensitivity to crizotinib. AUC responses of each cell line (top row) is ranked from 

lowest (blue) to highest (orange)  and log2 FPKM values for ALK expression in the 

same cell lines is shown below. A legend to interpret the color scheme for each 

row is indicated to the right.  

(H)  Elastic Net modeling indicated that EGFR mutations or chromosomal 

amplifications are a feature predicting sensitivity to erlotinib. (top row) Cell lines 

are ordered according to AUC response. Binary mutation and log2 segmented copy 

number profiles of the same cell lines are shown below. A legend to interpret the 

color schemes for each row is indicated to the right. 

*all experiments performed in triplicate, unless otherwise indicated. Values are means. 

Error bars plotted as + SD. * p<.05; ** p<.01 
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Figure 2: Genomic characterization and chemical sensitivities of NSCLC cell line panel, 

related to Figure 1 

(A) 66 cell lines corresponded to those with no matched normal DNA. The series of 

filters shown were used to identify the most likely somatic mutations. TGP = 

thousand genome project; COSMIC = catalogue of somatic mutations in cancer 

(B) A total of 248,832 combinations of filters were applied. The number of mutations 

passing each filter is plotted, where each black line corresponds to one cell line. 

The red dashed line indicates the selected filter cutoff with 95% confidence range 

indicated as the dashed lines.  

(C) Pearson R values were calculated based on cell line correlations between 

normalized gene expression signatures in an Illumina V3 BeadArray dataset and 

in the RNAseq dataset. Unsupervised heirarchial cluster of the R values are 

shown, where the diagonal indicates cell line self-similarity between both datasets. 

(D) APC of NSCLC cell lines clustered according to RNAseq based gene expression 

signature. Nodes are colored according to cluster membership. The 12 cell lines 

screened with the entire 230,000 compound library are highlighted in green.  

(E) The UTSW chemical library consists of ~230,000 chemicals composed of 450 

chemicals from the NIH clinical library, 1,100 from Prestwick, 1,200 from TimTek, 

2,500 from the UTSW proprietary library, 22,000 from ComGenex, 75,000 from 

ChemBridge, and 100,000 form ChemDiv labs 

(F) The UTSW chemical library was screened in a tiered approach to identify 218 

chemicals to screen at 12 doses across panel of 100 lung cell lines 
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(G-H) Density distribution of the ED50 values in the 100 cell line panel of a chemical 

(SW034510) that was selected with (G) the bimodal selection method and (H) a 

chemical (SW047814) selected with the unimodal selection method.  

(I) For each chemical, a pearson correlation was calculated to represent similarity 

between ED50 values and AUC values across the 100 cell line panel. Red dashes 

indicate cherry-picked chemicals with known mechanism.  

(J) APC of 218 chemicals clustered based on ED50 values. Nodes are colored 

according to cluster membership.  

(K) Unsupervised heirarchial cluster displaying cell line response to the POPs. 

Dendrograms are ordered based on ED50 values that are color coded according to 

the heatmap below.  

 (L-O) APC of cell lines clustered according to a gene expression signature from (L) 

Illumina V3 BeadArrays, (M) metabolic flux carbon tracing data, (N) RPPA data, 

(O) a segmented copy number signature. Nodes are colored according to cluster 

membership 

(P-S) APC of cell lines clustered according to (P) ED50 responses from the POPs 

chemical dataset. Cell lines are colored according to clustering results from gene 

expression values from Illumina V3 Bead Array, (Q) metabolic flux carbon tracing 

data, (R) RPPA data, (S) a segmented copy number signature.  

(T) Lollipop plot of EGFR mutation statuses. Mutations are ordered based on 

annotated amino acid position along protein length. Top panel indicates the 

frequency of non-synonymous mutations found in TCGA LUAD’s (blue) and 
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LUSC’s (red); bottom panel the frequency in the UTSW cell line panel (blue = 

erlotinib sensitive cell line; orange = erlotinib resistant cell line). The domains in 

the EGFR protein as annotated in PFAM are diagramed below.   
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Figure 3: SW008135 is a novel NAMPT inhibitor with sensitivity predicted by high 

expression of NAPRT1 

(A)  Elastic Net modeling associated low NAPRT1 mRNA expression as predicting 

sensitivity to SW008135. Cell lines are ranked by ED50 of the response to 

SW008135 (top row) and for each cell line the log2 FPKM values for NAPRT1 

expression are shown below. A legend to interpret the color scheme for each row 

is shown on the right 

(B) NAPRT1 protein expression is anti-correlated with SW008135 response. A 

representative immunoblot with actin loading control is shown. 

(C) Dose response curves for NAPRT1 deficient (H322, H661, and H1155) and 

NAPRT1 proficient (H1299, H1975, H1993, H2030, H2122, and HBEC30) cell lines 

retested in 96 well format.  

(D) H322 cells were exposed to 20 μM SW008135 or DMSO for 40 hrs prior to 

quantification of NAD and total protein. Mean values were normalized to the DMSO 

treated samples.  

(E) H661 cells were co-treated with SW008135 (5 μM) and the indicated 

concentrations of NA, NAD, or NAM and incubated for 72 hrs. Values in each 

condition represent relative viability (%), normalized to DMSO control. 

(F) Consequence on enzymatic activity of NAMPT at different time points post-

SW008135 or DMSO treatment.  

(G) An immunoblot for NAPRT1 protein for 5 resistant cell lines with minimal mRNA 

expression of NAPRT1 shows two cell lines are completely deficient for NAPRT1 
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(highlighted in red). Cal.12T, H1299 and HBEC30KT are included as positive 

NAPRT1 expressing controls. 

(H) Boxplot comparing the NAPRT1 and NAMPT log2 FPKM expression values for 

three groups of cell lines including cells with a low prediction error (sensitive cell 

lines with low NAPRT1 and resistant cells with high NAPRT1) as well as resistant 

cell lines with a high prediction error because of absent NAPRT1 protein levels. 

The latter group displays exceptionally high expression of NAMPT. 

(I) NOD/SCI mice (n=7/group) with subcutaneous tumors from a NAPRT1 deficient 

cell line, H322, were treated with SW008135 for 14 days. Tumor volumes (left axis, 

solid line) and body weights (right axis; dashed line) are plotted for SW008135 and 

vehicle-treated conditions. ANOVA, p =.028 comparing tumor volumes.  

(J) Platelets were quantified from the SW008135 or vehicle treated mice. (n=7/group).  
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Figure 4: SW008135 is a novel NAMPT inhibitor with sensitivity predicted by high 

expression of NAPRT1, related to figure 3 

(A) Representative microscopic images of NAPRT1 deficient H322 and proficient 

H2073 96 hrs post SW008135 exposure (5 μM). 

(B) NAD can be produced through two salvage pathways; NA or Nicotinamide is 

converted through the enzymes NAPRT1 and NAMPT, respectively, eventually to 

NAD. NAD can also be generated through a de-novo pathway through tryptophan.  

(C) Chemical structures of SW008135 and known NAMPT inhibitors are shown.  

(D)  H322 cells were co-treated with 5 μM SW008135 and the indicated concentrations 

of NA, NAD, or NAM and incubated for 72 hrs. Values in each condition represent 

relative viability (%), normalized to DMSO control.  

(E)  Dose response curves of SW008135 in hepatocyte cell lines THLE-2 and THLE-

3. Viability relative to DMSO is indicated 72 hrs post-compound exposure.  

(F) THLE-2 and THLE-3 express NAPRT1 protein, detected by immunoblot with a b-

tubulin loading control. 

(G) NOD/SCI mice (n=7/group) with subcutaneous tumors from a NAPRT1 proficient 

cell line, H2122, were treated with SW008135 for 14 days. Tumor volumes (left 

axis, solid line) and body weights (right axis; dashed line) are plotted for 

SW008135 and vehicle only treatments. ANNOVA p >.05  
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Figure 5:  A chemical subset behaves as prodrugs and drug efflux substrates. 

(A) Elastic net modeling correlates high mRNA expression of known drug metabolism 

enzymes as predicting sensitivity to 8 chemicals. Cell lines are ranked by ED50 

response indicated as a heatmap (top rows, unbolded) with the log2 FPKM values 

for each line plotted as a heatmap underneath (bolded). A legend to interpret the 

color scale is plotted to the right. 

(B-F) The Ln of the percent remaining of (B) SW126788 (C) SW103675 (D) 

SW017951 (E) SW157765  and (F) SW157765 co-treated with HET-0016 is plotted 

as a function of time of treatment with each compound. Sensitive cell lines are 

colored blue and resistant orange. Values are normalized to control treatment.  

(G) Dose response curve of H460 cells with CYP411 edited out of the genome with 

CRISPr compared to a control transfected sgRNA..  

(H-I) Dose response curves of cell lines outside the training set predicted to be 

sensitive (blue) and resistant (orange) to (H) SW126788 and (I) SW001286. 

Values are means of triplicate measurements normalized to the mean of the lowest 

two doses.  

(J) HCC44 and A549 cells were treated with either DMSO, SW001286 or co-treated 

with SW001286 and HET-0016 for 72 hrs. Values were normalized to DMSO 

treatment. 

(K) An empirical CDF plot comparing SW001286 sensitivity of cell lines with high 

expression of CYP4F11 and STK11 mutations (red) compared to STK11 wild-type 

cell lines (grey).  
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(L) The consequence of siRNA mediated depletion of ACC1 or a non-targeting control 

(NC) on cell viability 72 hrs post-treatment with SW001286 in H2122 (1 μM) and 

HCC44 (5 μM) is graphed. Values normalized to the DMSO, NC treated condition.  

(M)  THZ1 ED50 plotted as a function of ABCG2 mRNA expression (log2 FPKM). 

Pearson R=.64, p=4.6E-10  

(N) The consequence of siRNA mediated depletion of ABCG2 or non-targeting control 

(NC) on THZ1 toxicity (50 nM) 72 hrs post-treatment of H157 cells is plotted. 

Values were normalized to the DMSO, NC treated condition.  
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Figure 6: A chemical subset behaves as prodrugs and drug efflux substrates, related to 

Figure 5. 

(A) Elastic net modeling correlated high mRNA expression of one of 5 known drug 

metabolism enzymes with sensitivity to 4 chemicals. Cell lines are ranked by ED50 

response indicated as a heatmap (top rows, unbolded) with log2 FPKM values for 

the same cell lines plotted as a heatmap underneath (bolded). A legend to interpret 

the color scale is plotted to the right. 

(B) Unsupervised heirarchial clustering of ED50 responses of 12 chemicals which 

correlate with high expression of a drug metabolism enzyme.  

(C-H) The Ln of the percent remaining of (C) SW115205 (D) SW098382 (E) 

SW153609 (F) SW167255 (G) SW134963  and (H) SW147739 is plotted as a 

function of time of treatment with each compound. Sensitive cell lines are colored 

blue and resistant orange. Values are normalized to control treatment. 

(I) Dose response curves for CYP4F11 high sensitive (HCC2814, H1648, H647, H460, 

A549) and CYP4F11 low, resistant (H1792,H520, H1838, H2009) cell lines to 

SW157765 retested in 96 well format.. 

(J) H647 cells with CYP411 edited out of the genome with CRISPr and H647 cells 

transfected with a control sgRNA were treated for 72 hrs with the concentrations 

of SW157765 shown and cell viability relative to a DMSO control measured.  

(K-L) Clones were selected after gene editing of the CYP4F11 locus and analyzed by 

immunoblot. Parental protein expression of CYP4F11 (lane1) was compared to 

that of the clones, and the clones resulting in the lowest protein expression were 
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selected for further follow-up. (K) Clone 8 was selected for H647 and (L) Clone 2 

was selected for H460.  

(M)  An empirical CDF plot comparing SW001286 sensitivity of cell lines mutant for 

STK11 (red) to those wild-type for STK11 (grey)  

(N) Cells were co-treated with 2 mg/mL NA and either 5 μM (HCC44) or 1μM (A549) 

SW001286. Viability was measured 72 hrs post-treatment and values were 

normalized to DMSO condition.  
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Figure 7: Glucocorticoid sensitivity in NSCLC is predicted by loss of function mutations in 

NOTCH2 

(A) Cell lines in the NSCLC lung panel are ranked by unsupervised heirarchial 

clustering according to AUC values of response to 5 glucocorticoids.  

(B) Elastic net modeling returned mutations in NOTCH2 as predicting sensitivity to 

GCs. NSCLC cell lines are ranked by ED50 response to methylprednisone with the 

NOTCH2 mutation status of each cell line plotted underneath. A legend to interpret 

the color scale is plotted to the right. 

(C) Cumulative ranked gene expression of GC sensitive (blue) are compared to 

resistant cell lines (orange) by a CDF plot of FPKM-based mRNA expression (z-

scores) of genes in the indicated gene set (p=.003).  

(D) Growth of H2073 cells treated with siRNA targetting NR3C1 or a non-targeting 

control (NC) was measured 72 hrs post-treatment with 3 μM hydrocortisone . 

Values were normalized to cells treated with DMSO and NC siRNA.  

(E) Expression of mRNA for NR3C1 in GC responsive and non-responsive cell lines 

measured by Illumina BeadArray is shown.  

(F) Changes in gene expression of NR3C1 in response to methylprednisone (5 μM) in 

2 GC responsive and non-responsive cell lines are normalized to untreated cells.  

(G-H) Changes in (G) HES1 and (H) CyclinD1 protein expression 72 hrs post 

hydrocortisone (5 μM) treatment in GC responsive and non-responsive cell lines 

are shown by immunoblot.  
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(I) Flow cytometric histograms are shown for H1993 cells transfected with HES1-

pCMV-AC-GFP and treated with hydrocortisone (5 μM) for 72 hrs. The propidium 

iodide signal of cells gated by GFP fluorescence is graphed. Cells were treated 

with 300 ng/mL nocodazole 48 hrs post-GC treatment to block the cell cycle at 

G2/M (4n DNA content).  
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Figure 8: Glucocorticoid sensitivity in NSCLC is predicted by loss-of-function mutations in 

NOTCH2, related to figure 7 

(A) Location and type of NOTCH2 mutations in NSCLC cell lines is shown by lollipop 

plot. Mutations are ordered based on annotated amino acid position along protein 

length. Height of symbols indicate frequency of non-synonymous mutations found 

in the UTSW cell line panel (blue = GC sensitive cell line). PFAM annotated 

domains in the NOTCH2 protein are shown below.  Missense mutations are 

indicated as a black solid line and nonsense are indicated as a red solid line.  

(B) The effect of individual siRNA oligonucleotides on expression of NR3C1 compared 

to H2073 cells treated with a non-targeting control (NC) 72 hrs post-treatment with 

5μM hydrocortisone was measured by immunoblot.  

(C) Changes in HES1 protein levels in nuclear (N) and cytosolic (C) fractions 72 hrs 

after treatment with hydrocortisone was measure by immmunoblot. B-actin serves 

as a loading control and Lamin B1 indicates the nuclear fraction.  

(D) Flow cytometric histograms for DNA content after 3 day exposure to 

hydrocortisone (3 μM) of DMSO measured in GC responsive and non-responsive 

cell lines. Nocodazole (100 ng/mL) was added 48 hrs post-treatment to force 

accumulation of proliferating cells in G2/M over the course of the next 24 hrs. 

(E) Transient over-expression of HES1 or empty vector control cDNA in 3 GC 

responsive cell lines. Protein expression levels are shown 72 hrs post-

hydrocortisone treatment (5 μM)  
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(F) DNA content for the indicated populations in Figure 4I is measured by flow 

cytometry of cells stained with propidium iodide.  
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Figure 9: Biomarkers inform chemical mechanism of action 

(A) ED50 values when cell lines were grown in 2-dimensional format is compared to 

ED50 values of cell lines grown as spheroids in response to the indicated 

chemicals.  

(B) An empirical CDF plot compares the ED50 of the response to GSK-923295 of cell 

lines with co-occurring mutations in TP53 and KEAP1 (red) to wild-type cell lines 

(blue). p<.0002 

(C) Dose-response curves are shown for cell lines outside the training set that are 

predicted to be sensitive (blue) and resistant (orange) to GSK-923295. Values are 

normalized to the mean of the lowest two doses. 

(D) An empirical CDF plot compares sensitivity of cell lines with mutations in TTC21B 

(red) compared to wild-type cell lines (blue). p<.0002 

(E) The AUC of the response to SW036310 is plotted as a function of the AUC of the 

response to Ciliobrevin D. Pearson R = .88; p=.0041 

(F-G) Elastic net modeling correlates gene expression of SARM1 and IL18R1 or 

PELI2 with sensitivity to  SW140154. Cells are ranked by ED50 values of response 

to SW140154 in the top panel with log2 FPKM values for the indicated gene in the 

same cell lines presented as a heatmap underneath. A legend to interpret the color 

scale is plotted to the right. 

(H) The ED50 of the response to SW140154 is plotted as a function of the ED50 of 

the response to SW151511. Pearson R=-.62, p= .00036 
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(I) SW151511 responsive cells show Enrichment of Kegg TLR Signaling compared to 

SW140154 non-responsive cell lines.  

(J) Cell line sensitivities outside the training set were predicted based on biomarker 

signatures for SW140154 and SW151511. Boxplot represents AUC values for 

each prediction class (Orange = predicted resistant, blue = predicted sensitive).   
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Figure 10: Biomarkers inform chemical mechanism of action, related to Figure 9 

(A) GSEA calculated p-values for top gene sets predicted to be upregulated in 

TTC21B mutant, SW036310 sensitive cell lines compared to SW036310 resistant 

cell lines.  

(B) Immunoflourescent staining of acetylated tubulin (green) marking cilia. DNA is 

stained with DAPI (blue). Cilia can be seen (arrows) in the well characterized cilia 

forming mouse fibroblast cell line, C3H10T1/2, as well as two TTC21B mutant 

SW036310 sensitive cell lines (H647, H157) but not in two SW036310 resistant 

cell lines (H460, HCC1171). Scale bar, 10 µm. 

(C-D) Dose response curves are shown for cell lines outside the training set that are 

predicted to be sensitive (blue) or resistant (orange) to (C) SW151511 and (D) 

SW140154. Values are normalized to the mean of the lowest two doses 

(n=3/experiment).  

(E)The fold change of 13 differentially regulated genes in response to treatment with 

10 μM SW151511 for 24 hrs in 2 sensitive and 2 resistant lines is shown. Values 

represent the log2 fold change of the gene expression in SW151511 treated cells 

compared to cells treated with the DMSO vehicle.   
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Figure 11: Chemicals targeting KRAS mechanistic subgroups 

(A-B) APC of cell lines clustered according to ED50 responses from (A) the POPs 

chemical dataset and (B) an RNAseq based gene expression signature (blue = 

KRAS mutant, red= KRAS WT) are shown. 

(C) KRAS mutant cell lines are grouped by unsupervised heirarchial clustering 

according to response to POPs (ED50 values). Red dashes indicate chemicals for 

which the mechanism of action is known.  

(D) An empirical CDF plot compares the sensitivity to SW157765 (AUC) of cell lines 

with co-occurring mutations in KRAS and KEAP1 (red) to the sensitivity of wild-

type cell lines (blue). p<.0002 

(E) Protein expression of NRF2 and CYP4F11 in response to 48 hour pretreatment 

with siNRF2 or siNT was measured by immunoblot. GAPDH serves as loading 

control. siNRF2 oligos were individually transfected or transfected as a pool. 

(F) Dose response curves are shown for A549 cells transfected with either non-

targeting control (NC) or siNRF2 oligos for 48 hrs prior to treatment for 72 hrs with 

a series of concentrations of SW157765. siNRF2 oligos were individually 

transfected or transfected as a pool.  

(G) Dose response curves are shown for A549 and H2122 cells transfected with either 

nontargeting (siNT) or siKRAS oligo pools for 48 hrs prior to treatment for 72 hrs 

with a series of concentrations of SW157765.  
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(H) Protein expression of KRAS, NRF2, and CYP4F11 in response to 48 hour pre-

treatment with either siKRAS or siNT in two SW157765 responsive cell lines was 

measured by immunoblot. GAPDH serves as loading control. 
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Figure 12: Chemicals targeting KRAS mechanistic subgroups, related to Figure 11 

(A) A lollipop plot compares NRF2 mutation statuses and locations in TCGA luad and 

lusc tumor datasets and in the UTSW cell panel. Mutations are ordered based on 

annotated amino acid position along protein length. Panels indicate frequency of 

non-synonymous mutations found in TCGA LUAD’s (blue) and LUSC’s (red), in 

the UTSW cell line panel (blue = SW157765 sensitive cell line; orange = 

SW157765 resistant cell line). PFAM annotated domains in the NRF2 protein are 

diagrammed below.   

(B) Heatmaps relate sensitivity to SW157765 to predictive biomarkers. Cell lines are 

ranked by AUC of the response (top panel). For each cell line the co-occurrence 

of mutations in KEAP1 and KRAS, NRF2 mutations and RNAseq based log2 FPKM 

expression values for KEAP1 are shown. A legend to interpret the values is plotted 

to the right 

(C) A CDF plot compares FPKM-based expression (z-scores) of genes in the NRF2 

signature gene set from cells sensitive (red) or resistant (blue) to SW157765 (KS 

test p< 2.2 E-16).  

(D) mRNA expression values of NRF2 in response to siNT or siNRF2 48 hrs post 

siRNA transfection are normalized to the non-targeting control. siNRF2 oligos were 

transfected as either 3 individual oligos or in a pooled format.  

(E) The mean amount of SW157765 in H2122 cells transfected with either siNC or 

siKRAS remaining at different time points after addition of the compound is shown. 

Values are normalized to control treatment.  
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Figure 13: SW157765 sensitive cell lines define a KRAS mechanistic subgroup addicted 

to GLUT8 mediated glucose transport 

(A) The viability of cell lines sensitive or resistant to SW157765 96 hrs post-

transfection with siGLUT8 oligos is normalized to that of the same cells transfected 

with non-targeting control oligos.  

(B) The cellular accumulation of fluorescently labeled 2-deoxyglucose (2DG) in cell 

lines sensitive or resistant to SW157765 is normalized to the same cells treated 

with the DMSO vehicle.  

(C) The cellular accumulation of fluorescently labeled 2-deoxyglucose (2DG) in H647 

cells transfected with siRNA oligos targeting GLUT1, GLUT8 is normalized to cells 

transfected with control (siNC) oligos.  

(D) The incorporation of 13C6 into the three serine carbons (SerM3) and two glycine 

carbons (GlyM2) is compared for SW157765 sensitive and resistant cell lines.  

(E-F) The viability of SW157765 sensitive and resistant cells in response to (E) siATF4 

and (F) siPHGDH is compared. (Define Z-score) 

(G) The incorporation of 13C6  into serine (SerM2) is compared for H647 cells treated 

for 24 hrs with SW157765 or DMSO. 

(H) The incorporation of 13C6 into into serine (SerM3) and glycine (GlyM2) in 

SW157765 sensitive and resistant cells is compared at 6 hrs after treatment with 

SW157765 or the DMSO vehicle.  
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(I) Protein expression of PHGDH in SW157765 sensitive (A549, H460, and H647) and 

unanticipated non-responders (DFCI.024, HCC44, H2030, HCC4019) is measured 

by immunoblot with GAPDH as loading control. 

(J) The dose-responses of viability of HCC44 cells and HCC44 cells stably expressing 

PHGDH or PHGDH-V490M after 72 hrs treatment with SW157765 are compared.  

(K) The viability of HCC44 parental cells or those stably expressing PHGDH or 

PHVDH-V490M at 96 hrs after transfection with siRNA oligos targeting GLUT8 or 

NC control oligos are shown normalized to the siNT condition.  

(L) Boxplots compare the AUC values of CYP4F11 and PHDGH positive breast cancer 

cell lines compared to CYP4F11, PHGDH negative cell lines in response to 

SW157765.  
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Figure 14: SW157765 sensitive cell lines define a KRAS mechanistic subgroup addicted 

to GLUT8 mediated glucose transport, related to Figure 13 

(A) A thermal-stability shift assay shows that treating cells with SW157765 increases 

the temperature at which GLUT8 denatures and is lost from a cell lysate. Glut13 

serves as a loading control. 

(B) The boxplot compares mean cell viability of cells sensitive or resistant to 

SW157765 after 5 days in culture medium containing (???) glucose measured as 

DNA content relative to the same cells in culture medium containing glucose.  

(C) The viability of SW157765 sensitive and resistant cell lines transfected with 

siRNA’s targeting GLUT1 normalized to the same cells transfected with control 

oligos (NC) was measured at 96 hrs post-transfection. 

(D) Protein expression of GLUT1 in H647 96 hrs post-transfection with siGLUT1 or 

siNC oligonucleotides was measured by immunoblot. GAPDH is the loading 

control. 

(E) GLUT1 mRNA was measured with qPCR 96 hrs post-transfection with siGLUT1 or 

siNC. Values are normalized to the siNT.  

(F) In the serine biosynthetic pathway, a glycolytic precursor, 3PG, is converted in a 

series of steps to serine, which is subsequently cleaved to produce Glycine (Gly) 

and a one carbon intermediate that can then enter the folate cycle for production 

of purines and thymidines. PHGDH activity is rate limiting for the pathway.  
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(G) The boxplots illustrate the differences in RNAseq based log2 FPKM expression for 

the enzymes in the serine biosynthetic pathway in SW157765 sensitive and 

resistant cell lines.  

(H-I) The incorporation of 13C2 into 1 carbon of lactate (LacM1) and (I) 2 carbons of 

citrate (CitM2) was measured 24 hrs after treatment of H647 cells with SW157765 

or DMSO.  

(K) Protein expression of PHGDH in HCC44 parental cells and those stably expressing 

PHGDH or PHGDH-V490M under the control of a dox-inducible promoter was 

measured by immunoblot. GAPDH serves as loading control. 

(K) Fate of 1,2 labeled glucose upon entering the cell. Once labeled glucose enters 

the cell, it is phosphorylated to form glucose 6-phosphate (G6P). G6P can enter 

the PPP pathway (green), the first step of which involves an oxidative 

decarboxylation in which one of the labeled carbons will be released as CO2. The 

pathway will eventually converge on lactate, with LacM1 (one labeled carbon) 

being a reporter of PPP activity. Glucose carbons that are shunted towards 

glycolysis will result in labeling of LacM2 (2 labeled carbons). In the serine 

biosynthetic pathway (blue), the glycolytic precursor 3PG will be used to form 

serine producing a SerM2 labeling pattern. In the citric acid cycle(red), the end 

product of glycolysis, pyruvate, will be shunted towards the TCA cycle, resulting in 

two labeled carbons incorporated in citrate (CitM2).  
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CHAPTER THREE: APPLICATIONS OF FUNCTIONAL SIGNATURE ONTOLOGY 

(FUSION) FOR WHOLE GENOME NETWORK ONTOLOGY 

 

RESULTS 

FuSiOn V1.0 can successfully link natural products fractions to cellular 

mechanism of action  

Gene expression signature-based inference of connectivity within and between 

genetic and chemical perturbations as well as disease status can lead to the development 

of important hypotheses on novel gene function, mode of action annotation of chemical 

compounds, and treatment strategies for human diseases. Major implementations of this 

concept include the connectivity map [54] and LINCS by Broad Institute and the functional 

signature ontology (FuSiOn) by our group [55]. However, none of these methods could 

have compiled genome scale perturbation signatures yet. We have taken great efforts to 

significantly expand of FuSiOn to interrogate a systems level characterization of the 

functional landscape of genes and miRNAs on genome-scale level. Doing so allows us 

to annotate the overall topology of the functional network in a biological setting, predict 

novel functions for genes and cooperativity between pathways. Integrating this 

information in with a chemical perturbation dataset allows us to simultaneously assign 

predictive functional and biological annotations for thousands of uncharacterized natural 

products fractions 

FuSiOn version 1.0 was originally envisioned as a ‘guilt by association’ 

hypothesis generator for natural products mechanism of action discovery. Specifically, 
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natural products have remained an attractive pool for drug discovery in disease, 

especially in cancer. Natural products are rich in chemical diversity with design subject to 

co-evolution with biological systems, thus they may target biological space not currently 

chemically addressable. A significant barrier associated with natural products discovery, 

however, is the purification of metabolites from producing organisms and identification of 

chemical mechanism of action. In our original iteration of FuSiOn, we sought to overcome 

these barriers and identify, on a large scale, testable mechanism of action hypotheses for 

1,186 natural products fractions, where each fraction may consist of 3-6 bioactive 

compounds. We initially selected 6 highly variable genes whose expression was to serve 

as a reporter of the internal state of the cell (ALDOC, LOXL2, BNIP3, ACSL5, BNIP3L, 

and NDRG1) and queried gene expression relative to two invariant controls (PPIB and 

HPRT) after exposure to 780 siRNA’s targeting the kinome, 344 non-redundant miRNA 

mimics, and 1,186 marine derived natural products fractions in the colon cancer cell line, 

HCT116. We can then cluster together perturbations from all three libraries, making ‘guilt 

by association’ hypotheses for natural products mechanism of action based on what 

genetic perturbations have similar ‘functional signatures’ or are ‘functionalogs.’ Screening 

natural products in this fashion allows us to prioritize fractions for follow-up with attractive 

functional consequences on the cells. This not only aids in stratifying hits for follow-up but 

also allows us to develop bio-assay guided fractionations to rapidly identify metabolites 

within the complex mixture responsible for a phenotype. Using this approach, we were 

able to assign function for previously uncharacterized miRNA’s and siRNA’s as well as 

link natural products to cellular mechanism of action.   
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This body of work reports an updated FuSiOn (version 1.5), a significant 

expansion from the original version, composed of 14,272 siRNA pools, 725 miRNA 

mimics, and 2,847 chemicals consisting of mainly natural products fractions (NPFs). 

Given the scale of FuSiOn, we are able to generate a map of functional associations 

between all genes in the genome and assess the overall topology of the functional 

network in a biological setting. We can use this map to identify novel members of pre-

annotated gene pathways and discover new associations between groups of genes, 

which can then be experimentally validated. Finally, we can integrate the genetic 

functional network with the chemical perturbations to assign biological annotations to a 

large number of chemicals in our screen. We show that the natural products are predicted 

to affect a wide variety of biological functions, many of which are not currently chemically 

addressable.  

 

FuSiOn v1.5 retrieves genetic and chemical functionalogs  

To expand the FuSiOn map to a genome scale and to accommodate newly 

acquired natural product fractions, we used the same bead-based multiplex-high 

throughput assay platform to measure expression of eight pre-selected endogenous 

reporter genes after exposure of HCT116 colon cancer cells to 14,272 siRNA pools, 725 

miRNA mimics, and 2,847 chemical perturbations consisting of mostly natural products 

fractions. We used the same six highly variable genes as previously described – ACSL5, 

ALDOC, BNIP3, BNIP3L, LOXL2, NDRG1 – as reporters, and, two stable genes, PPIB 

and HPRT, as internal normalization controls. The in-well normalized expression values 
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divided by the geometric mean of the two internal controls were further normalized by in-

plate controls, either non-targeting siRNAs for a genetic perturbation or DMSO for a 

chemical perturbation. This plate-by-plate normalization was necessary to control for 

various environmental and experimental variations often associated with plate numbers 

or batches. Normalized reporter gene expression values for the entire genetic and 

chemical perturbations show near normal distribution (Figure 16A), with individual 

perturbations from each dataset showing high variance, indicating that FuSiOn has the 

capacity to discriminate between many distinct signature classes (Figure 15A). FuSiOn 

discriminates between similar functional classes based on similarity in reporter probe 

movements, thus FuSiOn will only possess this capacity if a perturbation elicits 

transcriptional changes. Perturbations that do not cause any probe movement may not 

be part of a similar functional class, but will be grouped together, resulting in a false 

positive effect. For each of the 6 reporters, we defined the range in which the reporter is 

not moving to be within 1 standard deviation of the mean. A perturbation with no functional 

effect will be those in which the values for all 6 reporters fall within the unmovable regions. 

To our surprise, only 364 perturbations, out of a total of 17,834, correspond to those with 

no effect. This corresponds to 2.0% of the total library, meaning that we have 

discriminatory power in 98.0% of all tested perturbations (Figure 15B).  

A similarity matrix was built for all possible pairs of genetic-genetic and genetic-

chemical perturbations using Euclidean distance as a metric. Statistical significance of a 

similarity measure was assessed by permutation resampling in two directions. A more 

conservative permutation p-value and FDR score were selected to represent the pair. 
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Overall p-value distribution indicates enrichment of statistically similar relationships 

among genetic (Figure 16B) and chemical (Figure 16C) perturbations. The combination 

of the six reporter genes has discriminative potential for classifying different perturbations 

as evidenced by significantly shifted root mean square sum values from the controls for 

the majority of genetic (Figure 15C) and partly for chemical perturbations (Figure 16D). 

As we have previously reported, we have a preconceived notion for how miRNAs 

in our library should behave. miRNA primary function is dictated by its seed sequence 

(nucleotides 2-9), which anneals to complementary sequences on the target mRNA, and 

is a primary determinant of miRNA based suppression of gene expression. Our miRNA 

library, composed of 715 miRNAs and 702 unique mature sequences, corresponds to 

108 unique seed sequences represented by 2 more miRNAs. This represents a significant 

expansion in the diversity of our miRNA library from FuSiOn version 1.0, which consisted 

of 344 unique mature sequences. Similar to our previous findings, we can show miRNA’s 

with the same seed sequence are more highly correlated in FuSiOn to one another than 

are miRNA’s with different seeds (Figure 16D). 65.8% of pairwise correlations between 

miR’s with the same seed are statistically significant compared to only 5.7% of miR’s with 

different seeds (Figure 15E). miRNA’s exert their functions primarily by binding to 

complementary regions in the 3’ or 5’ untranslated regions of target mRNA’s. A context 

score can be calculated based on several criteria to determine the relative confidence in 

miRNA targets [56]. We find a significant enrichment for higher correlations of FuSiOn 

signatures between miRNA’s that target the same mRNAs, and this correlation is context 
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score dependent, as higher context scores (Figure 15F, 16E) show a better functional 

enrichment than when we consider all targets (Figure 16F,G). 

One challenge associated with using genome scale siRNA libraries is annotation 

of effect due to target gene knockdown versus unanticipated off-target effects. In some 

instances, siRNAs possess miRNA like qualities and the seed region, consisting of 

nucleotides 2-9 of the 19mer, may bind to complementary regions of many genes 

simultaneously, resulting in unintended knockdown of multiple transcripts [57]. We 

devised a computational strategy to detect for siRNAs with similar functional signatures 

due to seed effect, and we found that only 5.5% of the pairwise genetic perturbation 

relationships in our library exhibit significant seed effect (Figure 15G). Of the siRNA’s 

whose signatures are driven by seed based effects, a significant proportion corresponds 

to genes which are not expressed in our reference cell line, HCT116, and which we would 

not expect siRNA oligomers to exert an on-target functional consequence on the cells 

(Figure 15H). Collectively, these results suggest that FuSiOn has the ability to group 

together biological perturbations with similar mechanisms spanning a wide range of 

biological functions. 

 

Reannotation of biological gene pathways with FuSiOn 

Similar to the miRNA seed family members, we found significant correlations 

between related siRNA’s in FuSiOn. Genes belonging to the same manually curated 

pathways from the Molecular Signature Database Version 3.0 (c2 = MSigDB; Kegg, 

Reactome, Biocarta, PID; p<2.2E-208) (c5= GO terms; p=1.5E-21)  [58] and 
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comprehensive resource of mammalian protein complexes (CORUM; p=2.4E-25) [59] 

databases were enriched as a whole for statistically significant FuSiOn associations 

(FDR<.1). Meanwhile, no significant association was found from the synthetic lethal 

genetic relationships detected with the DAISY database (p=.12) [60]. This is probably 

because synthetic lethal relationships tend to appear between genes in evolutionally 

divergent relationships, for example, in two parallel pathways rather than in a single 

pathway (Figure 17A). Given that we find an overall enrichment for functional associations 

in the c2 and CORUM databases, we looked to determine if enrichment was biased for 

certain gene pathways. For each gene set annotated in the c2 and corum databases, we 

used a kolmogorov-smirnov statistic to determine if pairwise Euclidean distances between 

members of the same annotated pathways were significantly shorter than distances from 

those genes to all other siRNA’s in the screen. We found a significant functional 

enrichment for 13.0% of gene sets in c2 and for 23.8% of gene sets in CORUM (Figure 

17B,C) spanning multiple biological annotations, indicating that FuSiOn can group 

together similar relationships across a wide variety of biological functions.  

A major limitation with these databases is that they are a result of manual curation, 

and thus subject to only known facets of biology. Given the scale of FuSiOn, we looked 

to see if we can re-annotate functional pathways in a data driven way. For every gene set 

in which we can detect a significant functional enrichment between members (p<.05), we 

searched for additional genes outside the set had a significantly close distances to 

existing members. Of note, we found TNFSF8 and IGFBP3 as being significantly 

associated with the ‘TNF-alpha/NF-kappa B signaling complex’ from CORUM. TNFSF8 
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is a cytokine belonging to the TNF ligand family, and there are numerous reports of 

IGFBP3’s role in regulating the TNF-alpha pathway [61-63] (Figure 18A). Additionally, 

multiple genes involved in mitochondrial maintenance were re-assigned to the c2 gene 

set ‘Respiratory chain complex I (holoenzyme mitochondrial)’ including MTND5 (a novel 

core subunit of complex I) MTATP8 (mitochondrial membrane ATP synthetase), MRPL13 

(involved in mitochondrial organelle biogenesis), and ESSRA, also known as ERR-alpha, 

known to regulate expression of genes involved in oxidative phosphorylation and 

mitochondrial biogenesis [64] (Figure 18B). Finally, we annotated Cholinergic Receptor 

Muscarinic 5 (CHRM5) as being significantly associated with the c2 gene set ‘Reactome 

Homologous Repair’ (Figure 17D). Though CHRM5’s function is not well annotated, 

siRNA targeting CHRM5 was found in a genome-wide RNAi screen to significantly 

decrease homologous repair (Figure 2E) [65]. In fact, the phenotype for CHRM5 was 

much more prominent than the hit that was eventually followed up in the paper, RBMX, 

with ¾ of the oligos for CHRM5 decreasing homologous repair to a much greater extent 

(Figure 17E). CHRM5 was not followed up because 2/4 of the oligos were computationally 

predicted to exert an miR-like off-target effect against RAD51, a well annotated member 

of the homologous repair complex. However, we do not find any predicted seed effects 

for CHRM5 oligos. Thus, FuSiOn has identified a potential novel member of the 

homologous repair complex that warrants further follow-up.  

We previously described FuSiOn can uncover weak enrichment of protein-protein 

interactions among the kinome functionalogs, so we looked to see if this relationship holds 

when considering siRNAs on a genome scale. We first categorized PPI relationships on 
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the basis of functional impact of an interaction (i.e. activation or inhibition). For this 

analysis, we retrieved known activation relationships (N = 17,561) from the STRING 

database [66] under the highest confidence score cutoff (0.9). We observed four-fold 

enrichment of the activation edges in the FuSiOn functionalogs (< FDR 10%) which is 

extremely significant in the hypergeometric test (p = 2.19E-13) (Figure 17A). We further 

categorized PPI relationships by a K-core score that measures the degree of 

interconnectivity of a sub-graph in which each node has degree at least K. In the genome 

scale FuSiOn, higher the K-core score, the smaller the p-value of FuSiOn similarity was 

shown between a gene pair (Figure 17F). This observation indicates that densely 

interacting subunits of a protein complex are more likely to have similar functional 

outcomes than the ones with simpler interactions. To identify highly interconnected PPI 

clusters associated with each of the genetic perturbations, 500 out of ~15,000 most 

similar genes for each were subjected to network-cluster analysis software MCODE 

(Figure 17G) [67]. 

 

Analysis of the architecture of the FuSiOn network 

Our genome scale FuSiOn map allows us to interrogate in-depth network- 

properties of the functionalogs. To gain an understanding of the overall structural makeup 

of the dataset and determine, on a fine-scale, perturbations that are the most similar to 

each other, we subjected the siRNA dataset corresponding to moveable genes (14,050 

siRNA’s) to Affinity Propagation Clustering (APC) [7]. APC is a deterministic clustering 

method that determines, in a data driven way, the number of clusters emerging from a 
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dataset, and thus has advantages over other, simpler clustering methods such as K-

means or hierarchical clustering. We found that our siRNA library can broadly cluster into 

at least 527 clusters (Figure 19A). A total of 189,086 significant genetic interactions 

between 5,598 unique genetic perturbations detected from the similarity matrix (FDR < 

10%), were then subjected to network construction using a force-directed graph drawing 

algorithm. FuSiOn network displayed a distinct bimodal structure (Figure 19B) when 

compared to a network drawn with random permutations of the FuSiOn network (Figure 

19C). Complex networks can be classified into random, scale free, or hierarchical 

networks, depending on network topology. FuSiOn network exhibited typical scale free 

network topology [68] as determined by evenly distributed clustering coefficient (Figure 

19D) and power law degree distribution of the 5,598 nodes (Figure 19E). Meanwhile, 

network modularity is defined as the fraction of edges that fall within modules minus 

expected fraction from random network [69]. FuSiOn network exhibited highly modular 

network structure (modularity = 0.523) as compared to a randomized network (modularity 

= 0.091) (Figure 20B). Together, this network topology suggests the presence of a small 

number of genetic hubs or submodules possibly involved in diverse biological functions. 

In comparison to other biological networks, FuSiOn network shares network properties 

with the coexpression based biological network that was characterized by highly modular 

and scale free network properties [70]. 

 

Clusters in the FuSiOn network highlight function of genes associated with cancer 

dependency 
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Given the scale-free, modular network properties of FuSiOn, we sought to group 

genes into different modules and characterize biological diversity within the subnetworks. 

Doing so will allow for the annotation of novel gene sets in a data-driven way and may 

help to discover new functions and cooperativity between existing genes and pathways. 

A random walk-trap algorithm detected a total of 903 modules (subnetworks) in the 

FuSiOn network, twenty eight of which were large size clusters (≥ 10) (Figure 20A). Seven 

of the 28 clusters are associated with at least one preconceived biological function (gene 

set) under FDR 10% followed by hypergeometric test. For instance, cluster-1 is enriched 

with the genes involved in amino acids metabolism and lysosome, cluster-9 with JAK-

STAT signaling, cluster-27 with calcium and chemokine signaling, and cluster-28 with 

proteasome. In this regard, we attempted to generate a hypothesis for a genetic target of 

cancer addiction that is supported by multiple genes within a protein complex as well as 

by FuSiOn ontology. Of note, we found cluster 28 to be enriched for a protein complex, 

coatomer I (COPI) (FDR <3%), which we previously identified as a molecular linchpin that 

supports survival of KRAS/LKB1 co-mutation driven lung adenocarcinoma [9]. Its 

canonical function is vesicle trafficking from the Golgi to the ER, whereas its pro-

oncogenic function in a neomorphic setting is poorly understood. Three COPI subunits, 

COPA, COPZ1, and ARCN1, are interconnected by FuSiOn under FDR 10% and 

associated with 44 edges by two or more edges, six of which are proteasome subunits 

(Figure 19F). The proteasome is critical for sustaining oncogenesis through supporting 

higher rate of protein synthesis and destabilizing tumor suppressor proteins such as p53 

or anti-apoptotic proteins. As a result, inhibiting its function is one of the clinically 
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approved regimes for treating multiple myeloma [71]. To delineate relationships between 

COPI and the proteasome, we quantified steady state protein levels by immunoblot after 

reciprocal deletion. Interestingly, siRNA mediated deletion of the COPI subunit, archain1 

(ARCN1), results in depletion of different proteasomal subunits (Figure 19G), but the 

reverse is not true (Figure 19H). This observation indicates that the proteasome is 

causally linked to COPI protein complex by which its stability or expression is regulated. 

Our findings suggest genomic FuSiOn is a useful tool for identifying unknown functions 

and complex regulatory mechanisms of genes, and is useful for identifying 

pharmacologically tractable surrogate genes that cause disease, especially cancer. 

 

Clustering of natural products fractions reveals common functions 

FuSiOn was original described to rapidly generate testable ‘guilt by association’ 

mechanism of action hypotheses for natural products. In line with this, we reasoned that 

chemicals that cluster together may possess a similar mechanism. Our chemical library 

consisted of 2,847 chemicals, 2,776 of which were natural products fractions from a total 

of 199 unique bacteria and marine species. The remaining chemicals corresponded to 

synthetic and pure natural products. In the fractionation process, upon isolation of pure 

cultures of bacteria, a crude extract was obtained and fractionated into either 9 or 20 

fractions per strain using reverse-phased C18 chromatography. Thus, successively 

numbered fractions may contain the same metabolites. Each fraction is estimated to have 

anywhere from 3-6 active metabolites, with earlier numbered fractions being more polar 

than the later numbered fractions. 
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 We subjected the chemical dataset to APC clustering (Figure 21A) and then 

overlaid information about species or origin by coloring fraction nodes the same if they 

were derived from the same species. Overall, we find that the chemicals can broadly 

cluster into 164 clusters and natural products from each species are broadly distributed 

throughout. This result could be due to cacophony in the dataset, or, alternatively, this 

result could be obtained because of diversity in metabolites produced by one organism 

with multiple organisms producing metabolites with similar functional consequences on 

the cells. To test between these possibilities, we attempted to define the metabolite profile 

in each of the fractions in our library by characterizing according to liquid-chromatography 

mass spectrometry (LC/MS). Of note, we found the earlier fractions of SN-B-022 

(fractions 1-10) (Figure 21A, red box) cluster away from the later fractions (11-20) (Figure 

21A, green box) . When we compared the LC/MS spectra of SN-B-022-5 to SN-B-022-

16, we found SN-B-022-16 to contain a metabolite peak corresponding to Rhodomycin, 

a well annotated natural product. SN-B-022-5, however, has a distinct LC/MS profile not 

overlapping with Rhodomycin (Figure 21B). This indicates that SN-B-022 produces at 

least two classes of compounds, one corresponding to Rhodomycin and one unknown 

metabolite with distinct functional and chemical profiles and FuSiOn is able to distinguish 

between them. Additionally, we found the later fractions of SN-C-004 (fractions 13-18) to 

cluster with the majority of the fractions produced by SN-C-002 (14/20) (Figure 21A, blue 

box). When we compared the LC/MS spectra of the fractions, there is a common, 

unknown metabolite shared between all the fractions, indicating that the functional activity 

is most likely driven by the same active metabolite (Figure 21C). Finally, we found the 
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fraction SN-A-022-6 to cluster with and have an almost identical functional signature to 

XCT790 (Figure 21D). XCT790 is a known estrogen receptor related alpha (ERRa) 

inhibitor, however, we previously described it to have a potent activity against 

mitochondrial energy production, independent of its ERRa inhibitory effect [72]. To test 

for effect on mitochondrial function, we treated Hela Parkin-YFP cells with SN-A-022-6 

and looked at resulting immunofluorescent staining pattern of Parkin-YFP. Parkin is 

recruited to damaged mitochondria to stimulate their autophagy, thus, changes in Parkin 

staining from a diffuse to a punctate pattern indicates damaged mitochondria [73], which 

is what we observe with SN-A-022-6 treatment (Figure 21E). To test downstream 

functional consequences of damaged mitochondria, we performed a Seahorse assay to 

look at effects on oxygen consumption, showing that SN-A-022-6 treatment can reduce 

oxygen consumption in a dose-dependent manner in Hela-Parkin YFP cells (Figure 21F). 

This results suggest that SN-A-022-6 acts to damage mitochondria and that XCT790’s 

primary functional effect on the cells in our assay is to reduce mitochondrial energy 

production. Overall, our results suggest that we are able to use FuSiOn to cluster natural 

products fractions and chemicals together according to similar mechanism.  

 

Functional landscape of natural product fractions 

Finally, we sought to integrate the chemical with the genetic datasets. Given our 

extensive characterization of the functional and network properties of the siRNA dataset, 

integration with the chemical dataset so will allow us to investigate, on a large scale, the 
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functional landscape of the natural products. We first used APC clustering to cluster all 

three perturbation datasets together. Figure 22A represents the results from this 

clustering effort with the perturbations colored according to dataset of origin. From this, it 

is obvious that the natural products integrate into a diverse number of genetic clusters, 

indicating that the natural products fractions may affect a wide range of biological 

activities. To interrogate how diverse biological mechanisms are triggered by natural 

product fractions, pre-annotated gene sets from various public domains were subjected 

to enrichment analysis using the genome scale similarity profile for each of the natural 

product fractions. To do this, we selected 1,280 natural product fractions with significantly 

higher RMS values (> 0.6) of the six reporters as compared to the vehicle control. The 

gene sets associated with each fraction were identified with a FDR threshold of 10% 

(Figure 23A). The most commonly perturbed biological processes by large number of NPs 

were proteasome components and cell cycles proteins (Figure 22B). In contrast, other 

biological processes such as APC-CDC20 regulation, spliceosome, TGF-b signaling, cell-

cell junction, interleukin receptor signaling, nucleotide excision repair, BRCA1 associated 

genome surveillance complex (BASC), ribosomal proteins, MCM complex, electron 

transport chain etc. were perturbed by relatively small number of NPs (Figure 23B). As 

an alternate method to identify natural product functional consequences, we used a 

similar method as described for siRNA’s to identify natural products fractions significantly 

close to pre-annotated gene sets from c2 and CORUM. Both of these analyses 

demonstrate that while we are able to identify natural products with similar consequences 
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to known natural products such as the proteasome or cell cycle regulators, many of the 

NPF’s correlate with activities that are novel.  

Additionally, we explored NPF’s potentially perturbing the stability of protein 

complexes underlying key biological functions. To this end, PPI clusters were detected 

with MCODE within top ranked 500 genetic functionalogs associated with each of the 

natural product fractions by FuSiOn (Figure 17G). We were particularly interested in 

protein complexes related to endocytosis that are comprised of 153 genes and 480 PPIs 

between them, according to KEGG. Endocytic pathways play a crucial role in oncogenic 

signal transduction by transporting activated receptor tyrosine kinases for degradation or 

recycling which results in attenuated or prolonged oncogenic signaling depending on 

cellular contexts [74]. We searched for the MCODE clusters for the entire natural product 

fractions having the highest number of interconnecting PPI edges belonging to endocytic 

protein complexes. SN-B-040-C was one of the top ranked candidates expected to inhibit 

endocytic protein complex formation by interfering with the PPIs between the three 

endocytic protein components AP2A1, AP2M1, and SYNJ1 (Figure 22C). The LC/MS 

spectra SN-B-040-C revealed it to have a peak corresponding to Ikarugamycin, a natural 

product we have previously described as having activity against clathrin mediated 

endocytosis in the context of non-small cell lung cancer [75]. Also of interest, we found 

members of the SN-C-002/SN-C-004 cluster we previously annotated (Figure 4C) to map 

significantly close to members of the proteasome (Figure 5E). To test that SN-C-002-11 

is a proteasome inhibitor, we looked for the ability of SN-C-002-11 to stabilize expression 

of short-lived proteins. REDD1, whose protein expression levels are known to be 
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stabilized with proteasome inhibition [76], was induced by culturing HCT116 cells for 24 

hours in hypoxic conditions (1% O2). Cells were then pre-treated with SN-C-002-11, SN-

C-004-11, and MG132, a known proteasome inhibitor, for 30 minutes followed by 

treatment with cyclohexamide (10 ug/mL) to prevent synthesis of new proteins and protein 

lysates were collected at different time points. We found that, upon treatment with SN-C-

002-11, we prevent degradation of the long-lived protein REDD1 to a similar extent as 

MG132 (Figure 5F). Interestingly, SN-C-004-11, an earlier fraction of SN-C-004 which 

clustered away from the SN-C-002/SN-C-004 cluster did not induce stabilization of 

REDD1. This data shows that not only can FuSiOn generate real mechanisms for natural 

products but it also has the capability to distinguish functions of different metabolites 

produced by the same bacterial species. Thus, our findings indicate that we can integrate 

multiple datasets from FuSiOn to come up with rapid and testable hypotheses for many 

natural products simultaneously.  
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Figure 15. FuSiOn retrieves genetic and chemical functionalogs 

(A) Two way hierarchical cluster of normalized reporter expression values in response 

to 2,847 chemicals, 725 miRNA mimics, and 14,272 siRNA oligos.  

(B) Frequency of occurrence of perturbations resulting in 0 to 6 probes to be in the 

moveable range. 362 perturbations in which 0 probes move are defined to be 

unmovable.  

(C-D) Density distributions of root mean square (RMS) values of the six probe signal 

intensities for (C) 14,997 genetic and (D) 2,847 chemicals 

(E-F) Density distribution of the p-values for similarity (Pearson correlation) among 

pairwise combinations of (E) miRNA’s with the same seed sequence compared to 

similarities among miRNA’s with different seed sequences and (F) miRNA’s with 

the same predicted targets (top 10% of context scores) compared to similarities of 

those with different predicted targets.  

(G) Cumulative distance of p-values calculated for predicted seed effect among 

pairwise combinations of siRNAs with the same seed region  

(H) Venn diagram comparing overlap of siRNA oligos determined to have a significant 

effect versus those that are unexpressed (RNAseq FPKM <1 and Illumina V3 

BeadArray normalized value < 5)  

  



89 

 

 

−1.0 −0.5 0.0 0.5 1.0

0
1

2
3

density.default(x = r.same)

Pearson R

D
en

si
ty

-1.0 -.5 0 5 1.0
0

3

2

1

D
en

si
ty

Pearson R

Different Seed
Same Seed

A. 

D. E. 

-6 -5 -4 -3 -2 -1 0
log10 p-value

1.0

.8

.6

.4

.2

0

C
um

m
. D

is
t.

Different target
Same target

−1.0 −0.5 0.0 0.5 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

1.
2

Pearson R

D
en

si
ty

1.2

1.0

.8

.6

.4

.2

0
-1.0 -.5 0 .5 1.0

Pearson R

D
en

si
ty

Context scores >90%

Different target
Same target

G. 

−1.0 −0.5 0.0 0.5 1.0

0.
0

0.
2

0.
4

0.
6

Pearson R

D
en

si
ty

.6

.4

.2

0
-1.0 -.5 0 .5 1.0

Pearson R
D

en
si

ty

Different target
Same target

Figure 1A

0.0

1.0

2.0

3.0

RMS

siControl
siGenome

Figure 1B

0 1 2 3

D
en

si
ty

P−value

F
re

qu
en

cy
 (

m
ill

io
n)

0.0 0.2 0.4 0.6 0.8 1.0

Figure 1D

P−value
0.0 0.2 0.4 0.6 0.8 1.0

Figure 1E

0

2

4

6

8

F
re

qu
en

cy
 (

m
ill

io
n)

2.0

1.5

1.0

0.5

0

0

1

2

3

0 1 2 3
RMS

D
en

si
ty

DMSO
Natural Product

Figure 1C

0.00

0.20

0.40

0.60

0.80

D
en

si
ty

Normalized expression (Log2 scale)
−5.0 −2.5 0.0 2.5 5.0

Reporter

ACSL5

ALDOC

BNIP3

BNIP3L

LOXL2

NDRG1

Normalized expression (log2)
-5 -2.5 0 2.5 5

.8

.6

.4

.2

0

D
en

si
ty

ACSL5

ALDOC

BNIP3

BNIP3L

LOXL2

NDRG1

Figure 16

Figure 1A

0.0

1.0

2.0

3.0

RMS

siControl
siGenome

Figure 1B

0 1 2 3

D
en

si
ty

P−value

Fr
eq

ue
nc

y 
(m

illi
on

)

0.0 0.2 0.4 0.6 0.8 1.0

Figure 1D

P−value
0.0 0.2 0.4 0.6 0.8 1.0

Figure 1E

0

2

4

6

8

Fr
eq

ue
nc

y 
(m

illi
on

)

2.0

1.5

1.0

0.5

0

0

1

2

3

0 1 2 3
RMS

D
en

si
ty

DMSO
Natural Product

Figure 1C

0.00

0.20

0.40

0.60

0.80

D
en

si
ty

Normalized expression (Log2 scale)
−5.0 −2.5 0.0 2.5 5.0

Reporter

ACSL5

ALDOC

BNIP3

BNIP3L

LOXL2

NDRG1

p-value (chemical)
0 .2 .4 .6 .8 1.0

2.0

1.5

1.0

.5

0

fr
eq

ue
nc

y(
m

ill
io

n)

Figure 1A

0.0

1.0

2.0

3.0

RMS

siControl
siGenome

Figure 1B

0 1 2 3

D
e
n
si

ty

P−value
F

re
q
u
e
n
cy

 (
m

ill
io

n
)

0.0 0.2 0.4 0.6 0.8 1.0

Figure 1D

P−value
0.0 0.2 0.4 0.6 0.8 1.0

Figure 1E

0

2

4

6

8

F
re

q
u
e
n
cy

 (
m

ill
io

n
)

2.0

1.5

1.0

0.5

0

0

1

2

3

0 1 2 3
RMS

D
e
n
si

ty

DMSO
Natural Product

Figure 1C

0.00

0.20

0.40

0.60

0.80

D
e
n
si

ty

Normalized expression (Log2 scale)
−5.0 −2.5 0.0 2.5 5.0

Reporter

ACSL5

ALDOC

BNIP3

BNIP3L

LOXL2

NDRG1

p-value (genetic)
0 .2 .4 .6 .8 1.0

8

6

4

2

0
fr

eq
ue

nc
y(

m
ill

io
n)

B. C. 

F. 



90 

 

Figure 16: FuSiOn retrieves genetic and chemical functionalogs, related to Figure 15 

(A) Density distributions of the normalized expression values for the six reporter 

genes. 

(B-C) P-value distribution for all the possible pairs of genetic perturbations (B) and 

pairs of genetic and (C) chemical perturbations 

(D) Density distributions of Pearson R values for pairwise combinations of miRNAs 

with the same seed sequence compared to R values of those with different seeds,  

(E-F) Density distributions of Pearson R values for pairwise combinations of miRNA’s 

with the same predicted target mRNAs for (E) the top 10% of all context scores 

and (F) all predicted target scores compared to distances of miRNA’s with different 

annotated targets 

(G) Cumulate distances of p-values (based on Pearson distances) for miRNAs with 

the same predicted targets (all context scores) compared to distances of those 

with different annotated targets.  
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Figure 17: Reannotation of biological gene pathways with FuSiOn 

(A) P-values calculated based on a hypergeometric distribution for overlap between 

distances from genes annotated as being in the same gene set and those that 

have significant distances (p<.05). Gene set annotations were derived from the 

MSigDB V3 (c2 and c5), CORUM, String (activation edges only), and DAISY 

synthetic lethal database. C2 p-value had a value of machine 0. 

(B-C) For each gene set in (B) CORUM and (C) c2, a p-value based on a KS-distance 

was calculated to determine if pairwise Euclidean distances in FuSiOn between 

genes in the same gene set is significantly shorter than pairwise distances 

between genes in the gene set and all other siRNA’s in FuSiOn. Red dashed line 

indicates p=.05 

(D) ‘Reactome Homologous Recombination Repair’ from the c2 database was 

determined to be significant under a KS distribution as described in (C). Genes 

indicated in red are those that are annotated as being included in the gene set and 

those in blue are genes outside the set determined to have significantly short 

Euclidean distances to the gene set as a whole. Length and thickness of green 

lines are drawn proportional to Euclidean distances.  

(E) Relative score (log2) of changes in Homologous repair after transfection with a 

whole genome siRNA library as described in [65]. 3 out of 4 oligos for CHRM5 

(red) significantly decreased homologous repair to a greater extent than RBMX 

(blue), a novel gene identified in the screen validated to be a part of the homologus 

repair complex.  
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(F) Cumulative density distributions of the p-values for the FuSiOn edges represented 

in the PPI network grouped by the minimal k-core membership. Background (Bg) 

represents pairs of genetic perturbations with no physical interaction. 

(G) The top 500 closest siRNA’s to a query perturbation were subjected to an MCODE 

analysis to detect for enrichment of PPI’s. PPI’s were further filtered to select for a 

minimal of 3 proteins in each complex.  
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Figure 18: Reannotation of biological gene pathways with FuSiOn, related to Figure 17 

(A-B) The gene sets (A) ‘5196_TNF-alpha/NF-kappa B signaling complex’ and (B) 

Respiratory chain complex I (holoenzyme) mitochondrial from the CORUM 

database was determined to be significant under a KS distribution as described in 

(Figure 1B). Genes indicated in red are those that are annotated as being included 

in the gene set and those in blue are genes outside the set determined to have 

significantly short Euclidean distances to the gene set as a whole. Length and 

thickness of green lines are drawn proportional to Euclidean distances. 
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Figure 19: Network analysis of FuSiOn siRNA perturbations 

(A) APC clustering of the siRNA perturbations library according to their functional 

signatures using Euclidean distances as a similarity metric. Nodes are colored 

according to cluster membership 

(B-C) (B) FuSiOn network drawn by force-directed graph drawing algorithm for the 

statistically significant genetic interactions (N = 188,802) under FDR 10%. (C) For 

comparison, permuted FuSiOn datasets were used to generate random network. 

(D-E) (D) C(k) and (E) P(k) distribution of the FuSiOn network in comparison to 

random network (inset). P(k) is defined as the fraction of nodes having k edges. 

C(k) represents the average clustering coefficient of nodes with degree k, where 

clustering coefficient of a node is defined by the degree of interconnectivity 

between its neighbors (1: full connection ~ 0: no connection). 

(F) Subnetwork of the cluster-28 representing four COPI genes (red) and the first 

degree neighbor genes (black) connected by two or more FuSiOn edges. 

Proteasomal subunit-genes are highlighted within a box. B.  

(G-H) Consequence of reciprocal depletion of (G) ARCN1 or (H) proteasomal 

subunits. Immunoblots indicate target depletion. B-actin was used as a loading 

control. 
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Figure 20: Network analysis of FuSiOn siRNA perturbations, related to Figure 19 

(A) Twenty eight clusters detected from the genetic FuSiOn network with 

walktrap.comunity function of the “igraph” R. Members of each module are 

highlighted in the force-directed graph in red and a one way hierarchical cluster 

(perturbations) is indicated as a heatmap below. The same color scheme is used 

for each heatmap and a key to interpret the values is indicated.  

(B) Schematic examples of differing network modularity corresponding to the indicated 

Q values. Q-values for FuSiOn and random network are 0.523 and 0.091, 

respectively.
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Figure 21: Clustering of natural products fractions reveals common functions 

(A) APC cluster of chemical perturbations clustered by functional signatures using 

Euclidean distances as a similarity metric. Nodes are colored according to species 

of origin with pure chemicals colored white. Highlighted clusters are zoomed in to 

the right.  

(B) LC/MS trace of SN-B-022-5 (clustering in A, red box) compared to SN-B-022-16 

(clustering in A, green box). The peak corresponding to Rhodomycin is highlighted 

in blue.  

(C) LC/MS trace of SN-C-004-17 compared to SN-C-002-11. The common metabolite 

between all fractions is highlighted in blue.   

(D) Two way hierarchical cluster of the functional signatures for SN-A-022-6 compared 

to XCT-790 (15 µM).  

(E) Fluorescent staining of Parkin-YFP and DAPI (nuclear) for Hela-Parkin YFP cells 

in response to SN-A-022-6 (10 µg/mL) or control no-treatment. The scale bar 

indicates 10 µm.  

(F) Oxygen consumption rates (OCR) of Hela-Parkin YFP cells, normalized to cell 

number, in response to either 1 µg/mL (green) or 10 µg/mL (red) of SN-A-022-6. 

No-treatment is included for a comparison (blue).  
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Figure 22: Functional landscape of natural product fractions 

(A) APC clustering of all three perturbations libraries clustered according to their 

functional signatures, using Pearson distances as a similarity metric. Nodes are 

colored according to dataset of origin.  

(B) FUSION distance profiles to siGenome for each of the chemicals were subjected 

to KS test against the KEGG gene sets. Number of NPs assigned by FDR 10% c

utoff (adjusted KS test p values) are represented in parenthesis. Boxes are colore

d and sizes are drawn according to gene set size. 

(C) MCODE analysis found significant enrichment of PPI’s relating to endocytic 

pathways for the query natural product fraction, SN-B-040-C. Edges are colored 

according to FDR corrected distances from the query and nodes are colored 

according to RMS. 

(D) LC/MS trace of SN-B-040-C compared to pure ikarugamycin. The peak 

corresponding to ikarugamycin is highlighted in blue.    

(E) MCODE analysis found significant enrichment of PPI’s relating to the proteasome 

for the query natural product fraction, SN-C-002-11. Edges are colored according 

to FDR corrected distances from the query and nodes are colored according to 

RMS.  

(F) Protein expression of the short lived protein, REDD1 after exposure to the known 

proteasome inhibitor, MG132 (10 µM), and to SN-C-002-11 (10µg/mL) for 30 
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minutes. Cyclohexamide (10µg/mL; CHX) is used to inhibit synthesis of new 

proteins.  



107 

 

 

SN
−B−009−17

Com
p. C

 10 uM
Com

p. C
 20 uM

SN
−B−004−13

SN
−C

−009−14
SN

−C
−013−12

SN
−B−022−8

SN
−B−022−14

SN
−A−005−3

SN
−B−004−14

SW
004762

SW
090278

SN
−B−050−16

U
T−BA07−004−AQ

SN
−B−013−14

SN
−A−067−C

SN
−A−067−8

SN
−B−009−12

SN
−B−009−15

SN
−B−034−8

SN
−A−006−6

SN
−B−009−13

SN
−A−005−6

SN
−A−067−5

SN
−A−067−7

SN
−A−005−9

SN
−B−009−14

SN
−B−004−15

SN
−B−009−16

SN
−A−005−5

SN
−A−005−7

SN
−A−067−6

C
om

pound C
SN

−A−100−4
SN

−A−101−14
SN

−A−100−8
SN

−B−022−11
SN

−C
−016−11

SN
−A−092−C

SN
−B−001−9

SN
−A−092−9

SN
−B−018−10

SN
−B−022−2

SN
−B−022−C

SN
−B−022−7

U
TSW

 4
SN

−B−022−1
SN

−B−022−16
SN

−A−103−16
SN

−A−103−17
SN

−B−013−16
SN

−B−023−15
SN

−B−022−6
SN

−B−022−18
SN

−B−024−10
SN

−B−022−13
SN

−B−022−17
SN

−C
−016−19

SN
−B−013−15

SN
C

−008−16
SN

−B−051−15
SN

−B−040−14
SN

−B−045−13
SN

−B−022−12
SN

−A−097−12

C2_REACTOME_GLUCAGON_SIGNALING_IN_METABOLIC_REGULATION
C2_REACTOME_AQUAPORIN_MEDIATED_TRANSPORT
C2_REACTOME_REGULATION_OF_WATER_BALANCE_BY_RENAL_AQUAPORINSSN

−B−025−12
SN

−B−050−16
SN

−B−018−16
SN

−B−018−10
SN

−A−092−9
SW

063353
SN

−A−043−8
SN

−A−092−C
SN

−A−045−7
SN

−A−041−C
U

T−BA07−004−AQ
SN

−A−041−7
SW

090278
8201 20 uM
SN

−B−022−15
SN

−B−022−2
SN

−B−051−9
SW

063400
SW

018675
SW

004762
SN

−B−004−18
8201 10 uM
SN

−A−006−C
SN

−B−001−9
SN

−B−001−C
SW

063354
SN

−A−045−6
SN

−A−057−5
SN

−A−042−8
SN

−A−033−6
SW

044749
SN

−A−039−6

C2_BIOCARTA_IL12_PATHWAY
C2_BIOCARTA_NO2IL12_PATHWAY SN

−B−64−12
SN

−B−021−13
SN

−C
−022−5

SN
−A−068−8

SN
−B−012−15

SN
−B−038−12

SN
−A−068−7

SN
−C

−013−14
SN

−B−012−14
SN

−B−015−14
SN

−A−031−8
SN

−A−031−5
SN

−B−042−10
SN

−A−031−7
SN

−B−042−19
SN

−B−047−15
SN

−B−060−6
SN

−B−061−6
SN

−B−015−15
SN

−B−015−C
SN

−B−019−14
SN

−B−042−11
SN

A_068_14_12_7
SN

−B−042−13
SN

−C
−004−11

SN
−B−019−13

SN
−A−099−7

SN
−A−031−6

SN
−B−042−12

SN
−B−047−17

C2_REACTOME_COPI_MEDIATED_TRANSPORT
PCDQ_COP1 coatomer SN

−B−023−15
SN

−B−022−15
SN

−C
−009−14

AZ_774
SN

−B−050−16
SN

−B−022−1
SN

−B−022−2
SN

−B−022−8
SN

−B−009−17
SN

−A−094−12
C

om
pound C

SN
−B−051−16

SN
−A−006−6

SN
−B−022−14

SN
−B−024−10

SN
−B−027−12

SN
−A−103−17

SN
−A−103−16

SN
−B−013−15

SN
−B−009−15

SN
−B−022−13

SN
−A−033−6

SN
−B−004−13

SN
−B−022−17

SN
−B−018−10

SN
−B−022−C

SN
−B−009−16

SN
−A−092−C

SN
−B−022−16

SN
−A−005−9

SW
199452

SN
−A−092−9

SW
063400

SN
−B−051−15

SN
−A−067−C

SN
−B−013−16

SN
−B−042−15

SN
−B−001−9

SN
−B−004−15

SN
−B−022−18

SN
−B−009−14

SW
090278

SN
−B−040−14

SN
−C

−013−12
SN

−B−027−11
SN

−B−022−6
SN

−B−022−11
SN

−A−005−5
SN

−B−022−12
SW

044749
SW

004762
SW

018675
SN

−B−004−14
SN

−A−005−3
SN

−A−067−7
SN

−A−067−6
SN

−B−034−8
SN

−A−097−12
Com

p. C
 10 uM

SN
−B−009−12

SN
−B−001−C

SN
−A−005−7

U
T−BA07−004−AQ

SW
197061

SN
−A−005−6

Com
p. C

 20 uM
SN

−B−013−14
SN

−A−067−8
U

TSW
 4

SN
C

−008−16
SN

−B−009−13
N

at_20_223
SN

−A−067−5

C2_REACTOME_EICOSANOID_LIGAND_BINDING_RECEPTORS
C2_REACTOME_PROSTANOID_LIGAND_RECEPTORS

SN
−B−004−13

SN
−A−098−11

SN
−A−033−6

SN
−B−025−11

SN
−A−101−14

SN
−A−100−8

SN
−C

−016−19
SN

−B−022−C
SN

−B−023−16
SN

−B−022−7
SN

−B−022−10
SN

−A−005−5
SN

−A−067−6
SN

−B−040−13
SN

−A−005−4
SN

−B−050−15
SN

−B−022−4
SN

−B−022−3
SN

−B−022−19
SN

−B−022−9
SN

−B−045−12
SN

−B−022−2
SN

−B−022−15
SN

−A−094−11
SW

029405
SW

090278
SW

170127
SN

−B−022−16
SN

−A−102−15
SN

−B−022−1
SN

−B−022−5
SN

−B−022−14
U

TSW
 4

SN
−B−004−15

SN
−B−009−17

SN
−B−022−13

SN
−B−024−10

SN
−A−103−16

SN
−B−025−12

SN
−B−027−11

SW
044749

SW
018675

N
at_20_223

SW
197061

SN
C

−008−16
SN

−A−103−17
SN

−B−051−15
SN

−A−097−12
SN

−B−013−15
SN

−B−040−14
SN

−B−013−16
SN

−B−018−10
SN

−B−034−8
SW

199452
SN

−C
−013−12

SN
−A−092−9

SN
−A−092−C

SN
−B−001−9

U
T−BA07−004−AQ

SN
−B−001−C

SN
−B−045−13

SN
−B−009−16

Com
p. C

 10 uM
SN

−B−009−14
SN

−B−009−15
SW

004762
SN

−A−005−7
SN

−B−050−16
SN

−A−067−5
SN

−B−009−12
Com

p. C
 20 uM

SN
−B−009−13

SN
−B−023−15

SN
−A−005−9

SN
−A−006−6

SN
−A−067−C

SN
−A−067−8

SN
−B−022−8

SN
−C

−003−14
SN

−B−004−14
SN

−A−005−3
SN

−A−067−7
SN

−A−005−6
SN

−B−013−14
SN

−B−022−17
SN

−C
−009−14

C2_REACTOME_INHIBITION_OF_VOLTAGE_GATED_CA2_CHANNELS_VIA_GBETA_GAMMA_SUBUNITS
C2_REACTOME_INWARDLY_RECTIFYING_K_CHANNELS
C2_REACTOME_GABA_B_RECEPTOR_ACTIVATION
C2_REACTOME_GABA_RECEPTOR_ACTIVATION

SN
−B−042−12

SN
−C

−017−11
SN

−A−097−11
SN

−C
−004−12

SN
−C

−002−18
SN

−C
−002−16

SN
−C

−004−18
SN

−C
−002−15

SN
−C

−002−17
SN

−A−068−8
SN

−B−015−15
SN

−A−022−8
SN

−B−042−8
SN

−A−068−7
SN

−A−099−7
SN

−B−042−14
SN

−A−031−5
SN

−B−012−15
SN

−C
−003−C

SN
A_068_14_12_7

SN
−B−021−14

SN
−A−068−14−12−7 (1uM

)
SN

−C
−010−13

SN
−B−021−13

SN
−C

−004−10
SN

−C
−003−17

SN
−B−042−16

SN
−B−040−C

SN
−C

−004−15
SN

−C
−010−12

SN
−B−061−14

SN
−B−63−10

SN
−B−019−14

SN
−C

−004−13
SN

−C
−002−10

SN
−A−031−6

SN
−B−015−14

SN
−C

−002−9
SN

−B−019−13
SN

−C
−004−17

SN
−C

−002−6
SN

−C
−002−12

SN
−C

−002−13
SN

−A−031−7
SN

−B−012−14
SN

−A−031−8
SN

−B−012−13
SN

−B−019−16
SN

−C
−002−19

SN
−C

−004−14
SN

−B−019−12
SN

−C
−002−C

SN
−C

−002−8
SN

−C
−002−11

SN
−C

−004−16
SN

−B−019−15
SN

−C
−002−7

SN
−C

−002−14

C2_REACTOME_GOLGI_ASSOCIATED_VESICLE_BIOGENESIS
C2_REACTOME_TRANS_GOLGI_NETWORK_VESICLE_BUDDING SN

−A−093−11
SN

−C
−013−18

SN
−B−047−17

SN
−B−042−19

SN
−B−047−16

SN
−A−070−8

SN
−B−042−12

SN
−B−061−5

SN
−B−021−14

SN
−A−088−4

SN
−B−012−14

SN
−B−019−12

SN
−B−042−11

SN
−A−068−8

SN
−A−031−8

SN
−B−012−13

SN
−B−042−18

SN
−C

−020−11
SN

−C
−015−19

SN
−B−63−18

SN
−B−64−15

SN
−C

−006−15
SN

C
−007−10

SN
−C

−016−3
SN

−C
−010−15

SN
−B−047−18

SN
−B−061−6

SN
−C

−022−5
SN

−B−061−15
SN

−C
−004−10

SN
−B−015−14

SN
−C

−004−11
SN

−B−63−9
SN

−C
−004−8

SN
−A−031−C

SN
−B−019−15

SN
−B−015−15

SN
−A−099−7

SN
−B−042−13

SN
−C

−006−13
SN

−B−038−12
SN

−A−031−6
SN

−B−021−13
SN

−A−031−5
SN

−B−019−13
SN

−B−012−15
SN

−B−019−14
SW

024632
SN

−A−086−2
SN

−B−056−14
SN

−A−072−4
SN

−A−089−2
SN

A_068_14_12_7
SN

−B−64−12
SN

−A−031−7
SN

−B−060−6
SN

−C
−014−18

SN
−B−63−17

SN
−B−64−13

SN
−B−64−18

SN
−A−068−14−12−7 (1uM

)
SN

−C
−004−12

SN
−C

−015−16
SN

−A−068−7
SN

−B−042−8
SN

−B−042−10
SN

−B−057−16
SN

−C
−002−19

SN
−B−021−C

SN
−B−042−14

C2_REACTOME_HIV_INFECTION
C2_REACTOME_HOST_INTERACTIONS_OF_HIV_FACTORS

8201 10 uM
SW

063378
SN

−A−083−7
SN

−A−043−7
SW

044749
SW

063353
8201 20 uM
SW

090278
SN

−A−005−6
SW

004762
SN

−A−005−5
U

T−BA07−004−AQ
SN

−B−013−14
SN

−A−067−8
SN

−A−067−6
SN

−B−009−12
SN

−A−005−3
SN

−A−067−5

C2_REACTOME_IL_3_5_AND_GM_CSF_SIGNALING
C2_REACTOME_IL_RECEPTOR_SHC_SIGNALING SN

−B−009−15
SN

−B−009−16
Com

p. C
 10 uM

SN
−A−005−9

SN
−B−009−13

SN
−A−067−C

SN
−B−009−14

SN
−A−005−7

SN
−A−006−6

SN
−B−009−12

SW
044749

Com
p. C

 20 uM
SN

−A−067−7
SN

−B−004−15

C2_REACTOME_INTEGRATION_OF_ENERGY_METABOLISM
C2_REACTOME_REGULATION_OF_INSULIN_SECRETION SN

−B−021−16
SN

−B−63−7
SN

−B−047−8
XC

T790 20 uM
SN

−B−023−6
SN

−B−63−C
SN

−B−021−17
SN

−C
−013−14

SN
C

−008−19
SN

−C
−012−14

SN
−B−061−6

SN
−C

−003−6
SN

−A−096−6
SN

−B−038−19
SN

C
−008−C

SN
−C

−016−3
SN

C
−007−8

SN
−B−042−17

SN
−B−037−8

SN
−B−021−18

SN
−A−097−13

SN
−B−025−C

SN
−A−093−11

SN
−B−015−17

SN
−A−093−12

SN
−C

−015−C
SN

−B−015−18
SN

−B−025−15
SN

−B−019−19
SN

−B−059−19
SN

−B−62−7
SN

−B−62−18
SN

−B−63−12
SN

−B−63−8
SN

−C
−015−18

SN
−B−025−8

SN
−B−038−11

SN
−B−030−2

SN
−B−030−3

SN
−B−025−6

SN
−C

−015−16
SN

−B−026−4
SN

−B−021−7
SN

−B−025−7
SN

−A−094−10
U

T−BA07−060−ETO
AC

SN
−B−64−18

SN
−A−097−5

SN
−B−63−14

SN
C

−008−18
SN

−C
−013−18

Am
m

osam
ide D

 (1uM
)

SN
−A−096−16

SN
−C

−013−8
SN

−B−63−18
SN

−C
−013−13

SN
−B−021−19

SN
−A−095−14

SN
−B−025−4

SN
−B−026−5

SN
−A−097−16

SN
−B−044−4

SN
−B−060−6

SN
−B−042−6

SN
−B−061−5

C2_REACTOME_KERATAN_SULFATE_BIOSYNTHESIS
C2_REACTOME_KERATAN_SULFATE_KERATIN_METABOLISM

SN
−B−63−17

SN
−B−038−12

SN
−B−040−12

C2_REACTOME_MRNA_PROCESSING
C2_REACTOME_MRNA_SPLICING
C2_REACTOME_PROCESSING_OF_CAPPED_INTRON_CONTAINING_PRE_MRNA

SN
−B−021−16

SN
−B−038−11

SN
−B−64−12

SN
−B−025−6

SN
−C

−013−8
SN

−B−023−6
Am

m
osam

ide D
 (1uM

)
SN

−B−026−10
SN

C
−007−14

SN
−B−038−13

SN
−B−63−6

SN
−B−025−4

SN
−B−025−7

SN
−B−021−7

SN
−B−038−19

SN
−A−097−16

SN
−B−042−19

SN
C

−008−C
SN

−B−62−16
SN

−B−059−19
SN

−B−061−5
SN

−C
−010−16

SN
−C

−015−19
SN

−C
−012−14

SN
−C

−012−16
U

T−BA07−060−ETO
AC

SN
−C

−010−17
SN

−B−021−18
SN

−B−62−18
SN

−B−63−9
SN

−B−62−7
SN

−A−093−12
SN

−A−097−13
SN

−A−094−10
SN

−B−62−2
SN

−C
−006−14

SN
−B−64−17

SN
−B−64−C

SN
−B−042−18

SN
−B−046−2

SN
−A−097−17

SN
−B−039−17

SN
−B−64−13

SN
−B−048−13

SN
−C

−013−C
SN

−B−012−18
SN

−B−056−16
SN

−B−62−15
SN

−B−019−19
SN

−B−012−17
SN

−B−015−16
SN

−B−037−8
SN

−C
−013−13

SN
−B−63−17

SN
−C

−015−16
SN

−B−021−17
SN

−B−021−19
SN

−B−63−18
SN

−C
−013−18

SN
−B−015−18

SN
−B−042−17

SN
−B−64−18

SN
C

−007−10
SN

−C
−020−11

SN
−B−63−8

SN
−B−63−12

SN
−B−63−7

SN
C

−008−18
SN

−B−025−8
SN

C
−008−19

SN
−B−038−12

SN
−B−057−16

SN
−C

−013−14
SW

024632
SN

−B−047−C
SN

−C
−003−19

SN
−A−094−18

SN
−C

−014−8
SN

−B−026−5
SN

−B−046−16
SN

−B−026−4
SN

−B−036−11
SN

−A−102−19
SN

−A−070−6
SN

−C
−006−15

SN
−A−096−17

SN
−B−63−19

SN
−B−054−19

SN
−B−64−19

SN
−A−088−4

SN
−A−072−4

SN
−B−058−5

SN
−C

−004−8
SN

−C
−018−8

SN
−B−015−C

SN
−B−042−8

SN
−A−095−14

SN
−B−020−14

SN
−B−047−7

SN
−C

−015−17
SN

−B−058−4
SN

−B−061−16
SN

−B−62−4
SN

−B−061−8
SN

−B−62−C
SN

−B−019−18
SN

−B−057−15
SN

−C
−015−18

SN
−C

−003−18
SN

−A−072−6
SN

−A−073−1
SN

−A−073−6
SN

−B−021−14
SN

−A−068−7
SN

−A−068−14−12−7 (1uM
)

SN
−B−042−10

SN
−B−046−17

SN
−B−63−14

SN
−C

−022−12
SN

−B−025−C
SN

−A−096−7
SN

−C
−013−15

SN
−A−099−7

SN
−C

−006−13
SN

−A−068−8
SN

−B−019−12
SN

−C
−023−6

SN
−B−042−7

SN
−C

−022−5
SN

−B−056−15
SN

−B−060−16
SN

−B−62−6
SN

−C
−012−10

SN
−C

−005−16
SW

016986
SN

−C
−009−5

SW
010869

SN
C

−007−8
SN

A_068_14_12_7
SN

−B−047−14
SN

−B−021−C
SN

−C
−004−10

SN
−B−047−8

SN
−C

−004−11
SN

−C
−010−15

SN
−A−097−5

SN
−B−047−15

SN
−B−042−C

SN
−B−64−15

SN
−B−047−17

SN
−B−060−6

SN
−A−093−11

SN
−B−030−2

SN
−B−061−15

SN
−B−042−11

SN
−B−047−18

SN
−B−047−16

SN
−B−042−16

SN
−B−044−4

SN
−A−096−16

SN
−B−042−6

SN
−C

−003−6
SN

−B−061−6
SN

−B−042−9
SN

−C
−003−5

SN
−B−012−16

SN
−B−039−15

SN
−A−022−8

SN
−B−047−10

SN
−B−019−16

SN
−B−042−14

SN
−C

−015−C
SN

−B−015−17
SN

−A−102−C
SN

−B−056−14
SN

−A−031−6
SN

−B−63−C
SN

−B−030−3
SN

−C
−013−7

SN
−C

−014−18
SN

−B−021−13
SN

−B−015−15
SN

−A−031−5
SN

−B−012−15
SN

−A−031−7
SN

−B−042−13
SN

−B−012−14
SN

−B−015−14
SN

−A−031−8
SN

−B−019−14
SN

−B−62−17
SN

−B−63−13
SN

−B−019−15
SN

−B−012−13
SN

−B−019−13
SN

−B−015−19
SN

−B−019−17
SN

−A−096−6
SN

−C
−016−3

SN
C

−007−15
SN

−B−020−18
SN

−A−097−18
SN

−A−022−7
SN

−B−059−14
XC

T790 20 uM
SN

−B−012−19
SN

−A−013−8
SN

−B−059−13
SN

−C
−010−6

SN
−C

−011−3
SN

−B−055−17
SN

−C
−020−10

U
0126 20 uM

SN
−C

−009−17
SN

−B−004−6
SN

−A−022−6
SN

−B−039−18
SN

−B−054−16
SN

−B−0035−16
SN

−B−026−15
SN

−C
−010−3

SN
−B−0035−13

SN
−B−052−3

SN
C

−008−5
SN

−B−040−17
SN

−C
−003−17

SN
−B−040−8

SN
−B−040−10

SN
−A−086−2

SN
−A−089−2

SN
−B−061−14

SN
−C

−002−14
SN

−C
−002−17

SN
−C

−004−14
SN

−C
−002−13

SN
−C

−002−16
SN

−C
−002−15

SN
−C

−002−6
SN

−C
−002−C

SN
−C

−002−12
SN

−A−095−12
SN

−A−096−15
SN

−C
−002−18

SN
−B−63−10

SN
−B−042−12

SN
−C

−004−18
SN

−C
−004−12

SN
−C

−002−19
SN

−C
−004−19

SN
−C

−010−14
SN

−B−64−14
SN

−C
−013−4

SN
−B−016−19

SN
−B−025−15

Kibdelone C
 (50nM

)
SN

−A−097−14
SN

−B−62−3
SN

−B−058−14
SN

−B−021−12
SN

−C
−015−15

SN
−A−008−C

SN
−A−031−C

SN
−C

−011−6
SN

−A−070−8
SN

−C
−020−12

SN
−A−098−13

SN
−C

−001−17
SN

−A−052−7
SN

−A−097−11
SN

−C
−010−C

SN
−A−074−4

SN
−C

−010−7
SN

−A−073−4
SN

−B−057−4
AZ_2837
SN

−C
−001−18

SN
−B−054−12

SN
−C

−002−5
SN

−A−068−6
SN

−A−070−2
SN

−A−017−4
SN

−A−070−4
SN

−A−073−2
SN

−B−006−14
SN

−C
−010−8

SN
−B−003−6

SN
−C

−009−4
SN

−A−021−7
SN

−A−021−8
SN

−C
−010−13

SN
−B−040−C

SN
−C

−009−18
U

0126 10 uM
SN

−A−097−10
SN

−C
−017−11

SN
−C

−010−12
SN

−C
−002−8

SN
−C

−002−10
SN

−C
−002−11

SN
−C

−004−13
SN

−C
−003−C

SN
−C

−002−9
SN

−C
−004−16

SN
−A−052−8

SN
−C

−002−7
SN

−C
−004−15

SN
−C

−004−17
SN

−A−034sk−6
SN

−A−071−4
SN

−A−070−3
AZ_0938
SN

−A−072−2

C2_REACTOME_DESTABILIZATION_OF_MRNA_BY_AUF1_HNRNP_D0
C2_REACTOME_VIF_MEDIATED_DEGRADATION_OF_APOBEC3G
C2_REACTOME_SCF_BETA_TRCP_MEDIATED_DEGRADATION_OF_EMI1
C2_REACTOME_CDK_MEDIATED_PHOSPHORYLATION_AND_REMOVAL_OF_CDC6
C2_REACTOME_AUTODEGRADATION_OF_THE_E3_UBIQUITIN_LIGASE_COP1
C2_REACTOME_P53_INDEPENDENT_G1_S_DNA_DAMAGE_CHECKPOINT
COR_193_PA700−20S−PA28 complex
C2_KEGG_PROTEASOME
C2_REACTOME_CROSS_PRESENTATION_OF_SOLUBLE_EXOGENOUS_ANTIGENS_ENDOSOMES
C2_REACTOME_REGULATION_OF_ORNITHINE_DECARBOXYLASE_ODC
C2_REACTOME_CDT1_ASSOCIATION_WITH_THE_CDC6_ORC_ORIGIN_COMPLEX
C2_REACTOME_ASSEMBLY_OF_THE_PRE_REPLICATIVE_COMPLEX
C2_REACTOME_ORC1_REMOVAL_FROM_CHROMATIN
C2_REACTOME_CYCLIN_E_ASSOCIATED_EVENTS_DURING_G1_S_TRANSITION_
C2_REACTOME_ACTIVATION_OF_NF_KAPPAB_IN_B_CELLS
C2_REACTOME_SIGNALING_BY_WNT
C2_REACTOME_REGULATION_OF_APOPTOSIS
C2_REACTOME_P53_DEPENDENT_G1_DNA_DAMAGE_RESPONSE
C2_REACTOME_SCFSKP2_MEDIATED_DEGRADATION_OF_P27_P21
C2_REACTOME_REGULATION_OF_MRNA_STABILITY_BY_PROTEINS_THAT_BIND_AU_RICH_ELEMENTS
C2_REACTOME_ANTIGEN_PROCESSING_CROSS_PRESENTATION
C2_REACTOME_ER_PHAGOSOME_PATHWAY
C2_REACTOME_REGULATION_OF_MITOTIC_CELL_CYCLE
C2_REACTOME_AUTODEGRADATION_OF_CDH1_BY_CDH1_APC_C
C2_REACTOME_APC_C_CDC20_MEDIATED_DEGRADATION_OF_MITOTIC_PROTEINS
C2_REACTOME_APC_C_CDH1_MEDIATED_DEGRADATION_OF_CDC20_AND_OTHER_APC_C_CDH1_TARGETED_PROTEINS_IN_LATE_MITOSIS_EARLY_G1
C2_BIOCARTA_PROTEASOME_PATHWAY
COR_181_26S proteasome
PCDQ_20S proteasome of the 26S proteasome
COR_192_PA28−20S proteasome
COR_191_20S proteasome
COR_194_PA28gamma−20S proteasome
COR_32_PA700 complex
PCDQ_19S proteasome of the 26S proteasome
C2_REACTOME_DOWNSTREAM_SIGNALING_EVENTS_OF_B_CELL_RECEPTOR_BCR
C2_REACTOME_SIGNALING_BY_THE_B_CELL_RECEPTOR_BCR
C2_REACTOME_DNA_REPLICATION
C2_REACTOME_MITOTIC_M_M_G1_PHASES
C2_REACTOME_M_G1_TRANSITION
C2_REACTOME_SYNTHESIS_OF_DNA
C2_REACTOME_S_PHASE
C2_REACTOME_CELL_CYCLE_CHECKPOINTS
C2_REACTOME_G1_S_TRANSITION
C2_REACTOME_MITOTIC_G1_G1_S_PHASES

SN
−B−017−19

SN
−B−017−C

SN
−C

−011−13
SN

−A−098−15
SN

−B−009−14
SN

−C
−011−14

SN
−B−024−10

SN
−C

−011−11
AZ_774
SN

−C
−003−15

SN
−B−025−12

SN
−B−027−11

SN
−A−067−6

SN
−B−013−16

SN
−B−045−12

SN
−C

−003−14
SN

−A−033−6
SN

−B−050−15
SW

029405
SN

−B−034−8
SN

−B−025−11
SN

−B−050−16
SW

170127
SN

−C
−013−12

SN
−A−005−5

SN
−A−067−8

SN
−B−045−13

SN
−A−092−C

SN
−B−022−2

SW
090278

SN
−A−067−5

SN
−B−001−9

SN
−B−018−10

SN
−B−009−12

SN
−A−097−12

SN
−B−022−10

SN
−B−001−C

SN
−B−013−14

SW
199452

SN
C

−008−16
SN

−A−094−11
SN

−A−005−6
SN

−B−022−14
SN

−A−102−15
SN

−B−022−15
SN

−A−005−4
SN

−B−040−13
SN

−B−040−11
SN

−C
−009−14

SN
−A−103−17

SN
−B−022−5

SW
169983

SN
−B−022−1

SN
−B−023−15

N
at_20_223

SN
−B−022−7

SN
−A−092−9

SN
−B−022−C

SN
−B−022−17

SN
−B−022−18

SN
−B−022−19

SN
−B−040−14

SN
−B−051−15

U
T−BA07−004−AQ

SN
−B−022−6

SN
−B−022−11

SN
−B−022−9

SN
−B−022−4

SW
004762

SW
063400

SN
−B−022−16

SN
−A−005−9

SN
−B−013−15

SN
−A−005−7

SN
−B−004−14

SN
−A−067−C

SN
−B−023−16

SW
044749

SN
−B−022−3

SN
−B−018−9

SW
018675

SN
−B−022−8

SW
197061

SN
−B−022−12

SN
−B−022−13

SN
−A−005−3

SW
166781

SN
−A−067−7

C2_REACTOME_NEUROTRANSMITTER_RECEPTOR_BINDING_AND_DOWNSTREAM_TRANSMISSION_IN_THE_POSTSYNAPTIC_CELL
C2_REACTOME_TRANSMISSION_ACROSS_CHEMICAL_SYNAPSES SW

063354
SN

−B−004−13
SN

−B−027−12
SN

−A−033−6
SN

−B−022−10
SN

−B−022−19
SN

C
−008−16

SN
−C

−013−12
SN

−A−067−5
SN

−B−040−14
N

at_20_223
SN

−B−018−10
SN

−B−001−9
SN

−B−034−8
SN

−B−009−12
SN

−A−097−12
SW

197061
U

T−BA07−004−AQ
SN

−A−092−9
SN

−A−092−C
SW

044749
SN

−B−001−C
SN

−B−013−14
SN

−B−009−16
SN

−B−013−16
SN

−B−013−15
SN

−B−009−14
SN

−A−005−7
Com

p. C
 20 uM

SN
−B−051−15

SW
199452

SW
018675

SW
090278

SN
−A−094−12

SN
−B−027−11

SN
−A−103−17

SN
−A−005−6

SN
−B−004−14

SN
−C

−003−15
SW

004762
Com

p. C
 10 uM

SN
−A−067−6

SN
−A−067−7

SN
−B−022−6

SN
−C

−003−14
SW

063400
SW

170127
SN

−B−022−17
SN

−A−067−C
SN

−B−045−13
SN

−B−022−11
SN

−B−022−16
SN

−C
−009−14

SN
−B−022−18

SN
−B−050−16

SW
166781

SN
−B−025−12

SN
−B−022−1

SN
−A−005−3

SN
−B−023−15

SN
−B−022−8

SN
−A−102−15

SN
−B−022−13

SN
−B−022−15

SN
−B−009−15

SN
−B−022−12

SN
−A−005−5

SN
−B−009−17

AZ_774
SN

−B−022−7
SN

−B−023−16
SW

029405
SN

−A−006−6
SN

−B−022−14
SN

−B−024−10
SN

−B−022−C
U

TSW
 4

SN
−B−009−13

SN
−B−022−5

SN
−A−103−16

SN
−A−067−8

SN
−B−004−15

C
om

pound C
SN

−A−005−9
SN

−B−040−13
SN

−B−017−19
SN

−B−022−2

C2_REACTOME_NUCLEOTIDE_LIKE_PURINERGIC_RECEPTORS
C2_REACTOME_P2Y_RECEPTORS

SN
−B−012−18

SN
−C

−018−7
SN

−B−004−5
SN

−A−101−C
SN

−B−048−16
SN

−B−054−15
SN

−A−016−8
SN

−A−104−C
SN

−B−051−12
SN

−B−052−12
SN

−B−037−10
SN

−C
−014−8

U
T−BA07−060−ETO

AC
SN

−A−097−10
SN

−B−019−19
SN

−B−046−14
SN

−B−056−16
SN

−B−042−17
SN

−B−048−13
SN

−A−009−8
SN

−B−037−7
SN

−B−046−16
SN

−C
−012−10

SN
−B−060−16

SN
−B−023−6

SN
−A−095−14

SN
−B−021−17

SN
−B−63−8

SN
−B−015−18

SN
−C

−020−12
SN

−B−046−2
SN

C
−007−15

SN
−A−097−13

SN
−B−62−7

SN
−B−025−15

SN
−A−102−19

SN
−B−63−6

SN
−A−096−17

SN
−B−62−2

COR_178_Respiratory chain complex I (holoenzyme)  mitochondrial
C2_REACTOME_TCA_CYCLE_AND_RESPIRATORY_ELECTRON_TRANSPORT
C2_REACTOME_RESPIRATORY_ELECTRON_TRANSPORT
C2_REACTOME_RESPIRATORY_ELECTRON_TRANSPORT_ATP_SYNTHESIS_BY_CHEMIOSMOTIC_COUPLING_AND_HEAT_PRODUCTION_BY_UNCOUPLING_PROTEINS_

SN
−A−005−4

SN
−A−005−6

Com
p. C

 20 uM
SN

−B−009−13
SN

−B−022−14
SN

−B−022−C
SN

−A−006−6
SN

−B−004−14
SN

−A−098−14
SN

−C
−009−14

SN
−B−004−13

SN
−B−022−5

SN
−B−013−14

SN
−A−067−6

SN
−A−067−7

SN
−B−009−14

SN
−A−067−8

SN
−A−067−C

SN
−A−067−5

SN
−A−005−5

SN
−B−004−15

SN
−A−005−9

SN
−B−009−12

SN
−A−097−12

SN
−C

−013−12
SN

−A−005−3
Com

p. C
 10 uM

SN
−A−005−7

SN
−B−009−16

SN
−B−022−19

SN
−A−099−14

SN
−B−047−6

SN
−A−100−14

SN
−A−100−15

SN
−B−043−C

SN
−A−101−14

SN
−C

−016−C
SN

−A−098−16
SN

−A−100−3
SN

−B−009−15
SN

−A−098−11
SN

−B−022−6
SN

−B−022−12
SN

−B−009−17
SN

−C
−016−10

SN
−A−099−13

SN
−C

−016−12
SN

−C
−011−19

SN
−C

−016−19
SN

−A−100−8
SN

−C
−011−18

SN
−C

−021−11

C2_REACTOME_SIGNALING_BY_TGF_BETA_RECEPTOR_COMPLEX
C2_REACTOME_TRANSCRIPTIONAL_ACTIVITY_OF_SMAD2_SMAD3_SMAD4_HETEROTRIMER

SN
−B−054−15

SN
−A−090−8

SN
−A−076−2

SN
−A−096−6

SN
−B−025−C

SN
−A−096−7

SN
−C

−009−15
SN

−B−026−10
SN

−A−097−17
SN

−B−63−6
SN

−B−020−18
SN

−B−039−18
SN

−B−037−10
SN

−B−038−12
SN

C
−007−10

SN
−B−62−3

SN
−B−62−17

SN
−A−102−19

SN
−B−046−14

SN
−C

−013−15
SN

−B−009−19
SN

−B−64−10
SN

−A−068−6
SN

−C
−013−18

SN
−B−038−19

SN
−C

−013−14
SN

−C
−015−15

SN
−C

−013−7
SN

−A−095−14
SN

−B−63−C
SN

−B−019−18
SN

−B−042−17
SN

−B−62−18
SN

−B−015−18
SN

C
−008−18

SN
−C

−020−11
SN

−B−015−16
SN

−A−102−C
SN

−B−019−19
SN

−C
−010−17

SN
−B−62−7

SN
−B−63−13

SN
−B−016−19

SN
−B−059−19

SN
−B−62−4

SN
−B−048−13

SN
−B−62−C

SN
−B−055−17

SN
−B−039−17

SN
−A−022−6

SN
−B−62−6

SN
−C

−009−16
U

0126 10 uM
SN

−B−63−19
SN

−B−025−9
SN

−B−056−11
SN

C
−008−7

SN
−A−070−8

SN
−A−068−8

SN
−B−021−13

SN
−B−021−14

SN
−B−015−15

SN
−A−099−7

SN
−C

−009−17
SN

C
−007−14

SN
−C

−013−C
SN

−B−046−16
SN

−B−038−13
SN

−B−64−19
SN

−B−054−19
SN

C
−007−15

SN
−B−64−13

SN
−A−097−10

SN
−B−64−12

SN
−C

−015−19
SN

−C
−015−C

SN
−A−096−16

SN
−B−038−11

SN
−A−070−6

SN
−B−057−16

SN
−C

−012−14
SN

−B−015−17
SN

−B−019−17
SN

−C
−012−16

SN
−A−094−10

SN
−B−012−17

SN
C

−008−19
SN

C
−008−C

SN
−A−093−11

SN
−C

−006−14
SN

−B−015−C
SN

−B−056−14
XC

T790 20 uM
SN

−B−060−16
SN

−B−057−15
SN

−B−63−12
SN

−A−097−16
SN

−B−64−C
SN

−B−62−16
SN

−C
−015−17

SN
−B−64−14

SN
−A−023−6

SN
−B−052−15

SN
−C

−015−16
SN

−A−023−7
SN

−C
−015−18

SN
−C

−013−13
SN

−A−097−13
SN

−B−046−2
SN

−B−63−7
SN

−B−62−2
SN

−A−093−12
SN

−A−096−17
SN

−B−046−17
SN

−B−64−17
U

0126 20 uM
SN

−B−056−12
SN

−C
−006−15

SW
024632

SW
016986

SN
−B−012−19

SN
−C

−014−18
SN

−B−62−5
SN

C
−007−18

SN
−B−039−15

SN
−B−63−9

SN
−B−047−15

SN
−B−042−C

SN
−B−047−8

SN
−B−012−16

SN
−B−061−15

SN
−B−047−7

SN
−C

−003−18
SN

−B−020−14
SN

−C
−013−4

SN
−B−021−18

SN
−B−63−18

COR_66_TRAP complex
COR_217_CRSP complex;COR_218_CRSP complex
COR_548_DRIP complex;COR_549_DRIP complex
COR_910_CRSP−Mediator 2 complex
COR_287_ARC−L complex
COR_288_ARC complex
COR_284_CRSP complex
COR_232_ARC complex
COR_909_ARC92−Mediator complex
COR_301_SMCC complex
COR_535_TRAP complex
COR_547_SMCC complex
PCDQ_Mediator/ARC(activator−recruited cofactor) complex
COR_230_Mediator complex
COR_5450_Mediator complex

SN
−B−025−12

SN
−C

−003−15
SN

−B−001−9
SN

−B−034−7
SN

−A−094−11
SN

−A−085−5
SN

−B−040−13
SW

169983
SW

063400
SW

090278
SW

044749
SN

−B−014−5
SN

−A−085−6
SN

−B−025−11

COR_387_MCM complex
PCDQ_MCM complex

SN
−A−067−C

SN
−B−009−13

SN
−A−006−6

SN
−B−009−17

SN
−A−005−9

SN
−B−004−13

SN
−A−023−8

SN
−B−004−15

SN
−A−103−16

SN
−A−067−5

SN
−B−004−14

SN
−B−013−14

SN
−A−097−12

SN
C

−008−16
SN

−B−009−12
SN

−B−040−14
SN

−C
−013−12

SN
−B−013−16

SN
−B−034−8

Com
p. C

 20 uM
SN

−A−067−6
SN

−B−009−14
SN

−B−009−15
SN

−A−067−7
SN

−A−103−17
Com

p. C
 10 uM

SN
−A−067−8

SN
−A−005−5

SN
−B−009−16

SN
−A−033−6

SN
−B−051−15

SN
−A−057−5

SN
−B−013−15

SW
199452

SW
090278

SN
−B−001−9

SN
−A−092−9

SN
−A−092−C

SN
−B−018−10

SN
−A−005−3

SN
−A−005−7

SN
−A−005−6

SN
−A−083−7

SN
−B−045−13

SW
063353

U
T−BA07−004−AQ

SW
170127

SW
004762

SW
044749

COR_435_BASC (Ab 81) complex (BRCA1−associated genome surveillance complex)
COR_433_BASC complex (BRCA1−associated genome surveillance complex)
COR_434_BASC (Ab 80) complex (BRCA1−associated genome surveillance complex)

SN
−B−63−17

SN
−B−64−12

SN
−B−023−9

SN
−C

−013−13
SN

−B−021−16
SN

−A−097−14

COR_2174_COP9 siglosome complex
COR_726_DDB2 complex
COR_727_CSA complex
COR_728_CSA−POLIIa complex

SN
−B−012−16

SN
−B−040−17

SN
−B−64−13

SN
−B−047−14

SN
−B−047−15

SN
−B−63−9

SN
−B−015−19

SN
−B−047−8

SN
−B−015−17

SN
−B−042−C

SN
−B−038−12

SN
−B−015−C

SN
−B−039−15

SN
−B−64−15

SN
−C

−002−14
SN

−C
−002−19

SN
−C

−004−12
SN

−A−068−8
SN

−C
−002−18

SN
−A−068−7

SN
−B−042−12

SN
−A−099−7

SN
−B−021−13

SN
−B−019−12

SN
−B−021−14

SN
−B−015−15

SN
−A−031−5

SN
−A−068−14−12−7 (1uM

)
SN

−B−015−14
SN

−B−019−14
SN

−B−042−13
SN

−B−042−10
SN

−C
−002−16

SN
−C

−002−15
SN

−A−096−15
SN

−C
−002−13

SN
−C

−002−17
SN

−C
−004−14

SN
−A−031−7

SN
−B−012−15

SN
−A−031−6

SN
−B−012−14

SN
−B−019−13

SN
−B−019−15

SN
−B−012−13

SN
−A−031−8

SN
−B−042−14

SN
A_068_14_12_7

SN
−C

−004−18
SN

−C
−010−13

SN
−C

−003−C
SN

−C
−017−11

SN
−B−061−14

SN
−C

−004−19
SN

−B−042−8
SN

−B−63−10
SN

−B−019−16
SN

−B−042−11
SN

−B−63−17
SN

−C
−004−15

SN
−C

−004−16
SN

−C
−002−7

SN
−C

−004−17
SN

−C
−002−8

SN
−C

−002−11
SN

−C
−004−13

SN
−C

−002−C
SN

−C
−002−6

SN
−C

−002−12
SN

−A−031−C
SN

−C
−002−9

SN
−C

−002−10
SN

−B−047−17
SN

−C
−003−17

SN
−C

−010−12
SN

−A−022−8
SN

−B−042−19
SN

−C
−004−10

SN
−B−021−C

SN
−C

−006−13
SN

−A−095−12
SN

−C
−010−14

SN
−A−021−8

SN
−C

−001−17
SN

−B−042−16
SN

−B−047−C
SN

−B−047−16
SN

−C
−004−11

SN
−B−047−10

SN
−B−047−18

COR_1153_Integrator complex
COR_1155_Integrator−RPII complex SN

−B−038−12
SN

−A−102−13
SN

−A−103−13
SN

−B−63−17

C2_KEGG_SPLICEOSOME
COR_351_Spliceosome

SN
−B−050−16

SN
−B−001−C

U
T−BA07−004−AQ

SN
−B−018−9

SN
−A−098−7

SN
−B−018−10

SN
−C

−003−15
SN

−B−034−7
SW

169983
SN

−A−092−C
SW

030748
SN

−A−092−9
SN

−B−001−9
SW

018675
SN

−B−017−19
SN

−B−045−13
SN

−A−103−16
SN

−A−097−12
SN

−B−040−13
SN

C
−008−16

SW
044749

AZ_774
N

at_20_223
SN

−B−022−13
SW

170127
SN

−B−023−15
SN

−B−027−11
SN

−A−094−12
SN

−B−022−11
SW

029405
SN

−A−103−17
SN

−B−022−17
SN

−C
−013−12

SN
−B−040−14

C
om

pound C
SN

−B−022−1
SN

−A−094−11
SN

−A−102−15
SW

199452
SN

−B−034−8
SN

−B−014−5
SW

166781
SW

197061
SN

−B−013−16

C2_PID_INTEGRIN_CS_PATHWAY
PCDQ_Integrins

SN
−B−63−17

SN
−C

−015−18
SN

−C
−015−19

SN
−C

−013−13
SN

−B−63−12
SN

−B−64−18
SN

−C
−015−17

SN
−B−060−16

SN
−B−061−16

SN
−C

−013−14
SN

−B−026−5
SN

−C
−015−16

SN
−A−068−6

SN
−A−095−14

SN
−C

−015−15
SN

−B−025−15
SN

−C
−015−10

SN
−B−046−17

SN
−B−059−19

SN
−B−62−6

SN
−B−023−6

SN
−A−093−12

SN
−B−64−C

SN
−B−62−2

SN
−B−62−4

SN
−B−021−17

SN
−B−038−19

SN
−B−025−6

SN
−B−019−19

SN
−B−037−8

XC
T790 20 uM

SN
−B−015−16

SN
−C

−014−8
SN

−B−62−15
SN

−C
−013−8

SN
−B−038−11

SN
C

−007−10
SN

−C
−013−7

SN
−A−097−16

SN
−B−057−15

SN
C

−008−18
U

T−BA07−060−ETO
AC

SN
−A−093−11

SN
−A−094−10

SN
C

−008−19
SN

−B−042−17
SN

−C
−020−11

SN
−B−038−12

SN
−A−102−19

SN
−C

−013−18
SN

−C
−012−16

SN
−B−021−18

SN
C

−008−C
SN

−B−021−19
SN

−B−015−17
SN

−B−015−18
SN

−B−012−17
SN

−B−019−17
SN

−B−012−19
SN

−B−046−2
SN

−B−046−16
SN

−B−016−19
SN

−B−019−18
SN

−B−047−7
SN

−A−096−16
SN

C
−007−8

SN
−C

−015−C
SN

−B−047−8
SN

−B−015−19
SN

−B−042−18
SN

−C
−006−14

SN
−B−061−15

SN
−B−63−9

SN
−B−048−13

SN
−C

−010−17
SN

−A−102−C
SN

−B−056−14
SN

−B−056−16
SN

−B−0035−13
SN

−A−097−13
SN

−C
−010−16

SN
−C

−012−14
U

0126 10 uM
SN

−A−097−10
SN

−B−046−14
SN

−B−026−10
SW

010869
SW

016986
SN

−C
−020−12

Am
m

osam
ide D

 (1uM
)

SN
−C

−012−10
SN

−A−094−18
SN

−B−042−8
SN

−A−068−8
SN

−B−021−13
SN

−C
−003−19

SN
−B−015−15

SN
−B−042−13

SN
−B−64−13

SN
−B−021−14

SN
−B−012−15

SN
−C

−006−13
SN

−B−012−14
SN

−A−031−8
SN

−A−031−5
SN

−A−031−7
SN

−B−042−16
SN

−B−040−8
SN

−C
−022−5

SN
−C

−023−6
SN

−C
−005−16

SN
−B−030−3

SN
−C

−009−5
SN

−B−060−6
SN

−B−061−6
SN

−B−042−7
SN

−C
−016−3

SN
−B−025−8

SN
−A−096−6

SN
−B−042−9

SN
−B−061−5

SN
−B−020−14

SN
−B−021−7

SN
−B−012−18

SN
−B−044−4

SN
−B−62−C

SN
−B−057−16

SN
−B−64−17

SN
−B−025−4

SN
−B−62−16

SN
−B−042−6

SN
−B−63−14

SN
−B−025−C

SN
−C

−003−6
SN

−A−097−5
SN

−C
−003−18

SN
−A−070−6

SN
−B−040−5

SN
−B−64−14

SN
−B−025−7

SN
−C

−013−4
SN

−B−026−4
SN

−B−63−18
SN

−B−042−11
SN

−C
−004−10

SN
−C

−004−11
SN

−B−015−14
SN

−B−012−13
SN

−B−019−14
SN

−B−019−15
SN

−C
−018−8

SN
−A−031−6

SN
−B−019−13

SN
−B−021−C

SN
−A−022−7

SN
−C

−003−5
SN

−B−015−C
SN

−B−019−16
SN

−B−047−C
SN

−B−047−17
SN

−B−047−18
SN

−B−047−16
SN

−A−022−8
SN

−B−047−10
SN

−B−042−19
SN

−C
−010−15

SN
−B−059−14

SN
−B−047−14

SN
−B−047−15

SN
−B−012−16

SN
−B−042−C

SN
−B−039−15

SN
−B−63−19

SN
−B−055−17

SN
−B−64−19

SN
−B−040−12

SN
−A−023−7

SN
−C

−012−18
SN

−B−63−C
SN

−C
−013−15

SN
−B−62−3

SN
−B−63−13

SN
−A−096−17

SN
−B−63−7

SN
−B−63−8

SN
C

−007−14
SN

−B−62−7
SN

−B−62−17
Kibdelone C

 (50nM
)

SN
−A−097−17

SN
−B−039−17

SN
−C

−013−C
SN

−B−036−11
SN

−B−63−6
SN

−B−038−13
SN

−B−64−12

C2_REACTOME_ABORTIVE_ELONGATION_OF_HIV1_TRANSCRIPT_IN_THE_ABSENCE_OF_TAT
C2_REACTOME_FORMATION_OF_RNA_POL_II_ELONGATION_COMPLEX_
C2_REACTOME_FORMATION_OF_THE_HIV1_EARLY_ELONGATION_COMPLEX
C2_REACTOME_MRNA_CAPPING
C2_REACTOME_MICRORNA_MIRNA_BIOGENESIS
C2_REACTOME_REGULATORY_RNA_PATHWAYS
C2_REACTOME_VIRAL_MESSENGER_RNA_SYNTHESIS
PCDQ_RNA polymerase II complex
COR_104_R polymerase II core complex
COR_2686_BRCA1−core R polymerase II complex
C2_REACTOME_FORMATION_OF_INCISION_COMPLEX_IN_GG_NER
C2_REACTOME_GLOBAL_GENOMIC_NER_GG_NER
C2_REACTOME_FORMATION_OF_TRANSCRIPTION_COUPLED_NER_TC_NER_REPAIR_COMPLEX
C2_REACTOME_NUCLEOTIDE_EXCISION_REPAIR
C2_REACTOME_TRANSCRIPTION_COUPLED_NER_TC_NER

SN
−B−045−13

SN
−B−027−11

SN
−B−051−15

SN
−B−013−15

SN
−B−022−11

SN
−A−094−11

SN
−B−025−11

SN
−C

−003−15
SW

018675
SW

166781
SW

197061
SN

−B−025−12
SN

−B−018−9
SN

−B−017−19
SN

−B−017−C
SN

−C
−003−14

SN
−B−065−14

COR_305_40S ribosomal subunit  cytoplasmic
COR_338_40S ribosomal subunit  cytoplasmic
C2_REACTOME_ACTIVATION_OF_THE_MRNA_UPON_BINDING_OF_THE_CAP_BINDING_COMPLEX_AND_EIFS_AND_SUBSEQUENT_BINDING_TO_43S
C2_REACTOME_FORMATION_OF_THE_TERNARY_COMPLEX_AND_SUBSEQUENTLY_THE_43S_COMPLEX

SN
−B−049−9

SN
−B−037−13

SN
−A−082−7

SN
−B−031−17

SN
−B−045−19

SN
−B−053−15

SN
−B−045−17

SN
−A−093−13

SN
−B−049−7

SN
−A−013−1

SN
−B−004−17

SN
−B−030−5

SN
−A−009−7

SN
−A−044−6

SN
−A−ATC

C
−M

YXO
−2

SN
−B−052−9

SN
−A−042−6

SN
−A−041−C

SN
−A−027−7

SN
−B−049−12

SN
−B−018−16

SN
−B−049−3

SN
−A−043−6

SN
−A−045−8

SN
−A−011−6

SN
−A−047−6

SN
−B−0035−17

SN
−A−028−7

SN
−B−004−C

SN
−B−052−16

SN
−B−051−9

SN
−A−082−1

U
T−BA07−092A

SN
−A−042−8

SN
−B−051−5

8201 10 uM
SN

−A−047−7
SN

−A−006−C
SN

−A−053−C
SN

−A−039−6
SN

−A−057−1
SN

−A−057−5
SN

−A−027−8
SW

063374
SW

066281
SN

−B−033−C
SW

063353
8201 20 uM
SW

063354
SW

063400
SW

063378
SN

−A−083−C
SN

−B−053−7
SN

−A−043−7
SN

−B−052−C
SN

−B−030−6
SN

−A−009−1
SN

−A−045−7
SN

−A−057−C
SN

−A−041−7
U

T−BA07−038−AQ
SN

−B−004−18
SN

−A−042−5
SN

−B−050−11
SN

−B−054−9
SN

−B−033−14
SN

−A−087−6
SN

−B−044−13
SN

−B−032−14
SN

−B−052−19
SN

−B−049−5
SN

−A−098−8
SW

040177
M

etform
in 20 uM

SN
−B−049−2

SN
−B−052−13

SN
−B−050−19

U
T−BA07−056−AQ

SN
−B−049−19

SN
−B−053−13

SN
−B−054−7

Kibdelone C
SN

−B−036−7
U

T−BA07−056−ETO
AC

SN
−B−033−15

SN
−A−102−17

U
T−BA07−071−ETO

AC
SN

−B−052−5
SN

−A−045−6
SN

−A−050−6
SN

−B−032−17
SN

−B−021−11
SN

−B−051−8
SN

−C
−017−7

SN
−A−092−9

SN
−A−092−C

SN
−B−001−9

SN
−B−018−10

SW
004762

SW
090278

SN
−B−022−2

SN
−B−022−17

SN
−B−022−18

SN
−B−022−15

SN
−B−022−16

SW
044749

SN
−B−001−C

SW
197061

SW
018675

U
T−BA07−004−AQ

SN
−A−102−7

SW
134856

SN
−B−040−15

SN
−A−033−6

SN
−A−043−8

SN
−B−045−6

SW
170127

SW
029405

SN
−B−040−19

SN
−A−053−6

SN
−B−049−1

SW
014150

SN
−B−050−16

U
T−BA07−001C

SN
−A−042−2

SN
−B−045−5

SN
−C

−003−15
SW

008891
SN

−B−047−1
SW

166781
SN

−B−044−C
SW

030748
SN

−B−036−19
SW

169983
M

etform
in 40 uM

SN
−A−057−7

SN
−B−050−13

SN
−A−040−7

U
T−BA07−056B

SN
−A−041−3

C2_REACTOME_ADHERENS_JUNCTIONS_INTERACTIONS
C2_REACTOME_CELL_CELL_COMMUNICATION
C2_REACTOME_CELL_CELL_JUNCTION_ORGANIZATION
C2_REACTOME_CELL_JUNCTION_ORGANIZATION

SN
−B−022−1

SN
−B−022−13

SW
090278

SW
004762

SN
−B−027−11

SN
−B−022−8

SN
−B−022−14

SN
−B−022−6

SN
−B−022−16

SN
−B−022−12

SN
−B−023−15

SN
−A−005−5

SN
−A−005−4

SN
−B−022−7

SN
−B−022−19

SN
−B−027−12

SN
−B−022−15

SN
−B−022−C

SN
−B−022−10

SN
−B−024−10

SN
−B−009−17

SN
−A−006−6

SN
−A−005−9

SN
−B−004−15

U
TSW

 4
SN

−A−067−8
SN

−B−009−13
SN

−B−013−16
SN

−B−045−13
SN

−A−103−16
SN

−A−103−17
SN

−A−005−3
SN

−C
−009−14

SN
−B−001−9

SN
−A−092−9

SN
−A−092−C

SW
044749

SN
−B−040−14

SN
C

−008−16
N

at_20_223
SW

197061
SW

199452
SN

−B−022−18
SN

−B−022−11
SW

018675
SN

−B−022−17
Com

p. C
 10 uM

Com
p. C

 20 uM
SN

−A−067−C
SN

−B−009−14
SN

−B−009−16
SN

−A−067−6
SN

−B−009−15
SN

−B−013−15
SN

−B−051−15
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Figure 23: Functional landscape of natural product fractions, related to Figure  

(A) Groups of natural products fractions that share one or more gene set under the 

10% FDR cutoff. Heatmaps are colored according to FDR, with a color key to 

interpret the values indicated below 

(B) A general function can be annotated for natural products fractions groups in (A) 

based on gene sets the fractions are predicted to perturb.  
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CHAPTER FOUR 

METHODS 

 

Chapter 4.1: METHODS RELATING TO CHAPTER 2 

Cell culture and small molecules 

Most NSCLC lines used in this study were part of the NCI and HCC (Hamon Cancer 

Center at UT Southwestern) series of cell lines, with the exception of THLE-2, THLE-3, 

A427, A549, Calu.1, Calu.6 (American Type Culture Collection; ATCC), Cal.12T 

(Deutsche Sammlung von Mikroorganismen und Zellkulturen GmbH; DSMZ), DFCI.024, 

DFCI.032 (Dana Farber Cancer Institute, courtesy of Pasi Jänne), EKVX, Hop62 (NCI-60 

panel), PC9 (Johns Hopkins University School of Medicine, courtesy of Bert Vogelstein). 

Cell lines from these collections were cultured in RPMI 1640 (Gibco, 2.05mM L-

glutamine) supplemented with 5% FBS (GIBCO) and 1% penicillin/streptomycin (Gibco). 

Normal bronchiole epithelia-derived cell lines [77] were grown in ACL4 (RPMI 1640 

supplemented with 0.02 mg/ml insulin, 0.01 mg/ml transferrin, 25 nM sodium selenite, 50 

nM hydrocortisone, 10 mM HEPES, 1 ng/ml EGF, 0.01 mM ethanolamine, 0.01 mM O-

phosphorylethanolamine, 0.1 nM triiodothyronine, 2 mg/ml BSA, 0.5 mM sodium 

pyruvate) with 2% FBS and 1% penicillin/streptomycin. Normal liver lines , THLE-2 and 

THLE-3, were grown in the Bronchial Epithelial Cell Growth Medium (Lonza, CC-3170) 

supplemented with 10% FBS and 1% penicillin/streptomycin. All cell lines were 

maintained in a humidified environment in the presence of 5% CO2 at 37°C. All chemicals 

beginning with the prefix SW are from the UT Southwestern Chemical Library. THZ1 was 
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obtained from Calbiochem, ciliobrevin from Tocris, GSK923295 from SellekChem, HET-

0016 from Santa Cruz Biotechnology and NAC,  nicotinic acid, nicotinamide, nicotinamide 

adenine dinucleotide, hydrocortisone, dexamethasone, ethanolamine, sodium selenite, 

O-phosphorylethanolamine, bovine serum albumin, HEPES, insulin, transferrin, sodium 

pyruvate), triiodothyronine, RNase A, propidium iodide, nocodazole, a-naphthoflavone  

and 5F-203 from Sigma-Aldrich. 

 

Spheroid Assays 

Cell lines were trypsinized, counted, and plated into 96-well U-bottom low adherence 

plates (Nunclon Sphera, Thermo Scientific). Cells were inoculated between 500-4,000 

cells per well depending on growth rate. Spheroids were allowed to form over 48 hrs, drug 

was added, and the plates incubated for an additional 96 hrs. Luminescence assays were 

performed using CellTiter-Glo® 3D cell viability assay (Promega) according to the 

manufactures instructions. The plates were read on a BMG Labtech FLUOstar® Optima. 

 

RNA isolation and microarray 

All cells were seeded in 6-well plates at 300,000 cells/well in 2 mL standard culture media 

(RPMI, 5%FBS, penicillin/streptomycin) and allowed to adhere overnight.  The media was 

discarded and replaced with 1.5 mL treatment media containing either o.1% DMSO 

vehicle control, or 10 μM of SW compound.  After 24 hrs of treatment, total RNA was 

harvested using the miRNeasy Qiagen kit according to the manufacturer’s 

instructions.  All samples were submitted for microarray analysis at the UT Southwestern 
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Microarray Core using an Illumina Human-HT-12 v4 Expression BeadChip. Raw 

intensitity values were background corrected and quantile normalized using the lumi 

package in R. Using a minimal expression cutoff of 7, we eliminated from the analysis 

genes that were not expressed before or after compound treatment. For each gene, 

normalized values were converted to a log2 to score to indicate the fold change with 

compound treatment with the following equation:  

!"#$% = '()*(
!,#%-
!./01

) 

 

where xDMSO and xcomp is the normalized expression value of gene x with DMSO and 10 

μM of SW compound treatment, respectively.  

 

Characterizing differences in metabolomics flux  

All labeling experiments performed with cells plated at a density of 200,000 cells per 60 

mm diameter dishes and grown for 48 hrs as described previously [78]. Afterwards, media 

was removed and cells were rinsed with PBS prior to treatment with SW157765 for either 

6 or 24 hrs. Media was then removed and cells were rinsed with PBS prior to treatment 

with SW157765 in media containing glucose-free RPMI supplemented with 5% FBS and 

13C glucose. For the 6 hr compound treatment, 13C media mixture was added for 2 hr. For 

the 24 hr compound treatment, cells were rinsed with phosphate-buffered saline, 

replenished with 13C labeling medium with SW157765 and cultured for time points ranging 

from 0 to 2 hr as indicated at the end of the 24 hrs. For baseline metabolomics flux, 
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untreated cells were incubated with 13C media mixture for either 6 or 24 hours. Labeled 

cells were briefly rinsed with cold saline, pelleted in cold 50% methanol, lysed through at 

least 3 freeze-thaw cycles, and then centrifuged to remove debris. The supernatants were 

evaporated to dryness methoximated and derivatized by tert-butyl dimethylsilylation. 

One mL of the derivatized material was injected onto an Agilent 6970 gas chromatograph 

equipped with a fused silica capillary GC column (30 m length, 0.25 mm diameter) and 

networked to either an Agilent 5973 or 5975 Mass Selective Detector.  Retention times of 

all metabolites of interest were validated using pure standards. The measured distribution 

of mass isotopomers was corrected for natural abundance of 13C. [79] 

 

qPCR  

Cells were plated at a density of 250,000 cells/well in 6 well format and allowed to 

incubate overnight. The cells were then washed with PBS twice prior to RNA extraction 

with the RNeasy Mini Kit (Qiagen) following the manufacturer’s recommended protocol. 

100 ng to 1ug of total RNA was mixed with qScript cDNA SuperMix for cDNA synthesis 

(Quanta Biosciences) or taqman universal master mix II (Applied Biosciences). Taqman 

gene expression probes (Applied Biosciences) for GLUT1, GLUT8 and NR3C1, were 

used for real-time qPCR amplification on a Light Cycler 480 II Real-Time PCR System 

(Roche). The cycling program was 95°C for 10 min, 95°C for 15 seconds, and 60°C for 

40 cycles. Each sample was run in triplicate, normalized to the Cy5 standard probe, and 

analyzed by the comparative CT method. 
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Thermal stability Shift Assay 

3E6 cells were cultured in 75 cm2 flasks for overnight growth. Cells were treated with 

RPMI media supplemented with 5% FBS containing either 0.1% DMSO or 1 µM 

SW157765 for 24 hr. After treatment, cells were detached with trypsin, collected by 

centrifugation, resuspended in PBS, and cell suspensions of 500,000 cells/tube were 

transferred into 8-well 0.2-ml PCR tubes and heated for 3 min. After a subsequent 3 min 

incubation at room temperature, cells were lysed by the addition of 100 µl of ice-cold RIPA 

buffer (150 mM sodium chloride, 6 mM disodium phosphate, 4 mM monosodium 

phosphate, 2 mM Ethylenediaminetetraacetic acid, 1% Triton X-100, 100 mM sodium 

fluoride) supplemented with 20 µg/mL aprotinin, 0.1 M sodium fluoride, 1 mM sodium 

orthovanadate, 1 mM phenylmethylsulfonyl fluoride, complete Mini EDTA-free protease 

inhibitor cocktail (Roche), and PhoSTOP (Roche). The lysates were incubated on ice for 

30 minutes prior to centrifugation at 14,000 x g for 10 minutes at 4°C. Proteins of interest 

remaining in the supernatant were detected by immublotting. 

 

Targeted siRNA and plasmid DNA transfection 

For transfection in 96 well format, .1-1 μL siRNA (10 μM) of siRNA in 25 μL of serum-free 

RPMI was mixed with either .2 or .4 μL of RNAimax (Invitrogen) in 25 μL serum-free 

RPMI. Following a 15 minute incubation, the siRNA-lipid mixture was transferred to a 96 

well plate followed by plating of cells at a concentration ranging from 3000 cells/well to 

5000 cells/well (depending on cellular growth rate) in 100 μL media.  Optimal 

concentration of siRNA was determined by titering amounts from .1 to 1 μL per well and 
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selecting the maximal concentration for which no death is observed with non-targeting 

control. Consequences on cell viability were determined 48-96 hrs post-incubation. 

Experiments involving chemical treatment involved 48 hr pretreatment with siRNA 

followed by chemical treatment for 72 hrs at the indicated doses. CellTiter-Glo (promega) 

assays were performed using 15 μL regent/well followed by a 10 minute incubation. 

Luminescence was quantified with an Envision plate reader (PerkinElmer). siRNA data 

for siATF4 and siPHGDH (Figure 7E-F) was curated from a prior study [40].   

For immunoblot and qPCR analyses, a 6 well plate was prepared containing 

mixture of 250 µl siRNA (Dharmacon, 10 µl 10 mM siRNA in 240 µl serum free media) 

and 250 µl RNAiMax (Invitrogen, 6 µl RNAiMax in 244 µl serum free media) per well, pre-

incubated for 15 minutes at room temperature. Cells were then plated at a final 

concentration of 250,000 cells/well.  After 48-96 hrs of transfection, cells were lysed and 

subjected to immunoblot or qPCR analyses. 

Stable PHGDH expressing cell lines were created by transducing HCC44 cells with 

the pLvx-Tight-Puro (Clontech) tetracycline-inducible vector containing the human 

PHGDH complementary DNA fragment (kindly provided by Matthew G. Vander 

Heiden)[50]. Cell colonies were selected and maintained with 0.5 µg/mL of puromycin 

and 0.5 mg/mL of G418 sulfate. To induce PHGDH expression, cells were pretreated with 

1 µg/mL doxycycline for 24 hr prior to SW157765 treatment.  

To create stable HES1 overexpressing cells, H1993 cells were seeded at 3 × 105 

cells/well in 6-well plates 24 hrs prior to transfection. The cells were transiently transfected 
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with the 2ug of HES1-pCMV6-AC-GFP expressing plasmid using 8ul/well of 

Lipofectamine-2000 (Invitrogen) according to manufacturer’s instruction. At 24hrs post-

transfection, 5μM hydrocortisone or EtOH vehicle was treated to the culture medium and 

incubated for 72hrs. Nocodazole (300ng/ml) or DMSO vehicle was added at 48hrs post-

treatment of hydrocortisone. Nocodazole treated cells were used as positive control. For 

cell cycle analysis, the cells were trypsinized, centrifuged at 1200rpm and stained with 

the cell-permeable DNA dye Hoechst-33342 (10ug/ml, Invtrogen) for 30 min at 37℃. After 

incubation, the stained cells were washed and resuspended with cold PBS. The DNA 

content of GFP-positive or negative with Hoechst positive cells were determined using 

FACS with UV and 488 nm lasers (LSR fortessa, BD FACSDiva software version 8.0.1, 

firmwere version 1.4, BD bioscience). Data were analyzed using FlowJo 7.6.5. 

 

CRISPr knockdown  

CRISPr knockout cells were prepared using the two-vector system [80]. 293T cells were 

cultured to 90% confluence. A mixture of 0.4 µg transfer plasmid (lenti-cas9 blast or lenti-

guide puro; Addgene), 0.87 µg psPax2 (Addgene), and  1 µg pMD2-VSV-G (Addgene) 

were diluted to a total of 50 μL in Opti-MEM media and added to a mixture of 21 μL 

FuGENE 6 (Promega) in 129 μL Opti-mem after a 10 minute incubation period. The 

mixture was allowed to sit for 20 minutes after which it was added dropwise to 293T cells. 

Fresh RPMI 5% media was added 24 hrs later and 48 hrs post-transfection, target cells 

were transduced with virus. This processes was repeated and clones were selected in 10 

µg /mL blasticydin. Cas9 expression was confirmed with Western blots. Cas9 expressing 
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cells were then transduced with lenti-guide puro constructs using the same protocol. 

Clones were selected in puromycin and knockouts were confirmed immunobloting. 

sgRNA constructs were designed according directions at http://crispr.mit.edu and cloned 

into the lenti-guide puro lentiviral expression vector. The sequences are as follows: 

CYP4F11  CACCGAAGGCGGCGGCAGTTGTCAT  

Cilia Immunofluorescence  

Cells were grown to high density on coverslip, and treated with low serum (0.5% FBS) 

media for 24 hours to induce cilia formation. Cells on coverslip were fixed with 4% 

paraformaldehyde and immunostained with anti-acetylated α-tubulin antibody (Sigma, 

T7451) to visualize primary cilia. Images were collected using a Nikon microscope with 

a 63X objective.  

Immunoblot analysis 

Cells were plated in 6 well format for at a density of 150,000 cells/well and allowed to 

incubate overnight. Cells treated with 5μM GC  were allowed to incubate 72 hrs prior to 

collection. Cells were either lysed in RIPA buffer (Sigma-Aldrich) with 1X protease 

inhibitor (GenDEPOT) and phosphatase inhibitor (Thermo Scientific) cocktails or in 50nM 

Tris (pH 6.8), 2% SDS and 10% glycerol. Total 10 µg of lysates were loaded and 

electrophoresed on 4~15% gradient SDS-PAGE gel (Bio-Rad) and transferred to a PVDF 

membrane using the Trans-blot turbo transfer system (Bio-Rad). After blocking with 5% 

nonfat dry milk in PBST (1X PBS, 0.1% Ttween-20), membranes were probed overnight 

with primary antibodies diluted at either 1:500 or 1:1000 at 4°C according to manufacturer 

recommendations. After washing and incubation with secondary antibody, protein signals 



118 

 

were visualized with the Enhanced Chemiluminescence Western Blot Detection Solution 

(Thermo Scientific) or Supersignal West Pico Chemiluminescence Western Blot 

Detection Solution (Thermo Scientific). Whole cell lysate loading controls were either 

GAPDH or bactin. Nuclear loading controls were Lamin B1. Glut13 was used as a loading 

control for thermal stability shift assays.   Antibodies were purchased as follows: NAPRT 

(Sigma-Aldrich), b-actin, KRAS, CYP4F11 and HRP-conjugated anti-mouse or rabbit IgG 

antibody (Santa Cruz Biotechnology), NAMPT (Thermo Scientific), HES1, Cyclin D1, GR 

and PHGDH (Cell Signaling Technology), NRF2 (Invitrogen), b-tubulin, GLUT1, GLUT8, 

GLUT13 and Cas9 (Abcam),.  

 

Dose-response assays 

To determine cytotoxicity of the small molecule compounds, NSCLC cells and HBECs 

were plated at a densities ranging from 3,000 of 5,000 cells per well in white tissue-

culture-treated 96-well clear bottom plate (Corning), with the seeding density for each cell 

line based on growth rate. After culturing the cells in assay plates for 24 hrs, compounds 

were added to each plate at the indicated doses (3 replicates per dose per cell line). After 

an incubation of 96 hrs, 15 µl of CellTiter-Glo reagent (Promega) was added to each well 

and mixed. Plates were incubated for 15 min at room temperature and luminescence was 

determined for each well using a SpectraMax Paradigm plate reader (Molecular devices).  

 

Intracellular NAD quantitation 
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NAD/NADH-Glo assay kit (Promega) was used following manufacturer’s protocols to 

quantify NAD after treatment with SW008135. Cells were seeded at density of 5,000 cells 

per well into 96-well microtiter assay plate (Corning) and after 24 hrs were treated with 

20 µM SW008135 or DMSO . Fourty hrs later cells were washed twice with PBS and 

incubated with NAD/NADH-Glo detection reagent for 30 minutes at room temperature and 

then luminescence was measured with a SpectraMax Paradigm plate reader (Molecular 

Devices). Total NAD+ and NADH concentration per sample was estimated from a 

standard curve prepared with serially diluted NAD controls. NAD levels were normalized 

by the total protein levels determined by a Bradford protein assay kit (Bio-Rad) following 

the manufacturer’s protocol. 

 

Nampt enzymatic activity assay 

To quantify the Nampt-enzymatic activity after exposure to SW008135, the Cyclex Nampt 

colorimetric assay kit (MBL International) was used according to manufacturer’s 

instructions. 90 µl of solution I (assay buffer, nicotinamide, PRPP, ATP, recombinant 

NMNAT1 and distilled water) was added to 96 well plate, to which 10 µl of solution II 

(recombinant Nampt, distilled water, and varying concentrations of SW008135 or DMSO) 

was added, mixed and incubated at 30°C for 60 min. Finally, 20 µl of solution III (a 

substrate of NADH - WST-1, alcohol dehydrogenase, diaphorase, ethanol, and distilled 

water) was added to each well and absorbance of the derived WST-1 formazan was read 
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at 450 nm every 5 min for 60 min using a SpectraMax Paradigm plate reader (Molecular 

Devices). 

 

Xenograft study 

H322 or H2122 (107) cells were resuspended in 200 µl of 1:1 serum free media and the 

matrigel basement membrane matrix (Corning) and injected subcutaneously into right 

flank of NOD.CB17-Prkdcscid/J female mice (6 wks old, Jackson Laboratory). Mice were 

randomly divided into 2 groups of seven. Treatment was started when a tumor had 

reached around 250 mm3. SW008135 in 60% propylene glycol was injected 

intraperitoneal daily for 2 weeks. Tumor volume was monitored throughout the experiment 

with digital calipers at least three times per week. Mice were maintained in laminar flow 

units in aseptic conditions and the care and treatment of all mice was in accordance with 

institutional guidelines. All mouse studies were approved and supervised by the Yonsei 

University Health System-Institutional Animal Care and Use Committee. 

 

Flow cytometry analysis 

For DNA content analysis, cells were seeded at density of 1.5 x 105 per well in 6-well 

plate and after 24 hrs in cell culture, 3 µM hydrocortisone  or DMSO vehicle was added 

to medium. Nocodazole at 100 ng/ml or DMSO was added 72 hrs after cell seeding. 

Twenty-four hrs post-nocodazole/DMSO treatment, cells were collected by trypsinization, 

resuspended in 1 ml of ice-cold PBS-F (1 x PBS, 2% FBS), followed by drop-wise addition 
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of 10 ml ice-cold 70% ethanol. Following overnight incubation at 4°C, cells were washed 

twice with PBTA (1x PBS, 1% BSA, 0.1% Tween-20), stained with propidium iodide 

(Sigma) containing RNase A at 37°C for 30 minutes. Fluorescence of the PI-stained cells 

was measured using a FACSCalibur (BD Biosciences) and analyzed with FlowJo 

software (BD Bioscience). 

 

In vitro determination of compound stability with human tumors.   

Cell lines were plated at a density of either 2000 (H2122, A549, HCC95, HCC44, H1792, 

H460, H322, HCC1171, H920, HCC2108, H226, H647, H2086, HCC4011) or 4000 

(DFCI.032, HCC3051, H3255, H1395, H2073, H1437, HCC2814, HCC515, H596, 

H3122) cells per well in 96 well plates.  After overnight adherence, media was removed 

and replaced with fresh media containing either 100 nM (SW027951, SW098382, 

SW126788, SW153609, SW157765, and SW159580) or 200 nM (SW103675, 

SW115205, and SW167255) compound.  Experiments using the CYP4A and 4F inhibitor 

HET0016 used 50 nM SW157765 in combination with 100 nM HET0016 added after 

overnight cell culture. siRNA experiments involved 48 hour pretreatment with siRNA’s 

targeting KRAS prior to compound addition.  At varying times post compound addition, 

media and cells were removed using trypsin and the cells were broken open and the 

lysate precleared of protein by the addition of a two-fold volume of methanol containing 

0.2% formic acid, 2 mM NH4 acetate and 100 ng/ml of internal standard (IS = n-

benzylbenzamide or tolbutamide) followed by vigorous vortexing and centrifugation at 

16,000 x g for 5 min.  In experiments involving the compound SW153609, proteins were 
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pre-cleared by addition of a two-fold volume of methanol containing 2 mM NH4 formate 

and 100 ng/mg of IS.   The supernatant was analyzed by LC-MS/MS for levels of parent 

compound.  An analytical method for each compound was devised by direct infusion of a 

1 µg/ml stock in 50:50 MeOH/H20 containing 0.1% formic acid and 2 mM NH4 acetate or 

2 mM NH4 formate into a Sciex 3200 or 4000 Qtrap mass spectrometer.  Using the 

compound optimization wizard in Analyst 1.6.1, optimal ionization parameters 

(Declustering Potential, DP; Entrance Potential, EP; Collision Cell Entrance Potential, 

CEP; Collision Energy, CE; and Collision Cell Exit Potential, CEP) for each 

parent/daughter pair were determined and a generic set of gas parameters (CUR=45, 

CAD=medium, IS=4500, TEM=700, GS1=70, GS2=70) and chromatography conditions 

(Buffer A: Water + 0.1% formic acid, 2mM NH4 acetate or Water + 5 mM NH4 formate; 

Buffer B: MeOH + 0.1% formic acid, 2 mM NH4 acetate or MeOH + 5 mM NH4 formate; 

flow rate 1.5 ml/min; column Agilent C18 XDB column, 5 micron packing 50 X 4.6 mm 

size ; 0 - 1.5 min 3%B, 1.5 - 2.0 min gradient to 100% B, 2.0 - 3.5 min 100% B, 3.5 - 3.6 

min gradient to 3% B,  3.6 - 4.5 3% B) were utilized to quantitate peak areas for the 

parent/daughter pair for each compound and IS.  Transitions utilized in positive mode 

were as follows:  SW098382: 459.149/121.2; SW103675: 329.045/91.1; SW115205: 

309.119/107.0; SW126788: 395.197/349.1; SW153609: 408.098/125.0; SW155765: 

332.071/211.1; SW167255: 411.032/125.0; n-benzylbenzamide: 212.1/91.1.  Transitions 

utilized in negative mode were as follows: SW027951: 331.02/125.9; SW134963: 

299.862/240.9; SW147739: 376.203/166.7; tolbutamide: 269.9/169.9.  The peak area for 

each compound was normalized to the peak area for the IS and then relative compound 
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abundance at each time point was determined by comparison to the peak ratio at time 0.  

A “% remaining” value was used to assess metabolic stability of a compound over time 

[81].   The natural Log (LN) of the % remaining of compound was then plotted versus time 

(in min) and a linear regression curve plotted going through y-intercept at LN(100).  

Compound was also incubated in the absence of cells (culture media only) to determine 

whether any compounds showed chemical instability.  Several compounds (SW134963, 

SW153609, and SW167255) showed such chemical instability with the amount of 

compound lost in media only by 24 hr equivalent to that lost in the presence of both 

sensitive and resistant cell lines.    

 

DNA/RNA Extraction for Sequencing 

Prior to sequencing, all cell lines were DNA-fingerprinted (PowerPlex 1.2 Kit; Promega) 

and found to be mycoplasma-free (e-Myco Kit; BocaScientific). DNA for exome or 

genome sequencing was purified from frozen cell line pellets using DNeasy reagents 

and protocols with QIAcube robot (Qiagen). DNA spectra were quantitated using 

spectrophotometer (Nanodrop) and samples diluted with nuclease free water (Ambion). 

Cell lines were grown to approximately 70-80% confluence, washed 2X with PBS and 

directly lysed from culture flasks using RLT buffer (Qiagen). Lysates were snap frozen 

and stored at -80o C. RNA was purified from lysates using RNeasy kit and QIAcube robot 

(Qiagen). 

 

Glucose Uptake  



124 

 

Glucose uptake was evaluated utilizing the Glucose Uptake Assay Kit (Abcam). 

Briefly, 6,000 cells were plated in 96-well plates in RPMI plus 5% FBS. Twenty-four hrs 

later, cells were pretreated with either SW157765 (1 or 5 µM, final) or equal volume 

vehicle (ethanol) in RPMI plus 5% FBS for 6 hr. In experiments involving siRNA, GLUT8 

or GLUT1 was transfected as described and allowed to incubate for 48 hrs.  Media was 

removed and wells were washed three times with DBPS. Afterwards, 0.9 mM 2-

deoxyglucose (2-DG) was prepared in glucose-free RPMI plus 5% FBS and then added 

to each well. Plates were returned to a 37°C incubator with 5% CO2 for 2 hr. Afterwards, 

media was removed, cells were washed with DPBS three times to remove exogenous 2-

DG and detection of glucose uptake was determined using manufacturer’s recommended 

protocol. 

Analysis of 2-DG uptake was performed as follows: First, fluorometric values were 

calculated based on the 2-deoxyglucose-6-phosphate standard curve. Next, cell count 

and viability was determined by the CellTiter-Glo Luminescent Assay in a separate 96-

well plate that was cultured and treated in parallel to the 2-DG treated plates. Reported 

relative fluorescent 2-DG uptake was calculated by normalizing the fluorescent values 

(i.e. 2-DG) to the luminescent values (cell number).  

 

Genomic Characterization 

SNP Arrays  

Whole-genome single nucleotide polymorphism (SNP) array profiling was done using the 

Illumina Human1M-Duo DNA Analysis BeadChip (Illumina, Inc.). Cell line DNA was 



125 

 

hybridized according to manufacturer instructions. Processing was first performed using 

Illumina BeadStudio to generate the ‘Log R Ratio’ which measures the relative probe 

intensity compared with normal diploid controls. The package DNAcopy in the R statistical 

software environment was then used to segment the data. Final copy number variation 

was interpreted as the log2 segmented copy number values.  

 

RNAseq  and Whole Exome Sequencing 

RNAseq and whole exome sequencing assay and processing pipeline were performed 

as previously described[82]. The procedure for sequencing RNA and assessing quality 

control is described in detail in Wang et al., 2015 [82] FastQC (Babraham Bioinformatics 

Institute) was used to check the sequencing quality, and high-quality reads were mapped 

to human reference genome (hg19) along with the gene annotation data (genecode v19) 

from Genecode database using STAR (v2.4.2) [83]. RSeQC was applied for assessing 

RNA sample quality [84].Gene-level expression was reported in fragments per kilobase 

per million reads (FPKM) by Cufflinks [85].  

 

Illumina BeadChip Microarray 

Raw Illumina HumanWG-6 v3.0 BeadChip files were obtained from the Gene Expression 

Omnibus using accession number GSE32026 and normalized as described previously 

[40].  

 

Informatics Pipelines 
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Filtering germline alterations from unmatched dataset 

The UTSW-66 panel of the cell lines corresponded to those in which we have tumor DNA 

but corresponding matched non-tumorigenic DNA is not available. For these, we 

developed a pipeline to filter out the most probable germline mutations and enrich for 

somatically acquired mutations. Reads were aligned as described to the hg19 reference 

and filtered for non-synonymous lesions (missense, non-sense, splice site mutations) 

(mean of 5,049 mutations/cell). We next removed any site that was annotated as 

corresponding to a germline mutation in the matched dataset (mean of 1,248 

mutations/cell). Using publically available datasets such as the thousand genome project 

(TGP) as an exclusion criteria or the catalogue of somatic mutations in cancer (COSMIC) 

as an inclusion criteria may aid in enriching for somatic mutations. We removed variants 

(defined based on genomic position) that were found in > 12% of the TGP (TGP filter) 

and where the difference in the UTSW panel frequency and the TGP frequency was 

<1.8% (allele difference filter). We also removed, on a gene-level basis, genes that were 

highly mutated (mutated at any site in >40% of cell lines) in the UTSW panel (mutation 

any site filter), but present at a low frequency (<13%) in COSMIC (Cosmic filter) and in 

the UTSW-34 matched panel (<20%) (UTSW-34 filter). This resulted in a final mean 

mutation count of 721 mutations/cell. We developed a strategy to find a data driven way 

select optimal filter cutoffs from these datasets. We selected 12 evenly distributed values 

for the TGP filter  between .02% and 20%, for the allele difference filter between -10% 

and 10%, for the mutated any-site filter between 1.8% and 80%, for the Cosmic filter 

between .13% and 20% (log10 scale), and for the UTSW-34 filter between 2.9% and 50%. 
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Selecting all possible combinations of these filters resulted in 248,832 possible 

combinations. For each filter combination, we can plot the number of mutations that pass 

the filters (Figure S1A), with the strictest filter combination resulting in the fewest variant 

being annotated as ‘somatic’ and the most lenient resulting in the most variants being 

included. To select the optimal filter combination in a data-driven way, we fit a cubic 

function to the plot of filter index (x values) versus number of mutations included at each 

filter index (y-axis) and selected the value on the plot which results in the minimized 

second derivative for each cell line. Figure S1B indicates the mean selected filter value 

across the cell line panel (solid line) with 95% confidence intervals indicated (dashed line).  

 

Small Molecule Cytotoxicity Assays 

The UTSW chemical library and screening assay format was described previously [9].  

Our chemical library, consisting of ~230,000 chemicals (Figure S1B), was initially 

screened at a single dose (2.5 μM) in single well for each compound against a panel of 

12 NSCLC cell lines. Toxicity data was converted to an activity score according to the 

following equation 

34 = 	−1 ∗ (100 −
!

:;<=>? !,#"@$#A
∗ 100	) 

so that an activity score indicates percent kill relative to on-board DMSO controls.  We 

subsequently converted activity scores to z-scores for each chemical across the 12 cell 

line panel and selected chemicals with z <= -3 in at least one cell line, resulting in 15,483 

chemicals (single dose cohort). These chemicals were then re-screened in triplicate 
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against the same 12 NSCLC cell lines along as well as an immortialized human bronchial 

epithelial cell line (HBEC30KT) at the screening dose of 2.5 μM (confirmation dataset). 

From this data set, we used two criteria to select chemicals for further follow-up.  We first 

filtered for chemicals with a bimodal pattern of response from our panel of cell lines. 

Specifically, we selected chemicals with > 40% toxicity to a subset of cell lines and < 20% 

toxicity to the remaining NSCLC’s and HBEC30KT. As determined in downstream dose-

response studies, compounds that met this criteria typically displayed IC50’s in the range 

of our screening dose or lower for a subset of the NSCLC lines and IC50 values > 10 μM 

in the remaining cell lines in the panel and the HBEC30KT cell lines.  In terms of chemical 

selectivity, we expect this selection to result in compounds with at least a ½ log difference 

in response between sensitive and resistant cell lines. We also used a selection method 

to capture potent chemicals with more of a continuous distribution of cytoxocity in our 12 

cell line panel. For each compound, the responses of the cell lines were ranked from most 

sensitive to least. The difference (Δn) in response between each pair of ranked cell line 

activities for each compound was calculated.  The S-score is the maximum difference 

(Δnmax) between two cell lines’ responses in the ranked list of responses to the compound.  

The two cell line responses that define the S-score therefore demarcate a boundary 

between sensitive and resistant response groups in the ranked list of responses for each 

compound.  We selected chemicals for follow-up to be those with the S-score > 40%, 

while enforcing the criteria that the chemical not be toxic to HBEC30KT (< 20% observed 

toxicity). These chemicals were subjected to chemistry review that removed compounds 

with known or suspected promiscuous (off target) behavior based on historical screening 
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data, structural alerts, and PAINS substructures.  Following resupply (1 – 5 mg of powder 

per compound) and analytical quality control for identity and purity (LC/MS), 447 

compounds were assayed in a multi-dose format (12 point dose-response curves in ½ 

log dilutions with the doses ranging from 50 pM to 50 μM) against the same panel of 12 

NSCLC cell lines plus the HBEC30KT cell line.  Each compound was assayed twice in 

this format and the dose-response curves compared. In cases where experimental 

replicates differed by more than 3-fold, we performed a third dose-response experiment 

and averaged the two experimental replicates that were in closest agreement. We used 

the same unimodal (S-score) method to select a total of 202 chemicals to be screened 

across the entire panel of 100 cell lines.  In this case, we rank-ordered average log10(IC50) 

values for each compound and applied a threshold of 0.5 log units for the S-score. 

 

Normalization of drug response data and calculation of ED50 and AUC values  

Chemical response for each cell line was converted to an activity score as described 

above. We found normalizing to the median of the two lowest doses, as opposed to on-

board DMSO controls, minimized plate effects and resulted in a better curve fit and a 

more accurate description of sensitivity. We used the drc package in R to fit a standard 4 

parameter log-logistic fit to the data and discover ED50 values.  As imputed ED50 values 

have shown to be problematic in re-tests of large drug screening datasets, we do not 

impute values. Rather, if the imputed ED50 value is greater than the top tested dose (50 

μM), we assign an ED50 of the top dose. Additionally, to correct for low ED50 values 

being assigned to chemicals in which the response is shallow, we assign an ED50 value 
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of the top tested dose if the chemical does not result in at least 30% reduction in CTG 

values.  

We calculated AUC values by determining area under the curve of the log fitted hill 

equation through standard integral analysis. For many of the compounds, a large 

proportion of the dose range is completely innocuous for all cell lines tested. To increase 

the dynamic range with AUC values, we found for each compound the proportion of the 

curve in which there is a response across all cell lines, and eliminated the data for the 

lower doses. Each compound was tested in 2 separate runs, with three replicates per run. 

To automatically detect the best, most reproducible data, we select the two replicates 

from each run with the best concordance between calculated ED50 values. The assigned 

ED50 or AUC value is then the mean between the filtered runs.  

 

Scanning Kolmogorov-Smirnov statistic 

A modification to a  Kolmogorov-Smirnov statistic, which we term a scanning ranked KS 

test, was used to determine which mutations alone or co-occurring combinations of 

mutation combinations can best predict a selective sensitivity to each unknown 

compound. In addition to single mutations, we also annotated a ‘RAS_Class’ metaclass 

in which we assigned a cell line a value of ‘1’ if it contained a mutation in either KRAS, 

NRAS, HRAS, PIK3C1, or BRAF. Mutations or pairwise  combinations of co-occuring 

mutations were first binarized (1=mutated; 0=wild-type), resulting in 446,435 

combinations in which at least 5 cell lines contained the mutation combination. For each 

chemical, we reasoned that if a mutation combination is conferring a selective sensitivity, 
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then the ED50 or AUC values for cell lines that are mutated will be lower than those that 

are wild-type. To determine the degree to which the ED50/AUC values for cells that are 

mutated are located towards the bottom of the ranked list sensitivity values, and thus 

lower than the background distribution, the following equation was used: 

B = :>!CDE
@ F(G)

?
−	
(G − 1)
H

	  

where v(j) is the position of each gene in the gene set in the ordered list of genes, t is the 

total number of cell lines with the mutation combination, and n is the total number of cell 

lines assayed (n=100).  

To determine a p-value, 5000 permutations of randomized sorting of ED50/AUC 

values of size t was performed, and urandom was calculated. The resulting p-value was 

determined to be:  

 

I =
#	=?KH>?L;K	B$M"N#% > B
#	H(H>'	I;P:BHȠH=(?  

 

p<.002 indicates that, out of 5000 permutations, no random value was less than the 

calculated distance, u. This process was repeated for each of the mutation combinations 

for each chemical using both AUC and ED50 values as a sensitivity metric.  Our 

procedure is superior to a standard KS test in several ways. First, when comparing a large 

distribution to a small distribution in a regular KS test, the NULL hypothesis is biased 

towards being rejected. Second, a ranked KS test allows for the preferential ranking of 

sets that are separated from the background at the tails of the distribution.  
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Elastic Net Regression 

In order to assign predictive biomarkers to each chemical, we used a penalized 

linear regression model, the elastic net. We considered each dataset individually and 

separately as input into the elastic net. Candidate predictive features were selected from 

normalized measures of gene expression (illumina V3 BeadChip, RNAseq), copy number 

(Snp 6.0 arrays), protein expression (RPPA), metabolomics flux analysis and binary 

measures of gene mutational statuses (Whole Exome Sequencing). The elastic net 

assigns biomarkers to a response vector of activity scores by solving a basic linear 

regression problem as follows:  

 Let Q ∈ ℝ"T- be the matrix of predictive features where n is the number of cell lines 

included in the training dataset and p is the number of features, and let U ∈ ℝ"  be the 

vector of binary sensitivity values for the same cell line panel. Columns of the predictive 

features matrix and y were normalized to have a mean of zero and a standard deviation 

of 1.  The elastic net attempts to find which weighted linear combination of the columns 

of the predictive features matrix can best approximate y, or it solves the following equation 

for w: 

 

>P):=?V	 U − QW *
*  

The elastic net solves the above by enforcing a penalty to the solution that makes the 

solution both unique and sparse so that only the features that best approximate y are left 

with non-zero weight values. It does this by combining L1-norm and L2-norm 
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regularization parameters so that the elastic net formulation to the above problem is given 

by:  

>P):=?V	 U − QW *
* + 	Y(Z W *

* + 1 − Z W E)  

where Y, Z, are two adjustable parameters such that lambda controls the degree of the 

overall penalty and Z controls the degree to which the L1 norm and L2 norm constraints 

are applied so that when Z=0, only the L1 penalty is applied and when Z=1, only the L2 

penalty is applied. In order to determine the optimal values of alpha and lambda to use in 

the model, we did 100 iterations of 10 fold cross-validation where, in each iteration, the 

cells were randomly re-sampled into different groups. The values of alpha and lambda 

were chosen to be those that resulted in the minimum mean squared error for each fold. 

To circumvent overfitting the model, we then subjected the data to a series of 100 

bootstrap permutations in which the cell lines were sampled with replacement, and 

features were assigned to each bootstrapped dataset.  Features were then chosen to be 

those with weights +/- 2 standard deviations from the mean that were selected as features 

in at least 70% of the bootstrapped permutations. As input into the elastic net, we used 

both AUC and ED50 values as measures of sensitivities. Additionally, we found that log10 

transformation of the sensitivity vector could better identify exceptional responders to a 

compound in some instances, thus we used both the linear and log transformed sensitivity 

measure as input to the algorithm. The elastic net was run using the glmnet package in 

R.  

 

Single Cell line pathway activity analysis  
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To calculate pathways that were down regulated relative to the background distribution 

on an individual cell line basis, we used a modification of a Kolmogorov Smirnov test. 

Gene pathways were curated from the Broad msigdb [58]. We first converted RNAseq 

data to z-scores with the following equation  

[\,C =
!\,C − :;>? !\

K<(!\)
 

where zi,j is the z-score for gene i in cell line j. Then for a cell line, we converted z-scores 

to a ranked list, where a value of 1 indicates the highest z-score in that cell line.  

For a pathway, to determine the degree to which the values in a set are located towards 

the top of a ranked list, and thus upregulated relative to background, the following 

equation was used: 

B = :>!CDE
@ G

H
−
F(G)
?
	  

and to determine the degree to which a set is downregulated relative to background, the 

following equation was used:  

B = :>!CDE
@ F(G)

?
−	
(G − 1)
H

	  

 

where v(j) is the position of each gene in the gene set in the ordered list of genes, t is the 

total number of genes in the gene set, and n is the total number of genes assayed  in the 

array.  
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To determine a p-value, 5000 permutations of randomized sorting of genes of the 

same set size was performed, and urandom was calculated. The resulting p-value was 

determined to be:  

 

I =
#	=⁚KH>?L;K	B$M"N#% > B
#	H(H>'	I;P:BH>H=(?

 

 

 

Gene Set Enrichment Analysis  

Cell lines were dichotomized based on sensitivities to SW140154 and SW151511. We 

selected cell lines that were sensitive (ED50 < 10 μM) to SW151511 and resistant to  

SW140154 (ED50 > 20 μM) and compared them to cells resistant to SW151511 (ED50 > 

20 μM) and sensitive to SW140154 (ED50 < 10 μM) using a GSEA analysis [86]. For 

SW036310, we compared sensitive (ED50 <2 μM), TTC21B mutant cell lines to resistant 

lines (ED50 > 40 μM) with a GSEA analysis. Enrichment plots for the top gene sets were 

re-plotted using R statistical software.  

Sensitivity Prediction 

Sensitivity outside the training set was predicted as described previously [9]. Twenty six 

NSCLC cell lines not included in the original training set were subjected to RNAseq as 

described above. Log2 transformed FPKM values were converted to z-scores, and 

sensitivities were predicted according to the following equation 

KC = 	 W\
"

\DE
!\C 
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where wi is the weight determined from the elastic net for feature i, and xij is the 

normalized expression value of feature i  in line j  and n is the number of features selected 

for a chemical as described above. The range of si values predicts the degree of 

sensitivity where a high value of si predicts resistant and a low value of si predicts 

sensitive. Sensitivity to SW001286 and SW126788 was predicted based on RNAseq 

based expression of CYP4F11 and CES1/CES1P1, respectively. Sensitivity to 

SW151511 and SW140154 was predicted based on expression of PELI2 and 

SARM1/IL18R1. Additionally, we predicted activity of the KEGG TLR Pathway on a 

single-cell line basis using the protocol described above. Cells predicted to be sensitive 

to SW151511 and resistant to SW140154 were confirmed to have high TLR pathway 

expression levels.   

 

ROC Curve Analysis  

For each feature set, we associated biomarkers to a sensitivity vector and predicted 

sensitivities on the original training panel according to the procedures outlined above. We 

used a cutoff of sj = 0 to binarize cell lines into predicted sensitive and resistant classes.  

For each chemical in our dataset, we manually selected ED50 and AUC values above 

which a cell line is considered resistant and below which a cell line is considered sensitive. 

The ROCR package in R was then used to calculate specificity (100 – false positive rate) 

and sensitivity (true positive rate) and plot the values. As input to the ROCR package, 

‘true positives’ were considered to be those whose predictions were correct (sensitive 

cells predicted to be sensitive and resistant cells predicted to be resistant). Area under 
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the ROC curve was calculated with and  p-value was calculated  to test the hypothesis 

that the area under the ROC curve is different from .5 (random) using the ROCR R 

package.  

 

Affinity propogation clustering 

Affinity propogation clustering was performed as described [40, 87] using pearson 

distance as a similarity metric. Cell lines in the RPPA dataset (65 cell lines) were clustered 

according to 154 unique features, in the metabolomic flux (67 cell lines) analysis 

according to 84 unique features, and in the chemical perturbagen dataset (100 cell lines) 

according to 218 features. We first filtered features in the illumina BeadChip (90 cell lines), 

RNAseq (100 cell lines), and SNP 6.0 arrays (63 cell lines) by selecting the top 20% of 

the most highly variant features. RNAseq and illumina BeadChip features were further 

reduced by selecting features that were above a minimal expression cutoff in at least one 

cell line (RNAseq FPKM value  of 1 and illumina BeadChip value of 6), resulting in 5075 

and 5047 features, respectively. The SNP array was clustered according to a final set of 

3583 features. Networks were visualized with cytoscape [88] with edges defined 

according to the procedure above and edge lengths drawn proportional to pearson 

distance using the built-in spring embedding algorithm.  

 

NRF2 Signature  

We curated publically available datasets to identify genes with NRF2 binding sites through 

ChipSeq analysis [89-91]. To identify a context-independent set of NRF2 regulated 
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genes, we selected genes that were found to have NRF2 binding sites in all three 

datasets.  Recent work has also annotated a non-small cell lung cancer specific set of 

genes that are upregulated in cells with gain of function mutations in the NRF2 pathway 

[42]. We also included these genes in our NRF2 signature, resulting in a total of 40 genes. 

Cell lines in our panel were binarized into two categories. SW157765 sensitive cell lines 

were defined to have an AUC < 400 and an ED50 value <1μM while resistant cells had 

an ED50 >30 μM. A KS test was used to determine if sensitive cells had significantly 

higher expression of NRF2 signature genes (two sample, one sided KS test) using the R 

stats package.  

 

Comparison of cell lines to tumors 

LUAD and LUSC RNAseq V2 RSEM normalized expression values were downloaded 

from the TCGA (https://cancergenome.nih.gov/) (519 LUAD tumors and 504 LUSC 

tumors). In the MDACC dataset, RNA for 181 LUAD’s, 80 LUSC’s, 14 NSCLC-other was 

extracted as described above. Raw intensity values were converted to log2 normalized 

values using the affy package in R. For each dataset, we selected the top 20% of the 

most highly variant genes. 509 genes represented the intersection between all three 

datasets. RNAseq V2 RSEM gene expression values of the 509 genes in BRCA tumors 

(1100 tumors) and MESO tumors (87 tumors) was downloaded using the CGDSR 

package in R. Though the gene signature was defined using a NSCLC dataset, every 

gene in the signature is expressed in at least one tumor in the MESO and BRCA dataset.  

Using the 509 genes, we used a Pearson correlation to compare each tumor in the TCGA 
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with each cell line in our dataset with the stats package in R. p-values for the correlation 

are plotted (Figure 2I)  

 

Signal to noise analyses  

 To identify alternate resistance mechanisms to SW008135, we compared cell lines that 

were sensitive to SW008135 (ED50< 5 μM) versus those that were resistant with no 

detectable protein levels of NAPRT1 (H2452, H460). Genes were ranked according to a 

signal to noise metric with the equation:  

^T = 	
:;>? K;?T − :;>? P;KT

K< K;?T + K< P;KT
	 

 

Peg plots 

TCGA mutation data for the LUAD and LUSC subtypes was retrieved using the cgdsr 

package in R. Somatic mutations characterized as either ‘missense’ or ‘nonsense’ were 

plotted according to amino acid position. Non-synonymous mutations in the UTSW cell 

line panel for the same gene were plotted on the same scale. Domain information was 

obtained from the PFAM database from the following website http://pfam.xfam.org/.   

 

Other Statistical Analyses 

Hierarchical clustering, Pearson correlations, two sample t-tests, and density calculations 

were performed using the stats package in R.  
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CHAPTER 4.2: METHODS RELATING TO CHAPTER 3 

Cell culture and Immunoblot analysis 

HCT-116 cell line used in this study was purchased from ATCC (The American Type 

Culture Collection). HCT-116 cells were maintained in DMEM (Gibco) supplemented with 

5% FBS (Gibco) with 1% antibiotics (Gibco) at 37℃ in a humidified atmosphere 

containing 5% CO2. For siRNA transfection, 200,000 cells in 2 ml of growth medium were 

added to a 0.5 ml mixture of 100 pmole siRNA and 4 µl of Lipofectamine RNAiMAX 

reagent (Invitrogen, #13778) per well of 6-well plate following manufacturer’s protocol. 

After 72 hours of transfection, cell lysates were prepared using either RIPA buffer or in 

50nM Tris (pH 6.8), 2% SDS and 10% glycerol. 10 µg of each sample was separated in 

8-16% TGX gel (Biorad, #456-1105), transferred onto 0.2 µm PVDF membrane, 

incubated with primary antibodies dissolved in PBST buffer with 5% BSA at 4℃ overnight, 

washed twice with TBST buffer, incubated with proper secondary antibody conjugated 

with HRP in TBST buffer with 5% skim milk for two hours at room temperature, washed 

and detected using ECL reagents (Amersham) following manufacturer’s protocol. Primary 

antibodies for immunoblot analyses were purchased from Cell Signaling Technology 

(PSMA3; 12446S, PSMA5; 2457S, PSMA6; 2459S, PSMB5; 12919S, PSMB7; 13207S, 

REDD1;2516) and Abcam (Archain; ab96725, b-actin; ab8227). 

 

Seahorse Assay 
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An XF-24 Extracellular Flux Analyzer (Seahorse Bioscience) was used for measurement 

of oxygen consumption and extracellular acidification rates.  Hela cells stably expressing 

Parkin fused to YPF were seeded at 40,000 cells per well in a 24-well Seahorse-specific 

plate (Seahorse Bioscience) in 500 microliters standard culture media (10% FBS and 

DMEM supplemented with penicillin and streptomycin).  The cells were allowed to attach 

overnight.  At the start of treatment, the cells were treated with the appropriate compound 

in 200 microliters of standard culture media then cultured for seven hours with treatment.  

Following the completion of treatment, the media was aspirated and the cells were 

equilibrated in XF Base Medium Minimum DMEM (supplemented with 25 millimolar 

glucose, 2 millimolar glutamine, and 1 millimolar sodium pyruvate).  Oligomycin (1 

micromolar final), FCCP (1 micromolar final), and rotenone (100 nanomolar final) were 

used to assess the function of the electron transport chain after treatment.  Oxygen 

consumption and extracellular acidification rates were normalized to cell number. 

 

Imaging of Fluorescent protein 

HeLa cells stably expressing Parkin fused to YFP were seeded on glass coverslips in 

standard culture media (10% FBS and DMEM supplemented with penicillin and 

streptomycin) and allowed to adhere overnight.  Cells were treated for four hours with the 

appropriate compound-treatment condition prepared in warmed, standard culture media.  

Following the completion of treatment, the media was aspirated and the cells fixed with a 

4% PFA solution for fifteen minutes.  The solution was aspirated and the cells washed 

one time with 50 mM ammonium chloride.  Cells were permeabilized with 0.1% Triton-X-
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100 for 10 minutes, washed two times with 1xPBS, then mounted with DAPI-containing 

ProLong Gold. 

 

Cell based high throughput screens and library reagents 

Quantification of reporter gene expression and library screening was performed as 

previously described [55]. The natural products library was collected as previously 

described. We used the miRIDIAN microRNA library (Dharmacon lot # 01823). The siRNA 

library was purchased from Dharmacon and screened as pools of 4 oligos.  

 

Liquid Chromotography/Mass Spectrometry 

LC-MS data was acquired on an Agilent 1100 Series HPLC with an Agilent Model 6130 

Single Quadruple Mass Spectrometer and a photodiode array detector. The system was 

equipped with a reversed-phase C18 column (Phenomenex Luna, 150 mm × 4.6 mm, 5 

µm) and operated at a flow rate of 0.7 mL/min. All samples were analyzed using a gradient 

solvent system from 10% to 99% CH3CN (0.1% formic acid) over 15 min to afford 

compounds The gradient used for all samples was 90:10 H20 (0.1% formic acid):CH3CN 

(0.1% formic acid) to 1:99 H20 (0.1% formic acid):CH3CN (0.1% formic acid) over 17 

minutes, then 1:99 H20 (0.1% formic acid):CH3CN (0.1% formic acid) for 10 minutes. 

Detection was carried out at four UV wavelengths (210, 254, 280, 330 nm) and in dual 

mode MS (positive and negative ion).  

 

Informatics and Statistics 
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Normalization method 

Cell based eight reporter-gene expression profiles collected for 14,272 siRNA pools, 725 

miRNA mimics and 3,144 natural product fractions were normalized as follows. First, to 

normalize different cell mass across wells, the six background-corrected reporter gene 

expression values per well were divided by the geometric mean of the two internal control 

probes, HPRT and PPIB. Second, this version includes genome scale siRNA 

perturbations and significantly expanded natural product-perturbations assayed in 

multiple batches, thus, it inevitably accompanies batch-to-batch signal variations. To 

account for them, the six in-well normalized reporter values were further divided by the 

medians of the in-plate control wells (up to 10 non-targeting siRNAs or vehicles per plate) 

and log2-transformed. Duplicated perturbations were averaged, and mean of the triplicate 

normalized values for each reporter per perturbation was used for further analysis. 

 

Similarity matrix 

In this study, Euclidean distance was used to quantify the similarity between expression 

profiles of different perturbations since it takes into account the magnitude of variation 

unlike other correlation based metrics and thus successfully retrieved experimentally 

validated and biologically relevant relationships in the previous studies[55]. To assess 

statistical significance of a similarity between perturbation A and B, background distance 

distributions for perturbation A and B were generated, respectively. For this, perturbation 

labels for each of the six reporter genes were permuted 100K times and the background 

distance distributions were obtained by estimating Euclidean distance from perturbation 
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A to the 100K permuted data points, then, repeated for perturbation B. These two-

directional background density distributions were used to estimate two empirical p-values 

for each pair of perturbations, which are usually similar to each other, and a more 

conservative (greater) p-value was chosen to represent its statistical significance for the 

pair. For the pairs between genetic and chemical perturbations, only genetic perturbations 

were permuted to provide a single p-value. False discovery rates (FDRs) were estimated 

by fitting a beta-uniform mixture (BUM) model to the estimated P values using the dnet 

package for R[92]. Alternative FDRs by Benjamini-Hotchberg (BH) method were also 

provided, which were useful especially when BUM model fails to fit to estimated p-values. 

All data processing, permutation, and p-value estimation were carried out using R. To 

investigate the correlation between genetic associations by FuSiOn (< FDR 10%, N = 

177,744) and preconceived gene sets, we conducted hypergeometric test using various 

public gene sets; i.e. activation relationships of STRING PPI database (N = 17,561), C2 

(N = 960,121) and C5 (N = 9,394,552) gene sets of MSIGDB v4.0, synthetic lethal 

relationships (N = 2,365) detected by DAISY algorithm, and miRNA-siRNA target 

relationships (N = 4,145) reported in TargenScan. 

 

Gene set analysis 

To achieve systems level functional annotation of a perturbation, gene set analysis was 

performed for each of 14,997 genetic and 3,144 chemical perturbations against 3,723 

unique pre-annotated gene sets obtained from CORUM[93], C2 MSigDB  [58] and PCDq 

protein complex [94] after removing redundancy. If a query gene is included in a target 
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gene set, it was removed from the gene set before an analysis. Additionally, as the off-

target effect of siRNA and miRNA is mostly driven by the seed sequence (as defined by 

second to seventh nucleotides), genes in a gene set whose siRNA pools have at least 

one seed matching oligo to a query siRNA or miRNA were also censored from the gene 

set. After applying these filters, only when the size of a gene set is between 3 and 200, it 

was subjected for an analysis. On average, 3,300 gene sets were used for an analysis 

for each perturbation. To identify overrepresented gene sets by functionalogs, an array 

of distance values for a perturbation from the similarity matrix was subjected to 

Kolmogorov-Smirnov (K-S) test iteratively for the qualifying gene sets.  

 

FuSiOn network analysis 

Significant genetic interactions (N = 189,086) by FuSiOn under FDR 10% were subjected 

to network construction and visualization using a force-directed graph drawing algorithm 

implemented in the R package “igraph”. For comparisons, a randomized network was 

prepared by sampling the same number of interactions between random pairs of genetic 

perturbations (N = 14,997). After removing nodes and edges with cluster size less than 

10 disconnected from the main network, FuSiOn network consisting of 5,598 nodes and 

188,802 edges were subjected to further analysis. The walk-trap algorithm 

(‘walktrap.community’ function, step = 4) implemented in the R package “igraph” was 

used for the detection of clusters in the FuSiOn network. Out of the 903 detected clusters, 

twenty-eight network clusters with ten or more nodes were selected for subsequent 
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functional analysis for the detection of representative gene sets (N = 3,723) based on 

hypergeometric tests. Modularity Q value was estimated with the R package ‘igraph’ with 

the parameters as follows: maximized modularity without weight. 

 

MCODE and PPI analysis 

Collections of manually curated protein-protein interactions (PPI) were retrieved from the 

mentha[95]. Cytoscape plugin Molecular Complex Detection (MCODE) detects highly 

interconnected regions in a network[67]. We implemented the MCODE algorithm with R 

using ‘sna’ and ‘igraph’ packages for the batch-mode running of the entire perturbations 

with the parameters as follows: minimum K-core = 2, maximum depth = 20, node score 

cutoff = 0.2, degree cutoff = 2, haircut = T, fluff = F, include loop = F, and duplicated edge 

= F. One of the MCODE parameters is k-core that measures degree of interconnectivity 

of a sub-graph in which each vertex has degree at least k. For example, a triangle (3 

nodes, 3 edges) is a 2-core (2 connections per node). We identified PPI subnetworks 

formed by 500 top ranked functionalogs by Euclidean distance for each of the genetic 

and chemical perturbations. Among the activation interactions between human proteins, 

those with the highest confidence score (> 0.9, N = 17,561) were extracted from the 

STRING database v10.0.  

Detection of siRNA seed effect  

The seed sequence of an 19mer siRNA oligo was determined to be from positions 2 to 8. 

We selected seed sequences for further analysis in which there were at least 5 siRNA 
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oligos containing the seed. For each seed sequence, we calculated pairwise Euclidean 

distances between all siRNA’s containing the seed. A NULL distribution of the distances 

between the siRNA’s containing that seed compared to the rest of the siRNA’s in the 

screen was calculated and a p-value was determined based on this distribution. P-values 

were corrected with an FDR correction. Gene expression data for HCT116 was 

downloaded from the cancer cell line encyclopedia [1] and unexpressed genes were 

annotated to be those in which RNAseq based FPKM <1 and affy quantile normalized 

expression values were <5.  

 

Affinity propagation clustering 

Affinity propagation clustering was performed as described above.  

 

Enrichment of functional signatures in annotated gene sets  

A modification of a Kolmogorov Smirnov statistic was made to determine if we can detect 

a functional enrichment between siRNA’s annotated as being in the same manually 

curated functional classes or gene sets. Gene sets were downloaded from the CORUM 

database [93] and the MSigDB version 3 [58] and were filtered to be inclusive of gene 

sets with between 5 and 250 members. The c2 database was further filtered for gene sets 

annotated as belonging to either KEGG, Reactome, PID, or BioCarta. For a given gene 

set, we calculated pairwise distances between genes included in the set to every other 

gene included in the whole genome siRNA perturbation dataset. If we can detect a 

significant overall functional enrichment for a given gene set, then we would expect 
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pairwise distances between siRNA’s annotated as being in the same gene set to be 

significantly shorter than distances between those same siRNAs’ and the remaining 

siRNA’s in the genome library. For a pathway, to determine the degree to which distances 

in a set are located towards the bottom of a ranked list of distances, and thus lower 

relative to background, the following equation was used: 

B = :>!CDE
@ F(G)

_ ∗ :
−	
(G − 1)
H

	  

where v(j) is the position of each pairwise distance between genes in the same gene set 

in the ordered list of distances, t is binomial coefficient `

*
, where k is the number of 

genes included in the gene set and m is the total number of siRNA’s assayed not included 

in the gene set.  

To determine a p-value, 5,000 permutations of randomized sorting of genes of the 

same set size was performed, and urandom was calculated. The resulting p-value was 

determined to be:  

 

I =
#	=?KH>?L;K	B$M"N#% > B

#	H(H>'	I;P:BH>H=(?	(5000)
 

 

Reannotation of gene sets  

 Of the gene sets in which a significant functional signature is detectable (Table X), 

pairwise euclidean distances between members in the gene set is significantly shorter to 

each other than when compared to a background distribution. Therefore, we can generate 
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a vector that describes an overall gene set functional signature by collapsing the 6 probe 

values to the median for members of the set.  We then calculated Euclidean distances 

from query chemicals and siRNA’s not included in the gene set to the gene set vector. In 

order to generate a p-value, we randomly permuted genes into groups of the same gene 

set size and calculated distance from the query to each random permutation. The p-value 

was calculated to be 

I =
#	=?KH>?L;K	<$M"N#% > <

#	H(H>'	I;P:BH>H=(?	(1000)
 

The p-value was corrected with a Bonferroni correction where the number of hypotheses 

was the number of genes in the gene set.  
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CHAPTER FIVE 

Conclusions and Recommendations 

In summary, the overarching goal of this body of work is to identify new chemicals 

that target new, chemically un-addressable biology that may be effecting in treating 

different subset of cancer and to find ways to predict clinical responses. We have 

successfully devised a method to screen large libraries of chemicals to enrich for 

chemicals, which we call the precision oncology probe set, that can collectively target the 

variation in a lung cancer panel. By bioinformatically integrating information from chemical 

phenotypic screens together with genomic information, we can rapidly identify testable 

hypotheses for discovering chemical mechanism of action and underlying vulnerabilities 

specifying sensitivities. Cell line models are advantageous for screening and follow-up 

studies, but it can be argued that speciation in plastic will make results obtained not wholly 

representative of tumor models. We found our cell line panel to be representative of lung 

cancer tumor datasets, and sensitivities obtained in 2D were mostly recapitulated in 3D 

organoid models. Our results suggest that 2D models are valid representations of tumors 

and advantageous for prioritizing chemicals for follow-up and undertaking cell culture 

based in-vitro mechanistic studies. A screen of such scale would not be possible in in-

vivo or organoid models. However, from here, prioritized chemicals can be put through a 

rigorous pipeline to test for in-vivo efficacies.   

Using our methods, as proof of concept, we have found that we can recover known 

aspects of biology. We classified a novel NAMPT inhibitor, SW008135, together with a 
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robust biomarker that can specify sensitivity. Importantly, SW008135 is not associated 

with clinical dose limiting toxicities plaguing other known NAMPT inhibitors. We also 

identified subsets of chemicals behaving as prodrugs, xenobiotics, and drug efflux 

substrates. Additionally, we are also able to use our methods to identify the underlying 

vulnerability predicting response to chemotherapies with known mechanism of action. We 

have shown that differential activity of the NOTCH pathway promotes responsiveness to 

glucocorticoid therapies.  From here, we utilized the heterogeneity in lung cancer as a 

leverage point to identify new targetable vulnerabilities. Of importance, we are able to 

show that we can parse KRAS mutant cancer into chemically addressable subgroups. By 

simultaneously interrogating multiple datasets, we are able to show that NRF2 pathway 

activation in KRAS mutant cancer defines a distinct metabolic subtype with an addiction 

to continued flux through the serine biosynthetic pathway. Importantly, we show that 

mechanism predictions are not derived from a single dataset, but rather the successful 

integration of multiple sources of information simultaneously. Interestingly, blockade of 

GLUT8 mediated glucose flux acts to preferentially block flux into serine biosynthesis. In 

fact, re-introduction of flux through the serine biogenesis via ectopic expression of 

PHGDH can render cells sensitive to chemical and genetic inhibition of GLUT8. Such a 

cooperation between bulk glucose flux through a specific channel and preferential 

shunting of glucose towards one pathway has not been described and warrants further 

follow-up. Finally, we screened SW157765 across breast cancer and found that a 

different lineage specific biomarker affecting the same pathway predicts sensitivity. This 

highlights a notion in which the biology the chemical is targeting in the different lineages 
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is the same, but the different lineages have acquired different ways of upregulating and 

promoting a dependence on those pathways. While others have combined lineages when 

attempting to assign predictive features, differences between lineages may confound 

results [1, 8, 96]. By a restrictive and exhaustive study on chemical sensitivity patterns in 

lung cancer specifically, we are able to show the need to restrict lineages when identifying 

predictive biomarkers for at least some chemicals. Collectively, these approaches can 

greatly aid in stratifying lung cancer into different chemically addressable mechanistic 

subtypes and advance our understanding about the processes that support oncogenic 

growth in the lung. 

In an independent attempt to simultaneously assign predicted functional 

consequences of chemicals on cells, we developed FuSiOn 1.0. Here, we describe 

FuSiOn 1.5, a significant expansion to FuSiOn 1.0, which allows us create a map of the 

overall functional genetic network. Doing so will not only allow for a reannotation of genes 

into submodules with similar functional consequences on cells but will also allow us to 

map chemicals together with genetic pathways they are predicted to effect. We showed 

that we can screen a whole genome siRNA library and see a significant enrichment for 

genes annotated as being in the same manually curated biological process to have similar 

functional signatures. Using this information, we can assign novel members to manually 

curated pathways in a data-driven way, with the key advantage of ease of assigning new 

pre-derived functions to genes as well as taking known processes and re-annotating 

memberships. Additionally, we are able to show that the FuSiOn functional network 

behaves as a scale-free network, with high modularity, suggesting the presence of ‘hub’ 
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gene networks spanning a range of biological activities. This opens up the opportunity to 

re-annotate genetic pathways and identify ‘modules’ of genes with similar functional 

consequences on the cells in a data-driven way. Doing so allowed us to find and 

experimentally validate a novel biological function of the coatomer complex I, which we 

have previously identified as a molecular linchpin for an aggressive subtype of non-small-

cell lung cancer, as a stabilizer of proteasome complex subunits. Finally, we can show 

that by integrating chemical perturbation data with genetic data, we can rapidly assign 

potential cellular functional consequences and testable hypotheses for mechanism of 

action for thousands of uncharacterized chemicals simultaneously. This will potentially 

allow for the annotation of chemicals that can target current chemically unaddressable 

biological space. All of our results, FuSiOn and POPs, have been integrated into a 

searchable web-based graphical user interface. Both are  available to the community as 

a resource for finding both novel compounds  that could potentially be effective against 

biological space of interest or for interrogating novel annotations of the functional network 

topology in a cancer system.  
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