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Abstract 

 

Tumor neoantigens are critical targets of the host antitumor immune response and their presence 

play an important role in affecting tumor progressions and immunotherapy treatment response. 

Neoantigens showed a lot of potential of being applied to clinical treatment. However, 

systematic study of neoantigens’ impact on tumors and patients is still challenging due to the 

huge diversity of neoantigens, heterogeneity within tumors, and the model to study the pairing 
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between neoantigen-MHC and T cells to identify the neoantigens that truly elicit T cell response. 

To study the impact of neoantigen-T cell interaction on tumorigenesis, I developed a Bayesian 

hierarchical model to infer the history of neoantigen-cytotoxic T cell interactions in tumors. 
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CHAPTER ONE  

INTRODUCTION 

 

  

1.1 The history of neoantigen identification and understanding 

Neoantigens were firstly discovered to simulate T cells in mouse tumor models by cDNA library 

screening (De Plaen et al. 1988; Jiang et al. 2019). They found that even one different amino acid 

between normal and tumor peptide could result in positive T cell responses. Researchers 

overexpress neoantigens and MHC in the antigen presenting cells and co-culture with T cells to 

identify the antigens which positively interact with T cells. But this method is time-consuming 

and costly. After the development of next generation sequencing (NGS), researchers can identify 

antigens from tumor cells by comparing the differences between tumor and normal cells 

sequenced by NGS (Richters et al. 2019, Lancaster et al. 2020). The identification of neoantigens 

from tumor cells by NGS makes it necessary to develop computational pipelines. Neoantigens 

generated by somatic mutations were identified in various human tumors including melanoma 

and renal cell carcinoma (Jiang et al. 2019). Researchers found that the infusion of neoantigen-

responsive T cells in the tumor could result in regression of tumors (Ali et al 2019), which 

indicates the importance of neoantigens in the tumor-immune system interactions. 

1.2 The interaction between neoantigen and T cells 

Neoantigens are the small peptides that are transcribed and translated from somatic mutations in 

tumor cells. They are presented by Major Histocompatibility Class (MHC) on the surface of 

tumor cells and serve as the targets of T cells by interacting with T cells through T cell receptors 

(TCRs). The binding of T cells with neoantigens initiates tumor cytotoxic effects. 

Immunotherapies are applied to cancer patients and showed promising ways to cure cancer. But 

only a small proportion of patients showed clinical benefit after being treated by immunotherapy. 

https://sciwheel.com/work/citation?ids=8080889,5276089&pre=&pre=&suf=&suf=&sa=0,0
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People found that the CD8+ T cell level is positively correlated with patients’ responses to 

immunotherapy. CD8+ T cells iterate with tumor cells through the recognition of neoantigens 

and neoantigens are one of the biggest differences between cancer cells and normal cells. 

Immunotherapies have highlighted the role of neoantigens in checkpoint inhibitor-induced 

immune response. Thus, the interaction between neoantigen and T cell is central to 

understanding the neoantigens’ impact on tumorigenesis, prognosis, and treatment response. 

Unfortunately, researchers in this field are far from clearly understanding the difference between 

responders and nonresponders and neoantigens’ impact on clinical outcomes. 

In this field, one major impediment of current research is the way of correlating neoantigens with 

immunotherapy treatment response by only considering neoantigen/mutation load. 

In my thesis work, I studied neoantigens and the interaction between neoantigen and T cells in 

the following aspects. An assessment method for evaluating the neoantigen repertoires for 

tumors was developed in order to better understand the relationship between neoantigens and 

patient’s clinical outcomes and predict the patients’ clinical responses. I developed a deep 

learning model for predicting the binding between TCR and peptide-MHC pairing for identifying 

the neoantigens which can truly elicit T cell responses. I also constructed a model to study the 

interaction between neoantigens and T cells and their impact on the evolution of cancerous 

masses. 

 1.3 Existing analysis methods studying neoantigens 

Bioinformatics tools and large-scale screenings were developed in order to better understand the 

relationship between neoantigens and T cells. The quick development of antigen research also 

revealed challenges and problems in the field. In this section, I will give an overview of existing 

bioinformatics tools and large-scale screening methods for studying neoantigen-T cell 

interactions.  
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1.3.1 Tumor mutation load/tumor neoantigen load 

After neoantigens were discovered, researchers tried to link neoantigens with patients’ clinical 

phenotypes. The earliest and most popular way of correlating neoantigens with phenotypes is 

tumor mutation burden/tumor neoantigen burden, which is the count of mutations or the total 

number of neoantigens in each patient. But the correlation between mutation burden/neoantigen 

load and immunotherapy response is significant in some cohorts but not in other cohorts. The 

problem of this method is that it simplistically treats all mutations and neoantigens equally. This 

overly simplistic approach fails to take full advantage of the wealth of information contained in 

the entire repertoire of neoantigens. Neoantigens are associated with mutations that can be 

truncal or subclonal. Some neoantigens are more immunogenic than others. These details are not 

fully captured by the basic neoantigen/mutation load approach but could be critical for 

understanding the responsiveness of patients with cancer to immunotherapy treatment. 

1.3.2 Neoantigen Fitness Model 

A more sophisticated neoantigen-based predictive metric is the neoantigen fitness model (Łuksza 

et al. 2017) developed on the basis of evolutionary modeling of patient neoantigen profiles. This 

model only considered the neoantigen class I major histocompatibility complex (MHC) binding 

affinity but did not consider the neoantigen class II MHC binding affinity. It only retained the 

top neoantigen resulting from missense mutations with the highest binding affinity within each 

tumor clone. The neoantigens generated by other types of mutations, such as insertion, deletion 

is not considered. This metric demonstrated excellent predictive power for survival of patients 

after immunotherapy treatment in a few cohorts; however, its predictive values and prognostic 

values have not been widely evaluated. 

1.3.3 netTCR 

https://sciwheel.com/work/citation?ids=4493333&pre=&suf=&sa=0
https://sciwheel.com/work/citation?ids=4493333&pre=&suf=&sa=0
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netTCR is a model based on convolutional networks to predict epitopes recognized by T cells. 

This model was trained by data from VDJdb and IEDB. However, netTCR only accommodates 

for the HLA-A:0201 allele, epitopes shorter than 10 amino acids, and CDR3s shorter than 10 

amino acids. This method has not been comprehensively validated in independent testing 

datasets. 

1.3.4 TCRGP 

TCRGP (Jokinen et al. 2021) is a Gaussian process (GP) classification model with the 

substitution method of modified BLOSUM62 for sequence representation. They used the data 

from VDJdb for training. This model is limited to 22 known antigens including, BMLF, M1, 

pp65, ATDALMTGY, CINGVCWTV, etc.  

1.3.5 TCRex 

TCRex (Gielis et al. 2019) is a predictive model for antigen-TCR binding based on a random 

forest model. This model could only be applied to a handful of antigens, including 7 CMV viral 

antigens, 1 DENV1 viral antigen, 1 DENV2 viral antigen, 1 DENV3/4 viral antigen, 6 EBV viral 

antigens, 5 HCV viral antigens, 17 HIV viral antigens, 1 HSV2 viral antigen, 3 Influenza viral 

antigens, 5 cancer antigens. This model will not be applicable for novel neoantigens. 

1.3.6 IEDB 

The Immune Epitope Database (Fleri et al. 2017) and Analysis Resource is a comprehensive 

database with 26000 available human TCR sequences and antigen sequences with experiment 

information from 18000 references. This database also collected around 30 pairs of interactive 

TCRs and antigens with their protein structures. 

1.3.7 VDJdb 

VDJdb (Bagaev et al. 2020) is a database with TCR sequences and antigen sequences with 

known specificities. The database collected 61049 pairs of TCRs and antigens from 155 

https://sciwheel.com/work/citation?ids=11393064&pre=&suf=&sa=0
https://sciwheel.com/work/citation?ids=7895026&pre=&suf=&sa=0
https://sciwheel.com/work/citation?ids=7433068&pre=&suf=&sa=0
https://sciwheel.com/work/citation?ids=7626338&pre=&suf=&sa=0
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published studies. It also takes all the available experiment information into account to assign a 

confidence score to highlight reliable antigen-T cell pairs in the database. The data is used by 

most of the bioinformatics tools studying antigens and T cells. 

1.3.8 T-Scan 

T-Scan (Kula et al. 2019) is a cell-based high-throughput method for studying the targets for 

cytotoxic T cells. They expressed a library of antigens that are processed and presented 

endogenously on MHC molecules in the target cells. These cells are co-cultured with T cells 

from patients or donors.  

These target cells, which can be recognized by T cells, can be differentiated by a GzB reporter 

for granzyme B activity through fluorescence-activated cell sorting (FACS). They used PCR and 

NGS to sequence and identify the antigens which have positive interactions with T cells. This 

large-scale screening method is labor-intensive and costly due to the restricted number of T cell 

receptors per experiment. But it provided a lot of positively interactive T cell-antigen data for the 

community to study. 

 

 

CHAPTER TWO 

Tumor Neoantigenicity Assessment with CSiN score 

  

Background and rationale 

Immunotherapies shed light on the treatment of cancer in modern era clinical sciences. However, 

most immunotherapies are only beneficial for a small proportion of patients. For example, only 

10% to 50% response rate showed for melanoma patients and non-small lung cancer patients 

treated by anti-PD-1 and anti-PD-L1. 30% response rate was shown for renal cell carcinoma 

https://sciwheel.com/work/citation?ids=7278734&pre=&suf=&sa=0
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patients treated by anti-PD1. This field is in need of understanding how to distinguish responders 

from non-responders and the mechanism behind it. All forms of immunotherapy, such as 

checkpoint inhibitors and neoantigen vaccines, seek to activate the host immune system to attack 

the tumor cells. These forms of immunotherapy have different modes of actions, but most are 

intended to mobilize the cytotoxicity of T cells in cancer patients. Neoantigens are one of the 

biggest differences between tumor cells and normal cells and the primary targets of T cells. So, 

the profiles of tumor neoantigens in each patient play a crucial role in determining the 

responsiveness to immunotherapy treatment.  

Most existing method for correlating neoantigens with immunotherapy treatment response is by 

using total neoantigen/mutation load (namely, the total number of neoantigens or mutations). The 

neoantigen load and mutation load showed a good correlation with patients’ phenotypes in some 

cohorts but not others. For example, Van Allen. et al found that higher mutation load and 

neoantigen was correlated with better immunotherapy (anti-CTLA 4 treatment) responses. But 

Matsushita et al did not find a good correlation between the neoantigen load or mutation load and 

patients’ overall survival rate. The reason that the model could not be successfully validated 

across multiple cohorts with various tumor types is that it failed to take advantage of the rich 

information of the entire repertoire. The wealth of information contained in the neoantigen 

repertoire includes the concentration of neoantigens on truncal/subclonal mutations, the 

immunogenicity of neoantigens, etc. These details are not Ill captured by the neoantigen 

load/mutation load. 

The only other study that defined a more sophisticated neoantigen-based assessment metric is the 

neoantigen fitness model based on evolutionary modeling of patient neoantigen profiles. This 

work only considered the neoantigen class I major histocompatibility complex (MHC) binding 
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affinity and only retained the top neoantigens resulting from missense mutation with the highest 

binding affinity within each tumor clone. The neoantigens generated from stoploss, indel 

mutations, which are found to be more immunogenic neoantigens, are not considered in this 

work. This method showed good predictive poIr for patients’ survival rate after immunotherapy 

treatment in three cohorts; hoIver, the predictive values and prognostic values have not been 

widely evaluated.  

In order to take advantage of the rich information contained in the neoantigen repertoire and 

quantitatively characterize the neoantigen profiles in patients, I developed an assessment tool 

called Cauchy-Schwarz index of Neoantigens (CSiN). The model considered the number of 

neoantigens, the distribution of neoantigens on truncal or subclonal mutations and the affinity 

betIen MHC and neoantigen. 

Methods 

 The definition of CSiN 

The CSiN score considers the pairing between the repertoire of neoantigens and the tumor 

mutations to which they belong. I characterized this property by averaging the product of the 

VAFs of somatic mutations and the number of neoantigens generated by each mutation, 

normalized by the average VAF and average mutation-specific neoantigen load in each patient. 

The product of average VAF and average mutation-specific neoantigen load forms the backbone 

of the CSiN score. The name CSiN was selected because of the pairing of tumor mutations and 

neoantigens, and its effect on the overall score bear analogy to the Cauchy-Schwarz inequality, 

which describes the upper bound of the product sum of two vectors of real numbers and the 

condition for the equality to be achieved.  



 

 

8 

The fundamental building block of CSiN is . The variance allele frequency (VAF) is 

the number of variant reads divided by the total number of reads covering each variant position. 

The load is the number of neoantigens associated with each mutation. n is the total number of 

missenses, indels, and stop-loss somatic mutations in a tumor sample. Vaf describes the average 

VAF of all the somatic mutations (to control for tumor purity) and load is the average per-

mutation neoantigen load across all somatic mutations (so CSiN is orthogonal to neoantigen 

load). It is common to see different tumor biopsies have different levels of non-tumor cell 

contents (immune and stromal cells), and the tumor mutations’ VAFs will be influenced by this 

confounding factor. The procedure of division by Vaf helps to normalize this effect. According 

to the Cauchy-Schwarz inequality, when the mutations with higher VAFs are also the mutations 

that generate more neoantigens (our hypothesized favorable distribution), the product value will 

be larger (higher CSiN score). Therefore, a higher CSiN conforms to a favorable neoantigen 

clonal structure. 

Because the neoantigens vary in quality, and to give more weight to better neoantigens, the value 

is calculated by the average of the products calculated with different cutoffs on quality of 

neoantigens, with better neoantigens convolved in more rounds of calculations. 

 

In this study, I used the percentile rank variable generated by the IEDB MHC binding affinity 

prediction software as the quality metric, q(i). This variable measures the binding strength 

between neoantigens and the MHC molecules, and a smaller percentile rank delineates a greater 
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affinity. The average VAF and neoantigens load are calculated with their according cutoff value, 

c, and I used k cutoff values of 0.375, 0.5, 0.625 0.75, 1.25, 1.75, and 2. The upper bound of the 

cutoff values is 2%, which is the most Ill-established cutoff for an epitope to be considered as an 

HLA binder, according to netMHCpan. I evaluate to 1 if the statement is true, 0 otherwise. 

Accordingly, the definition, the definition of the average VA and neoantigen loads area revise as: 

 

To accommodate the patient samples with an extremely large number of mutations, an 

adjustment is made where the calculation only considers the top M mutations with the largest 

VAFs when there are more than M mutations (M=500 in this study).                   
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The CSiN score defined above is a random variable centered approximately at zero. The final 

reported CSiN score is multiplied by a fixed constant, a (a=10), to increase the dynamic range for 

better visualization. 
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Figure 1. Flowchart of the calculation of CSiN scores. 
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Result 

Better response to checkpoint inhibitors in immunogenic cancers is associated with higher 

CSiN scores 

I gathered nine cohorts of cancer patients treated by immunotherapy (Table. 1) to investigate the 

implications of CSiN for checkpoint inhibitor treatment response. One cohort of melanoma 

patients on anti--CTLA-4 therapy from Van Allen et al. (Van Allen et al. 2015) was analyzed. 

The whole exome sequencing data and RNA sequencing data were acquired and processed to get 

mutations, neoantigens, and HLA types. I observed patients with better responses were more 

likely to have high CSiN than patients with worse responses (Figure 2A, P=0.009, chi-squared 

test). Another cohort of melanoma patients (Snyder cohort (Snyder et al. 2014) ) treated by anti-

CTLA-4 therapy were analyzed. Patients who received a durable clinical benefit had higher 

CSiN scores than patients with no durable benefit (Figure 2B, P=0.033). A third cohort of 

melanoma patients (Riaz cohort (Riaz et al. 2017)) treated by anti--PD-1. The association 

between CSiN score and patients’ responses to treatment was significantly positive (Figure 2C, 

P=0.037). One more cohort (Hugo cohort (Hugo et al. 2016)) of melanoma patients showed the 

trend of patients with better responses associated with high CSiN scores (Figure 2D, P=0.043). 

Other than melanoma patients, I also acquired clear cell RCC (ccRCC) patients treated by anti--

PD-1/anti--PD-L1 from (Miao et al. 2018). The same significantly positive association of higher 

CSiN scores with better response was observed (Figure 2E, P=0.036). I analyzed metastatic 

ccRCC patients treated with atezolizumab, an anti--PD-L1 agent (IMmotion150 cohort) 

(McDermott et al. 2018). A significant association of higher CSiN scores with better treatment 

responses for T effector--high patients treated with atezolizumab (Figure 2F, P=0.028). In 

contrast, this trend was not observed in patients treated by sunitinib (P=0.890). NSCLC patients 

https://sciwheel.com/work/citation?ids=742688&pre=&suf=&sa=0
https://sciwheel.com/work/citation?ids=323027&pre=&suf=&sa=0
https://sciwheel.com/work/citation?ids=4381395&pre=&suf=&sa=0
https://sciwheel.com/work/citation?ids=1313840&pre=&suf=&sa=0
https://sciwheel.com/work/citation?ids=4839841&pre=&suf=&sa=0
https://sciwheel.com/work/citation?ids=5634080&pre=&suf=&sa=0
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(the Hellmann cohort) treated with PD-1 and CTLA-4 inhibitors were available from (Hellmann 

et al. 2018). The analysis showed that patients with durable clinical benefit had higher CSiN 

scores than patients with no durable benefit (Figure 2G, P=0.007), whereas this association is 

insignificant for patients with low PD-L1 expression. Another NSCLC cohort (the Acquired 

cohort) from (Anagnostou et al. 2017) and (Gettinger et al. 2017). Patients with sustained 

response are more likely to have higher CSiN scores than patients with short-term progression 

(Figure 2H, P=0.015). Last, another cohort of NSCLC patients on anti--PD-1 therapies from 

(Rizvi et al. 2015) had higher CSiN scores than patients with NDB responses (Figure 2I, 

P=0.058).   

 

Table 1. The information of patients treated by immune checkpoint inhibitors 

To compare the performance of CSiN score with other widely used metrics for neoantigenicity, I 

also examined the predictive power of neoantigen load and the neoantigen fitness model scores 

to split the cohorts. I used a bootstrap analysis to evaluate the statistical significance of the 

improvement of CSiN compared with the other two approaches, which is an accepted 

methodology for model comparisons (Sieberts et al. 2016) (Costello et al. 2014). The CSiN 

significantly outperformed neoantigen load in seven of the nine cohorts evaluated, and 

neoantigen fitness in seven of the nine cohorts (Figure 2J). Overall, the results show that CSiN is 

capable of predicting clinical response to checkpoint inhibitors in immunogenic cancers and 

demonstrated a significant improvement over other existing predictive tools.  

https://sciwheel.com/work/citation?ids=5419181&pre=&suf=&sa=0
https://sciwheel.com/work/citation?ids=5419181&pre=&suf=&sa=0
https://sciwheel.com/work/citation?ids=2917547&pre=&suf=&sa=0
https://sciwheel.com/work/citation?ids=5509805&pre=&suf=&sa=0
https://sciwheel.com/work/citation?ids=78542&pre=&suf=&sa=0
https://sciwheel.com/work/citation?ids=6678519&pre=&suf=&sa=0
https://sciwheel.com/work/citation?ids=433564&pre=&suf=&sa=0
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Figure 2 Association of CSiN score with checkpoint inhibitor treatment response. 

(A) The Van Allen cohort. Eleven patients with clinical benefit (response group), 6 patients with 

long-term survival (long-survival) group, and 20 patients with minimal or NDB (nonresponse) 

group. (B) The Snyder cohort. Thirty-seven patients with DCB, and 34 patients with NDB. (C) 

The Riaz cohort. Three patients with complete response (CR), 12 patients with partial response 

(PR), 23 patients with stable disease (SD), and 27 patients with progressive disease (PD). (D) 

The Hugo cohort. Three patients with complete response, 10 patients with partial response, and 

13 patients with progressive disease. (E) The Miao cohort. TIlve patients with clinical benefit, 8 

patients with intermediate benefit, and 13 without clinical benefit. (F) The IMmotion150 cohort. 

There are 8 patients with CR, 15 patients with PR, 16 patients with SD, and 16 patients with PD. 

These patients are treated with atezolizumab and have high Teff signature expression. (G) The 

Hellmann cohort. There are 23 PD-L1+ (IHC ≥ 3) patients with DCB, and 16 PD-L1+ patients 

with NDB. (H) The Acquired cohort. There are 8 patients with sustained response (progression < 

12 month) and 6 patients with short-term progression (progression > 12 month). (I) The Rizvi 

cohort. Eleven patients with DCB and 15 patients with NDB. Biopsy and genomics data are 

obtained close to the time of progression for all patients, whereas baseline biopsies are lacking 

for many patients. For (A) to (I), I tested the association of the dichotomized CSiN scores with 

the ordered response categories using an ordinal χ2 test. (J) Boxplots of bootstrap P values 

evaluating the robustness of the predictive performance of CSiN, neoantigen load, and the 

neoantigen fitness score, with each P value generated from a bootstrap resample of each cohort. 

Two-sided Wilcoxon signed-rank test was used to compare the bootstrap P values. ***P = 

0.0001 to 0.001 and ****P < 0.0001. 
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Higher CSiN score predicts more favorable prognosis in immunogenic cancers 

To understand the implications of neoantigen heterogeneity for patients’ long-term survival, I 

also investigated the association between CSiN and prognosis in the immunogenic tumor types 

including, RCC, LUAD, LUSC, and SKCM (Table 2). I focused on the patients with high levels 

of T cell infiltration, in which the neoantigen-T cell axis may have a more active impact on 

patients’ phenotypes. The T cell infiltration was profiled by empirically defined tumor 

microenvironment gene expression signatures (Wang et al. 2018). In these patients, I observed 

that higher CSiN scores had a significantly positive association with better survival in patients 

with high T cell infiltration level for RCC (Figure. 3A, P=0.01), LUAD (Figure. 3B, P=0.036), 

LUSC (Figure. 3C, P=0.024), SKCM (Figure. 3A, P=0.038). I extracted and combined the higher 

CSiN scores and had a significantly better overall prognosis (Figure. 3E, P=3.8 x 10-5). To 

further exclude the effect of clinical confounders, I performed multivariate survival analysis 

adjusted by disease type, stage, gender, and age in this combined cohort. The significant 

association between survival and CSiN was retained (Figure. 3F, P<0.001).  

 

 

Table 2 The information of patient cohorts from The cancer genome atlas (TCGA)  

 

In contrast, the same analysis for the neoantigen load and the neoantigen fitness models yielded 

insignificant associations. I also used bootstrap analysis to evaluate the statistical significance of 

this comparison. In Fig. 3G, the CSiN significantly outperformed both methods in all four 

https://sciwheel.com/work/citation?ids=5398262&pre=&suf=&sa=0
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cohorts evaluated. Overall, the results suggest that the clonal distribution of neoantigens could be 

more prognostically important. 

 

 

Fig. 3 Association of CSiN score with overall survival of patients. 

(A to E) Kaplan-Meier estimator was used to visualize patient overall survival. P values for log-

rank tests are shown. (A) The RCC cohort. (B) The LUAD cohort. (C) The LUSC cohort. (D) 

The SKCM cohort. (E) The patients identified as having “High T cells” are extracted from each 

cohort, combined, and tested together. The high and low CSiN score designations follow those in 
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(A to D). (F) Forest plot for the coefficients of the multivariate Cox proportional hazards analysis 

of the combined cohort in (D). Disease type, pathological stage, gender, age, and the binarized 

CSiN are included as covariates. The dashed line shows the no effect point. Confidence intervals 

(95%) Ire shown as bars. (G) Boxplots of bootstrap P values evaluating the robustness of the 

prognostic performance of CSiN, neoantigen load, and the neoantigen fitness score, with each P 

value generated from a bootstrap resample of each cohort. Two-sided Wilcoxon signed-rank test 

was used to compare the bootstrap P values. ****P < 0.0001. 

Discussion 

The major biological insight from this study is that the neoantigen clonal structures in each 

tumor specimen and the immunogenicity of the neoantigens are predictive of response to 

checkpoint inhibitors and prognosis. The comprehensive analyses show that the CSiN score, 

which describes the properties of the neoantigen profile quantitatively, has substantially better 

predictive and prognostic performance than other neoantigen-based biomarkers in most of the 

evaluated cohorts. The implementations of the CSiN, neoantigen load, the neoantigen fitness 

indices have considered both MHC class I and class II neoantigens also neoantigens generated 

from insertions/deletions and stop-loss mutations. This is different from the original publication 

of the neoantigen fitness model (Balachandran et al. 2017; Łuksza et al. 2017) that only 

considered 9-mer class I neoantigens generated from missense mutations. Inclusion of all these 

potential sources of neoantigens is important for a complete characterization of neoantigen 

profiles in each patient. In alignment with the findings in this study, McGranahan et al. 

(McGranahan et al. 2016) made a qualitative observation that CTLA-4--resistant tumors could 

be enriched for subclonal mutations, which may enhance total neoantigen burden but not elicit an 

effective antitumor response due to the subclonal nature of these neoantigens. Miao et al. (Miao 

https://sciwheel.com/work/citation?ids=4493333,4482222&pre=&pre=&suf=&suf=&sa=0,0
https://sciwheel.com/work/citation?ids=1273187&pre=&suf=&sa=0
https://sciwheel.com/work/citation?ids=4839841&pre=&suf=&sa=0
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et al. 2018) also made a similar observation. This study is distinguished from these earlier reports 

in that I provide a robust quantitative measurement that was subjected to systematic evaluations, 

and I also evaluated prognosis in addition to treatment response. Overall, CSiN could serve as a 

valuable predictive tool for medical oncologists treating patients with checkpoint blockade and 

has addressed some of the limitations of prior neoantigen-based predictive biomarkers. 

One limitation of this study is that neoantigens used in this study are predicted from genomics 

data for correlation with patient phenotypes. Despite the efforts to validate the neoantigen 

predictions, it is likely that there are still false-positive and false-negative predicted neoantigens 

that convoluted the analysis. In future studies, incorporating the genomics-based approach with 

other methods, such as mass spectrometry, may improve the sensitivity and specificity of 

neoantigen detection and thus further enhance the predictive power of CSiN. 

Overall, CSiN offers a new tool to monitor the neoantigen profiles, where different tumor clones 

could have different growth advantages subject to the pressure of T cell cytotoxicity determined 

by each clone’s neoantigen composition. This work offers a rigorous methodology of predicting 

response to immunotherapy and prognosis from routing patient samples and could be useful for 

personalizing medicine in immunotherapy.

https://sciwheel.com/work/citation?ids=4839841&pre=&suf=&sa=0
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CHAPTER THREE 

Deep learning-based prediction of the T cell receptor-antigen binding 

specificity 

  

Background and rationale 

Another one of the most fundamental and unsolved questions regarding neoantigens and antigen 

biology is general is the lack of understanding of why not all neoantigens elicit T cell responses 

(immunogenic), notwithstanding that they are expressed and presented on the cell surface. In 

neoantigen vaccine trials, the reported immunogenicity rate ranges from 16%-66% (Linette & 

Carreno 2017). In adoptive cell transfer experiments by Verdegaal et al (Verdegaal et al. 2016), 

T cells from two patients with hundreds of somatic mutations only exhibited immunogenicity 

toward a few predicted neoantigens. Despite the differences in experimental methods and 

biological systems, all these observations point to an urgent need for discerning truly 

immunogenic neoantigens. 

Even less is known about the TCR binding specificity to immunogenic neoantigens presented by 

MHC molecules (pMHCs). Linking pMHCs to TCR sequences is essential for monitoring the 

interactions between the immune system and tumors, and critical for enhancing the design or 

implementation of various immunotherapies. For example, selection of neoantigen vaccine 

candidates could be informed by pre-existence of compatible TCRs in the patient’s circulation. 

Accordingly, a number of experimental approaches, such as tetramer analysis (Altman et al. 

2011), TetTCR-seq (Zhang et al. 2018) and T-scan (Kula et al. 2019), have been developed to 

detect pairing of TCRs and pMHCs. However, these methods are time-consuming, technically 

challenging, and costly. Furthermore, each technique has some caveats. Ito el al examined 

multiple studies involving such techniques and found their validation rates to be as low as 1%. 

https://sciwheel.com/work/citation?ids=7588638&pre=&suf=&sa=0
https://sciwheel.com/work/citation?ids=7588638&pre=&suf=&sa=0
https://sciwheel.com/work/citation?ids=1812720&pre=&suf=&sa=0
https://sciwheel.com/work/citation?ids=1205288&pre=&suf=&sa=0
https://sciwheel.com/work/citation?ids=1205288&pre=&suf=&sa=0
https://sciwheel.com/work/citation?ids=6025144&pre=&suf=&sa=0
https://sciwheel.com/work/citation?ids=7278734&pre=&suf=&sa=0
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However, this is likely an underestimation due to many factors, including the rarity of matching 

TCRs in the patient’s sampled T cell repertoire. These deficiencies call for the development of 

state-of-the art bioinformatics algorithms to predict TCR binding specificity of neoantigens, 

which will significantly reduce the time and cost of identifying the pairings and will greatly 

complement experimental approaches.  

 Method 

Conceptually, I employed a staged approach of dividing the goal of learning the TCR-binding 

specificity of neoantigens (pMHCs) into three steps, to lower the difficulty level of the prediction 

task. First, I trained a numeric embedding of pMHCs (class I only) using Long short-term 

memory (LSTM) network so the protein sequences of neoantigens and MHCs could be 

represented numerically. Second, I trained an embedding of TCR sequences using stacked auto-

encoders, which again encoded text strings of TCR sequences numerically. These two steps 

create numeric vectors that are manageable for mathematical operations and set the stage for the 

final pairing prediction. The advantage of using the embeddings of TCR CDR3βs and MHC 

peptides as the model input instead of gene names is that a new gene’s name (e.g. a new MHC 

allele) unknown to the model during the training phase cannot be handled in testing/prediction, 

while embedding their protein sequences allows their testing/prediction. At the final stage, I 

created a deep neural network on top of these two embeddings to combine the knowledge from 

TCRs, antigenic peptide sequences and MHC alleles in a biologically meaningful way. I 

employed fine-tuning to finalize the prediction model for the pairing between TCRs and pMHCs. 

Embedding TCR CDR3𝛽 sequences 

The method for encoding TCR CDR3𝛽 sequences can be found in Zhang et al. (Zhang et al. 

2021).  

https://sciwheel.com/work/citation?ids=10293668&pre=&suf=&sa=0
https://sciwheel.com/work/citation?ids=10293668&pre=&suf=&sa=0
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Embedding pMHCs 

The embedding of pMHCs mostly follows the netMHCpan algorithm (Figure 4a).  The 

netMHCpan algorithm uses a pseudo sequence method to encode the MHC proteins (Nielsen et 

al. 2007). The pseudo-sequences consist of amino acids in contact with the peptide and only 34 

polymorphic residues were included. Then the BLOSUM50 matrix is used to encode these 34 

residues. On the other hand, the (neo)antigens are also encoded by the BLOSUM50 matrix as in 

netMHCpan. I constructed a deep learning model with the HLA pseudo sequence and the antigen 

sequence as the input. I used the MHC sequence rather than type as the input, so the use can be 

extended to unknown MHC types not seen in the training cohort. The major difference of the 

implementation from the original netMHCpan model is that, instead of simple feed-forward 

neural networks, I used a Long short-term memory (LSTM) layer with the output size of 16 on 

top of the antigen input, and an LSTM layer with the output size of 16 on top of the MHC input.  

I found this change to seem to have increased the speed of reaching model convergence. The 

LSTM outputs for antigen and MHC are concatenated to form a 32-dimensional vector in the 

same layer. This layer is followed by a dense layer with 60 neurons activated by “tanh” and a-

single-neuron dense layer as the last output layer. The same data used for training netMHCpan 

Ire used to re-train the model, which consists of 172,422 measurements of peptide-MHC binding 

affinity covering 130 types of class I MHC from humans. The Pearson Correlation of the 

predicted binding probability and true binding strength in the independent testing dataset reached 

0.781, which is comparable with the Pearson Correlation of 0.76 from the original netMHCpan 

publication (Nielsen & Andreatta 2016). After training is completed, I extracted the immediate 

60-dimensional fully connected layer before the single-neuron output layer (again a short 

numeric vector), as the embedding of pMHCs.   

https://sciwheel.com/work/citation?ids=808660&pre=&suf=&sa=0
https://sciwheel.com/work/citation?ids=808660&pre=&suf=&sa=0
https://sciwheel.com/work/citation?ids=2481397&pre=&suf=&sa=0


 

 

23 

I have also tried to use a feed-forward neural network for encoding pMHCs but the performance 

I achieved (Pearson Correlation=0.72) is worse than the LSTM network that I finally adopted 

(Pearson Correlation=0.781, Figure 4b). This is likely because LSTM is quite powerful in 

digesting sequential data, due to its inherent design and capability to handle recurrent structures. 

In fact, LSTM networks have been widely used for encoding protein sequences and predicting 

protein functions (Gao et al. 2020; Guo et al. 2019; Liu & Gong 2019). 

Learning TCR binding specificity of pMHCs 

Finally, I leveraged the trained numeric vector encodings of TCRs and pMHCs for learning the 

pairing between them. I constructed a fully connected deep learning network based on the output 

of these two sub-models, leading to a final layer with a single neuron for predicting the pairing. I 

employed transfer learning to leverage the trained numeric encodings of TCRs and pMHCs. 

These pre-trained models were fixed and incorporated into the final prediction model as early 

layers (save parameters needed for training). The two encodings both yield the final output layers 

in the form of numeric vectors (Figure 4c). I concatenated the two numerical vectors into a single 

layer, added a dense layer with 300 neurons activated by “RELU”, a dropout layer with dropout 

rate of 0.2, a dense layer with 200 neurons activated by “RELU”, a dense layer with 100 neurons 

activated by “RELU”, and the last layer with a single neuron with tanh activation.  

Based on this integrated model, I innovatively employed a differential learning schema, where 

this model is fed a true binding pair of TCR and pMHC and another negative pair with the same 

pMHC in each training cycle. I collected a total of 32,607 pairs of binding TCR-pMHCs from a 

series of peer-reviewed publications (Bagaev et al. 2020; Chen et al. 2017; Glanville et al. 2017; 

Huth et al. 2019; Joglekar et al. 2019; Tickotsky et al. 2017; Unable to find information for 

7266116; Zhang et al. 2018) (N=13,388), and four Chromium Single Cell Immune Profiling 

https://sciwheel.com/work/citation?ids=10147326,10849273,10849289&pre=&pre=&pre=&suf=&suf=&suf=&sa=0,0,0
https://sciwheel.com/work/citation?ids=7433287,6025144,3846755,6241092,5431672,6350998,7626338,7266116&pre=&pre=&pre=&pre=&pre=&pre=&pre=&pre=&suf=&suf=&suf=&suf=&suf=&suf=&suf=&suf=&sa=0,0,0,0,0,0,0,0
https://sciwheel.com/work/citation?ids=7433287,6025144,3846755,6241092,5431672,6350998,7626338,7266116&pre=&pre=&pre=&pre=&pre=&pre=&pre=&pre=&suf=&suf=&suf=&suf=&suf=&suf=&suf=&suf=&sa=0,0,0,0,0,0,0,0
https://sciwheel.com/work/citation?ids=7433287,6025144,3846755,6241092,5431672,6350998,7626338,7266116&pre=&pre=&pre=&pre=&pre=&pre=&pre=&pre=&suf=&suf=&suf=&suf=&suf=&suf=&suf=&suf=&sa=0,0,0,0,0,0,0,0
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Solution datasets (N=19,219). The details of these data are shown in Sup. File 1. Some databases 

provided quality metrics, which I used to filter the records to keep only pairs with high 

confidence. For example, in the VDJdb data, I only included records with vdj.score>0, as is also 

done in TCRGP (Jokinen et al. 2021). Duplicated records were removed. I created 10 times more 

negative pairs, by random mismatching TCR and pMHC of these 32,607 pairs. The training was 

performed for 150 epochs. The loss function of the internal validation decreased smoothly, and 

the loss function of the independent validation set stumbled but closely followed the decreasing 

trend, demonstrating a good dynamic of the training of model parameters (Figure 1d). The final 

model was named as, pMTnet for pMHC-TCR binding prediction network. Following the 

differential training, the prediction output was also generated in a comparative manner. pMTnet 

outputs a continuous variable between 0 and 1, reflecting the percentile rank of the predicted 

binding strength between the TCR and the pMHC, with respect to a pool of 10,000 randomly 

sampled TCRs (as a background distribution) against the same pMHC. I use a smaller rank to 

denote a stronger binding, similar to netMHCpan. Importantly, as I always bundle antigen and 

MHC together and let the model focus on discerning binding or non-binding TCRs, all 

validations are specific for distinguishing TCR binding specificity, rather than antigen-MHC 

binding or the overall immunogenicity. 

Mathematically, the output prediction for a given pMHC, p*, towards a given TCR, T*, can be 

written as f (p*,T*). For the training process, known interactions between pMHCs and TCRs are 

treated as positive data. And I randomly mismatched these TCRs and pMHCs to create 10 times 

more negative data. 

Differential loss function 

https://sciwheel.com/work/citation?ids=11393064&pre=&suf=&sa=0
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Rather than directly learning the positive and negative labels of the training data, I developed a 

novel differential training method to instruct pMTnet to distinguish binding TCRs from non-

binding TCRs through comparison. To implement this, I created two duplicates of the above-

described networks, always sharing weights throughout the training process. During one training 

step, one positive (known interaction) training point (p,T+) is fed into the first network, and a 

negative training point (p,T-) is fed into the second network. A loss function of 

Loss=Relu(f(p,T-)– f(p,T+))+0.03[f2(p,T-) + f2(p,T+)] 

is defined. In other words, the learning process focuses on the same pMHC each time and tries to 

identify the TCRs that truly bind to it, out of other TCRs. The second item in the loss function 

serves the purpose of a regularization term to reduce overfitting and to push the output of the 

network to be closer to 0. This helps make sure the model parameters stay in a dynamic range 

where gradients are neither too small nor too large. 

In accordance with this differential training method, the output of pMTnet is also not the direct 

output of the deep learning network. In fact, for each pMHC (p*), I sampled 10,000 TCR 

sequences randomly from the databases to form a background distribution, {Tb}. I will calculate 

the percentile of f(p*,T*) in the whole distribution of {f(p*,Tb)}, where T* is the TCR of 

interest. The larger this value, the stronger I predict the binding is between p* and T*. In line 

with how netMHCpan generates the ranked prediction of the binding strength between antigens 

and HLA proteins (percentile_rank), I also inverted this rank. Therefore, in the final output, a 

smaller rank between a pMHC and a TCR refers to a stronger binding prediction between them. 

Regarding the duplicated-network approach, one could argue that if I simply feed positive and 

negative pMHC-TCR pairs of the same pMHC together in one mini-batch, the training could 

also be performed. However, this approach would not work, as it precludes us from explicitly 
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comparing the positive and negative TCRs of the same pMHC in a well-controlled manner. This 

is reflected in the loss function above. In this loss function, there is a contrast between the 

positive output and the negative output (the first part), which is transformed together by a RELU 

function, and there is also a penalty to regularize the range of both outputs (summation), to limit 

the outputs to the best dynamic range. The mini-batch approach cannot achieve this effect of 

delicate control. I have trained the model with this mini-batch approach, and the AUCs of ROC 

and PR are, 0.604, and 0.397, respectively, on the 619-test cohort. 

 

Fig. 4 Model developing for TCR binding specificity of neoantigens. 

(a) The structure of the re-implemented netMHCpan model. (b) Validation of the predicted 

binding betIen (neo)antigens and MHC proteins generated by the pMHC embedding model, by 

the experimentally obtained data. The increase in the Pearson Correlation over training cycles 
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(epochs) is shown. (c) Structure of the final pMTnet model. (d) The loss function of pMTnet 

over training time, in the units of epochs. The performances on both the internal validation 

subset that is split within the training cohort (red) and the independent validation cohort (green) 

are shown. 

Results 

pMTnet predicts TCR-pMHC pairing in independent experimental data 

I performed a series of validation analyses with a large number of known TCR-pMHC binding 

pairs collected from independent studies. Data was hidden during the training, and pMTnet was 

no longer modified when validation was performed with this data. 

First, I collected 619 experimentally validated TCR-pMHC binding pairs (Attaf et al. 2018; 

Berger et al. 2011; Borbulevych et al. 2011; Bourcier et al. 2001; Brennan et al. 2007; Burrows 

et al. 1995; Cole et al. 2014, 2017; Gee et al. 2018; Grant et al. 2016; Klinger et al. 2015; 

Kløverpris et al. 2015; Lee et al. 2004; Leslie et al. 2006; Lichterfeld et al. 2006; Liu et al. 2013; 

Motozono et al. 2014; Ogunshola et al. 2018; Ott et al. 2018; Purbhoo et al. 2007; Shimizu et al. 

2013; Tran et al. 2015; Unable to find information for 7598048; Valkenburg et al. 2016; Yu et al. 

2007). Compared with the training cohort, which is mainly constructed from bulk export from 

databases like VDJdb and high throughput experiments, the binding pairs that comprise the test 

cohort have mostly been subjected to stringent interrogation by the original reports on an 

individual basis. In this and all following validation analyses, TCR-pMHC pairs that appeared in 

the training dataset were removed, so the testing sets were completely independent of the 

training set. 10 times negative pairs were generated by random mismatching. I used two metrics, 

Area Under the Curve (AUC) of Receiver Operating Characteristic (ROC) and Precision-Recall 

(PR). Values closer to 1 indicate better performance. Strikingly, the AUC of ROC reached 0.827 

https://sciwheel.com/work/citation?ids=4674060,657149,4612809,5984709,7598026,7598030,356913,7598048,7598057,7598061,1279732,1012295,6588960,7598075,7598079,6588660,1098428,7598090,8345917,1016914,8346056,1728507,7598009,7598021,8004429&pre=&pre=&pre=&pre=&pre=&pre=&pre=&pre=&pre=&pre=&pre=&pre=&pre=&pre=&pre=&pre=&pre=&pre=&pre=&pre=&pre=&pre=&pre=&pre=&pre=&suf=&suf=&suf=&suf=&suf=&suf=&suf=&suf=&suf=&suf=&suf=&suf=&suf=&suf=&suf=&suf=&suf=&suf=&suf=&suf=&suf=&suf=&suf=&suf=&suf=&sa=0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
https://sciwheel.com/work/citation?ids=4674060,657149,4612809,5984709,7598026,7598030,356913,7598048,7598057,7598061,1279732,1012295,6588960,7598075,7598079,6588660,1098428,7598090,8345917,1016914,8346056,1728507,7598009,7598021,8004429&pre=&pre=&pre=&pre=&pre=&pre=&pre=&pre=&pre=&pre=&pre=&pre=&pre=&pre=&pre=&pre=&pre=&pre=&pre=&pre=&pre=&pre=&pre=&pre=&pre=&suf=&suf=&suf=&suf=&suf=&suf=&suf=&suf=&suf=&suf=&suf=&suf=&suf=&suf=&suf=&suf=&suf=&suf=&suf=&suf=&suf=&suf=&suf=&suf=&suf=&sa=0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
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https://sciwheel.com/work/citation?ids=4674060,657149,4612809,5984709,7598026,7598030,356913,7598048,7598057,7598061,1279732,1012295,6588960,7598075,7598079,6588660,1098428,7598090,8345917,1016914,8346056,1728507,7598009,7598021,8004429&pre=&pre=&pre=&pre=&pre=&pre=&pre=&pre=&pre=&pre=&pre=&pre=&pre=&pre=&pre=&pre=&pre=&pre=&pre=&pre=&pre=&pre=&pre=&pre=&pre=&suf=&suf=&suf=&suf=&suf=&suf=&suf=&suf=&suf=&suf=&suf=&suf=&suf=&suf=&suf=&suf=&suf=&suf=&suf=&suf=&suf=&suf=&suf=&suf=&suf=&sa=0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
https://sciwheel.com/work/citation?ids=4674060,657149,4612809,5984709,7598026,7598030,356913,7598048,7598057,7598061,1279732,1012295,6588960,7598075,7598079,6588660,1098428,7598090,8345917,1016914,8346056,1728507,7598009,7598021,8004429&pre=&pre=&pre=&pre=&pre=&pre=&pre=&pre=&pre=&pre=&pre=&pre=&pre=&pre=&pre=&pre=&pre=&pre=&pre=&pre=&pre=&pre=&pre=&pre=&pre=&suf=&suf=&suf=&suf=&suf=&suf=&suf=&suf=&suf=&suf=&suf=&suf=&suf=&suf=&suf=&suf=&suf=&suf=&suf=&suf=&suf=&suf=&suf=&suf=&suf=&sa=0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
https://sciwheel.com/work/citation?ids=4674060,657149,4612809,5984709,7598026,7598030,356913,7598048,7598057,7598061,1279732,1012295,6588960,7598075,7598079,6588660,1098428,7598090,8345917,1016914,8346056,1728507,7598009,7598021,8004429&pre=&pre=&pre=&pre=&pre=&pre=&pre=&pre=&pre=&pre=&pre=&pre=&pre=&pre=&pre=&pre=&pre=&pre=&pre=&pre=&pre=&pre=&pre=&pre=&pre=&suf=&suf=&suf=&suf=&suf=&suf=&suf=&suf=&suf=&suf=&suf=&suf=&suf=&suf=&suf=&suf=&suf=&suf=&suf=&suf=&suf=&suf=&suf=&suf=&suf=&sa=0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
https://sciwheel.com/work/citation?ids=4674060,657149,4612809,5984709,7598026,7598030,356913,7598048,7598057,7598061,1279732,1012295,6588960,7598075,7598079,6588660,1098428,7598090,8345917,1016914,8346056,1728507,7598009,7598021,8004429&pre=&pre=&pre=&pre=&pre=&pre=&pre=&pre=&pre=&pre=&pre=&pre=&pre=&pre=&pre=&pre=&pre=&pre=&pre=&pre=&pre=&pre=&pre=&pre=&pre=&suf=&suf=&suf=&suf=&suf=&suf=&suf=&suf=&suf=&suf=&suf=&suf=&suf=&suf=&suf=&suf=&suf=&suf=&suf=&suf=&suf=&suf=&suf=&suf=&suf=&sa=0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0


 

 

28 

in this cohort and AUC of PR reached 0.565 (Figure. 5a). To test whether pMTnet truly 

“learned” the features that determine binding, or is simply “remembering” pairing cases, I looked 

at the prediction performance for TCRs with different degrees of similarity to the training TCRs 

(Figure. 5b, left group). For calculating “similarity”, I calculated the minimum of each testing 

TCR’s Euclidean Distances to all the training TCRs based on the TCR embeddings. The AUCs 

of ROC and PR are shown for the subset of the testing TCRs with minimum distances over each 

cutoff, and the performance of pMTnet is relatively robust with respect to increasing levels of 

TCR dissimilarities. For pMHC, I performed the same analyses, and made similar observations 

(Figure. 5b, right group). 

 

Figure 5. Validation of pMTnet. (a) AUCs of Receiver operating characteristic (ROC) and 

precision-recall (PR) of the predicted binding ranks (smaller ranks refer to stronger binding) 

were shown for the 619 experimentally validated TCR-pMHC binding pairs and 10 times more 

randomly shuffled negative pairs. (b) AUCs of ROC and PR for different cutoffs of euclidean 

distances of the 30-dimension PCs for embeddings were shown, where the cutoffs were used for 

subsetting TCRs (left group) and pMHCs (right group) of the 619-testing cohort. The AUCs 

were shown in light pink and green. The proportions of the selected TCRs and pMHCs out of the 
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total 619 testing cohort, chosen by these cutoffs, were shown in blue. (c) The expansion of TCR 

clonotype is associated with their binding strength to pMHCs in the 10x Genomics Chromium 

Single Cell Immune Profiling datasets. The portion of this 10X Genomics dataset that was used 

in the validation phase is totally independent of the portion used in the training phase. Y-axis 

shows the percentage of each clonotype in the whole pool of TCRs. The P values were calculated 

by the Spearman correlation test. (d) Peptide analogs that were experimentally validated as 

having stronger affinity towards the target TCR are predicted as having stronger affinity by 

pMTnet. An ROC plot was shown correlating the predictions (continuous variable) against the 

ground truth (binary variable). The Liu study dataset was shown. 

 

 

I also compared the performance of pMTnet with the other software that can predict 

TCR/epitope pairing, including netTCR, TCRex(Gielis et al. 2019), and TCRGP (Jokinen et al. 

2021; Unable to find information for 6439084). Unlike pMTnet, all three softwares were limited 

by the type of epitopes/MHCs/TCRs that can be used for prediction. For example, netTCR only 

accommodates for the HLA-A:0201 allele, epitopes shorter than 10 amino acids, and CDR3s 

shorter than 10 amino acids. When tested on the same epitopes/MHCs/TCRs that satisfy the 

criterion of these three software, pMTnet demonstrates a large margin of improvement over each 

one. 

I also validated pMTnet on additional high quality pairing data from VDJdb and Gee et al (Gee 

et al. 2018) that are not used during the training, and showed that the AUROC of pMTnet 

achieved >0.8 on them, and out-performed competing software. Interestingly, in these analyses, I 

took advantage of the differential quality of the binding pairs to show that the performances of 

https://sciwheel.com/work/citation?ids=7895026&pre=&suf=&sa=0
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pMTnet and competing software all increased on validation data of higher quality (determined 

through objective criterion, such as confidence score curated by VDJdb). 

Next, I validated the predicted binding between TCRs and pMHCs via the expected impact of the 

binding on the T cells, i.e., T cells with higher pMHC affinity should be more clonally expanded. 

The 10x Genomics Chromium Single Cell Immune Profiling platform generates single cell 5' 

libraries and V(D)J enriched libraries in combination with highly multiplexed pMHC multimer 

reagents. The antigen specificity between the TCR of one T cell and each tested pMHC is 

profiled by counting the number of barcodes sequenced for that particular pMHC in this cell. I 

examined four single-cell datasets, which profiled the antigen specificities of 44 pMHCs for 

CD8+ T cells from four healthy donors. For each TCR clone, I recorded the pMHC with the 

strongest predicted binding strength, by pMTnet, among all 44 pMHCs. Interestingly, I found the 

clone sizes and predicted ranks for T cell clonotypes were negatively correlated with statistical 

significance achieved (Figure. 5c). In other words, T cells with TCRs whose predicted pMHC 

binding strengths were stronger were also much more expanded than others without a strong 

binding partner. This is more clearly demonstrated by the odds ratios (Table 3) testing 

enrichment of the expanded T cell clonotypes with high affinity binding antigens. Conversely, I 

observed some TCRs with small clone sizes having small predicted binding ranks to pMHC, 

which was likely caused by the stochastic nature of binding between TCRs and pMHC, and 

possibly the constantly incoming new clones whose expansion had not happened yet. 
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Table 3 The T cell clonotypes that have expanded are strongly biased towards the T cells with 

predicted high affinity antigens, in the 10X single cell datasets. An odds-ratio and its confidence 

interval is shown for each of the four donors. The cutoff for defining expanded/unexpanded 

clones is the top 1% clone size of the TCR clones of each donor, and the cutoff for defining 

high/low affinity is 0.5%/1%/2%. 

I further analyzed whether pMTnet is capable of distinguishing the impact of the fine details of 

peptide sequences on TCR binding specificity. 186 pMHC-TCR pairs are acquired from Liu et al 

(Liu et al. 2013), Cole et al (Cole et al. 2014), and Tran et al (Tran et al. 2015). In Liu et al, 

LPEP peptide analogs with single amino acid substitutions were tested for specificity towards 

three distinct TCRs with different CDR3βs. Out of all 94 analogs, 36 were determined to be 

stronger binders (<100pM of peptide needed to induce cytotoxic lysis by T cell) with the others 

deemed Iaker binders. In Cole’s study, alanine-substituted MART-1 peptides were tested for the 

affinity to TCR MEL5 and ILA1. 15 out of 70 peptides had interactions with TCRs (KD 

https://sciwheel.com/work/citation?ids=356913&pre=&suf=&sa=0
https://sciwheel.com/work/citation?ids=657149&pre=&suf=&sa=0
https://sciwheel.com/work/citation?ids=1098428&pre=&suf=&sa=0
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value<500mM). In Tran’s study, 11 out of all 22 analog peptides activated T cells validated by 

IFN-γ ELISPOT. pMTnet generated predictions for each peptide analog (in complex with MHC) 

and the stronger binding analogs were indeed predicted to have stronger binding strength than 

their analogs (Figure. 5d, AUC=0.726). 

I further validated pMTnet in prospective experimental data. I performed bulk TCR-sequencing 

and HLA allele typing for one donor seropositive for prior Influenza, EBV and HCMV 

infections. The experiments were performed in the blood and the in vitro expanded T cells from 

this donor’s lung tumor. I analyzed the bulk TCR-sequencing data and predicted the binding 

between TCRs and four viral pMHCs, including Influenza M (GILGFVFTL), Influenza A 

(FMYSDFHFI), EBV BMLF1 (GLCTLVAML), and HCMV pp65 (NLVPMVATV). I found 

that TCRs predicted to have stronger binding (smaller ranks) to any of these peptides exhibited 

higher clonal proportions than the other TCRs (Figure. 6a), in both the blood (left panel) and in 

vitro expanded T cells (right panel). I calculated the odds ratios for the enrichment of highly 

expanded TCRs with stronger predicted binding, where a higher odds ratio referred to a higher 

positive enrichment. I observed a stronger enrichment in both the blood and expanded T cells, 

while I performed permutations of the predicted binding ranks and observed much smaller odds 

ratios (Figure. 6b). Then I treated the expanded T cells with each of the viral peptides and 

performed scRNA-seq with paired TCR-seq, and I also performed vehicle treatment. I identified 

TCRs captured in each of the treatment groups and the vehicle treatment group, and used 

pMTnet to predict the binding of the TCRs to each peptide. I selected the top TCRs (predicted 

rank<2% by pMTnet) from each experiment, and first examined the gene expression of the T 

cells of these top binding TCR clonotypes. By comparing T cells with predicted top binding 

TCRs and the other T cells, I observed differentially expressed genes enriched in pathways 
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essential for T cell proliferation, migration, survival, and cytotoxicity (results for GLCTLVAML 

shown in Figure. 6c as an example). I also calculated the clonal sizes of these top TCR 

clonotypes, and found that the majority of these TCR clonotypes exhibited larger clonal fractions 

in the treatment group than the vehicle group (Figure. 6d, clonal size ratio >1). 

 

 

 

     

    

   

 

Figure 6 Prospective validation of pMTnet predictions. (a) TCR CDR3s predicted to have 

smaller binding ranks have higher clonal sizes. Blood cells: left panel and in vitro expanded T 

cells: right panel. X-axis shows the minimum of the binding ranks to any of the four viral 

pMHCs. Y-axis shows the clonal proportions of each TCR CDR3 clonatype in each sample.  (b) 

Odds ratios for enrichment of highly expanded T cells with smaller binding rank for 

blood/expanded-T cells. I extracted the #CDR3s with clonal proportions>0.1% and with 

predicted rank<2% (HB); #CDR3s with clonal proportions<0.1% and predicted rank>2% (Ls); 

#CDR3 with clonal proportions>0.1% and predicted rank>2% (LB); #CDR3 with clonal 

proportions<0.1% and predicted rank<2% (Hs). Odds ratios are calculated as (HB *Ls)/(LB *Hs). 

Permutation of predicted ranks were performed, and the odds ratios were calculated again for  
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control purposes. (c) Genes differentially expressed in T cells with predicted binding to viral 

pMHC (EBV BMLF1 as an example, rank cutoff=0.1) and T cells without binding are enriched 

in pathways essential for T cell functions. Right part of the circos plot shows differentially 

expressed genes and they are enriched in the corresponding pathways with the same colors on 

the left. (d) Ratios of clonal proportions in the viral pMHC treatment group vs. the vehicle 

treatment group. The red horizontal line (ratio=1) indicates no change. 

Structural analyses support predicted TCR-pMHC interactions 

I performed in silico mutational analyses to look for structural evidence for the CDR3 residues 

whose mutations led to dramatic changes in the predicted binding between TCR and pMHCs. 

For each CDR3 residue, I mutated its numeric embedding to a vector of all 0s (“0-setting”). This 

is similar to but different from the alanine scanning technique in biophysics studies (Weiss et al. 

2000). I first performed residue-wise mutations for all the TCRs of the 619 testing cohort, and 

recorded the differences in the predicted binding ranks (rank difference) between the wild type 

TCRs and the mutated TCRs. I divided each TCR CDR3 into six segments of equal lengths (Fig. 

7a), and as expected, residues in the middle segments of CDR3s, which bulge out and are in 

closer contact with pMHCs, Ire more likely to induce larger changes in predicted binding 

affinity, when compared with the outer segments (T-test P-value between the third or fourth 

segment and any other segment is <0.00001). Furthermore, I extracted a total of 13 TCR-pMHC 

pairs from the IEDB, with 3D crystal structures available in Protein Data Bank (PDB) and whose 

predicted binding affinity rank was less than 2%. According to the structures, I grouped CDR3 

residues by whether or not they formed any direct contact with pMHCs residues within 4Å. I 

found that the contact residues were more likely to induce larger changes in predicted pMHC 

binding strength than non-contact residues (Fig. 7b, P value=0.036). I also performed in silico 

https://sciwheel.com/work/citation?ids=955938&pre=&suf=&sa=0
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alanine scanning and found a similar trend (Fig. 7c). The alanine scan was not as significant as 

for the “0-setting” scan, which could be attributed to the fact that, in the alanine scan, all alanines 

are presumed to have no effect after mutation (alanine->alanine). HoIver, replacing one alanine 

with other residues with large side chains could affect the overall structural integrity of the 

protein complex, which may actually lead to a change in binding affinity. In Fig. 7a-c, I showed 

the absolute changes in rank percentiles (change to either stronger or weaker binding). But 

examination of the direction of the changes in rank percentiles showed that the in silico 

mutations mainly resulted in weaker binding. The P values for the contact vs. no contact 

comparisons are relatively large and around the borderline cutoff of 0.05. I believe the small 

sample size, noises in the structure data and imperfection of the predictions all contributed to the 

relatively large P values. 

In Fig. 7de, I showed an example TCR-pMHC structure with the PDB id of 5hhm, generated by 

Valkenburg et al. Overall, I found that R98 and S99 had the biggest differences in predicted 

ranks after the “0-setting” scan (Fig. 7d, upper panel) and alanine scan (Fig. 7d, lower panel), 

which were the residues located in the middle of the CDR3 and had the most contacts with 

pMHC. The other two amino acids with relatively high rank changes could be explained by their 

crucial role in formation and stabilization of the CDR3 loop. I observed that S95 formed intra-

chain contacts with the small loop formed by Q103 and the side chains of E102 and Y104.  
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Figure 7 Structural analyses support the predicted TCR-pMHC interactions. (a) Residues in the 

middle segments of CDR3s are more likely to induce larger changes in predicted binding 

affinity. I divided each TCR CDR3 into six segments of equal lengths, and plotted the 

normalized changes in predicted binding ranks of residues in each segment of all CDR3s 

investigated. The absolute value of rank changes for each amino acid of a peptide are normalized 

by the maximal absolute value of rank changes for that peptide. (b) Residues with direct contacts 

are more likely to induce larger changes in the predicted pMHC binding strength than non- 

contacted residues. According to the 3D crystal structures, the CDR3 residues were grouped by 

whether or not they formed any direct contacts with any residues of pMHCs. P value is 

calculated by one-way Wilcoxon Signed Rank Test. (c) Same analysis done as in (a) and (b) 
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except for using alanine scan. For boxplots in (a)-(c), box boundaries represent interquartile 

ranges, whiskers extend to the most extreme data point which is no more than 1.5 times the 

interquartile range, and the line in the middle of the box represents the median. (d) Predicted 

rank changes of amino acid residues in the CDR3 of one example TCR-pMHC structure (PDB 

id:5hhm). The top panel shows the results for 0-setting and the bottom panel shows the results 

for alanine scan. (e) 3D structure of 5hhm. Blue: CDR3 of TCRβ chain; yellow: TCRα chain; 

tints: other regions of the TCRβ chain; magenta: antigen; green: HLA.  

Characterizing the TCR-pMHC interactions in human tumors     

To further validate pMTnet and demonstrate the value of pMTnet as a knowledge discovery tool, 

I characterized the TCR and pMHC interactions in several of the most immunogenic tumor 

types, where the tumor antigen presentation machinery is more likely to be active(Wang et al. 

2018). I analyzed the genomics data of The Cancer Genome Atlas (TCGA) and the in-house 

Renal Cell Carcinoma (RCC) data (Wang et al. 2018). TCGA patients included lung 

adenocarcinoma patients (LUAD) (Cancer Genome Atlas Research Network 2014), lung 

squamous cell carcinoma patients (LUSC) (Cancer Genome Atlas Research Network 2012), 

clear cell renal cell carcinoma patients (KIRC) (Cancer Genome Atlas Research Network 2013) 

and melanoma patients (SKCM) (Cancer Genome Atlas Network 2015). 

I investigated several classes of antigens that could affect T cell populations in the tumor 

microenvironment. The first class of antigens that could affect T cell retention and expansion is 

tumor neoantigens. The other class of antigens is tumor self-antigens (also referred to as tumor 

associated antigens, TAAs), such as CAIX (Lo et al. 2014). In kidney cancer, in particular, 

Cherkasova et al discovered the re-activation of a special class of self-antigens, HERV-E 

https://sciwheel.com/work/citation?ids=5398262&pre=&suf=&sa=0
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retrovirus, which encodes several immunogenic peptides that have been experimentally validated 

(Cherkasova et al. 2016). The rest T cell infiltration may be explained by prior virus infection or 

may simply be bystanders. The field has been debating for a long time which of these factors is 

most potent in shaping the landscape of the T cell repertoire in tumors. To ansIr this question, I 

identified candidate neoantigens and self-antigens from the genomic data. For RCCs, I profiled 

the expression of this very Ill characterized HERV-E found by Cherkasova et al. (Cherkasova et 

al. 2013) . The TCRs are called by Mixcr from the TCGA fresh frozen RNA-seq data, with an 

average of 25 unique CDR3 sequences per patient. In each patient sample, I assigned each TCR 

to one of the antigens (neoantigen and self-antigens) with the lowest predicted binding ranking, 

and also satisfying the criterion that this binding rank has to be loIr than each one of a series of 

cutoffs between 0.00% and 2% (otherwise, this TCR will be unassigned). I note that Bolotin et al 

has confirmed, via TCR-sequencing data, the ability of Mixcr to extract all relatively large TCR 

clonotypes with consistent clonal frequencies from RNA-seq data (Bolotin et al. 2017). 

Admittedly, very small TCR clonotypes will be missed by Mixcr, but these should account for a 

minor proportion of the whole repertoire (Bolotin et al. 2017; da Silva et al. 2017).  

For each patient sample, I calculated the percentages of neoantigens or self-antigens predicted to 

bind at least one TCR (defined as immunogenic antigen) for each class of antigens. Fig. 8a 

shows the total and immunogenic antigen numbers for one example RCC patient. Then for all 

patients of all cancer types, I calculated the proportion of immunogenic antigens for neoantigen, 

self-antigen (excluding HERV-E), and HERV-E (kidney cancer only) for each patient, and 

averaged them across all patients. I observed that neoantigens are generally more immunogenic 

than self-antigens (higher proportions of neoantigens are predicted to bind TCRs) (Fig. 8b). This 

is fitting because neoantigens, unlike self-antigens, are mutated peptides that have not been 

https://sciwheel.com/work/citation?ids=4223745&pre=&suf=&sa=0
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https://sciwheel.com/work/citation?ids=4345238,5834559&pre=&pre=&suf=&suf=&sa=0,0


 

 

39 

encountered by T cells during the developmental process. However, I observed that HERV-E 

antigens were more likely to be immunogenic than both neoantigens and the other self-antigens 

in RCCs, confirming prior reports on the importance of HERV-E in inducing immune responses 

in kidney cancers (Cherkasova et al. 2016).  

Next, I examined the impact of TCR-pMHC interactions on the clonal expansion of T cells. For 

each patient, I compared the clonal fractions of TCRs (#specific TCR clonotype/#all TCRs) that 

Ire predicted to be binding to any of the neoantigens and self-antigens, and also the clonal 

fractions of the other non-binding T cells. In an example patient (Fig. 8c), I showed the average 

clonal fraction of TCRs that can bind or that cannot bind to any antigen in this patient (1% 

binding rank cutoff). This patient’s binding T cells had a higher average clonal fraction than non-

binding T cells. For each of the four cancer types, I calculated the number of patients with 

binding T cells having a higher average clone fraction, divided by the number of patients with 

non-binding T cells having a higher average clone fraction. Strikingly, I observed that more and 

more patients demonstrated clonal expansion of their antigen-targeting T cells compared to other 

T cells (Fig. 8d), with smaller and smaller rank percentile cutoffs (stronger affinity) to define 

antigen-TCR pairing. Consistent with Fig. 6, this result also shows that more immunogenic 

tumor antigens induce stronger T cell clonal expansion in human tumors. 

Finally, I tested the TCR binding affinity of neoantigens generated by missense mutations and 

frameshift mutations. Frameshift mutations usually generate epitopes that are completely new 

and not similar to any epitope from the normal human proteome, while missense neoantigens 

differ from the normal epitopes by one mismatch. Therefore, frameshift neoantigens are likely 

more potent in inducing strongly reactive T cells/TCRs. Indeed, the neoantigens generated by 

https://sciwheel.com/work/citation?ids=4223745&pre=&suf=&sa=0
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frameshift mutations exhibited significantly stronger binding to TCRs (average rank=0.81%) 

than neoantigens generated by missense mutations (average rank=0.92%) (P=8.1x10-9). 

 

Figure 8 Characterizing the TCR-pMHC interactions in human tumors. (a) The number of 

immunogenic and non-immunogenic antigens of different classes for one example ccRCC 

patient (percentile rank cutoff=1%). The lower table shows the immunogenic percentage 
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calculation process for this patient. (b) The average percentage of immunogenic neoantigens, 

self-antigens (excluding HERV-E), and HERV-E peptides in each patient cohort. A series of 

binding cutoffs on the predicted pairing strength is applied. And with each cutoff, the 

immunogenic percentage is calculated for each patient and averaged within each cohort. (c) TCR 

clonal fractions of binding and non-binding TCRs identified in one example patient. “Binding” 

refers to the predicted binding of TCRs to any of the neoantigens, self-antigens, or HERV-Es, 

with the binding rank cutoff being 1%. The box boundaries represent interquartile ranges, and 

the line in the middle of the box represents the median.  (d) The ratio of the number of patients 

with binding T cells having a higher average clonal fraction over the number of patients with 

non-binding T cells having a larger average clonal fraction. This ratio is calculated with a series 

of binding rank cutoffs. The dashed horizontal line indicates the ratio of 1. 

Discussion 

This work enabled prediction of the TCR-binding specificity of class I pMHCs, just given the 

TCR sequence, (neo)antigen sequence, and MHC type, which has not been achieved before. This 

is enabled by several innovative algorithmic designs, including transfer learning to take 

advantage of a large amount of related TCR and pMHC data without pairing information, and the 

differential training paradigm that allows pMTnet to focus on differentiating binding vs. non-

binding TCRs. Although TCRs directly interact with the epitopes, MHC proteins restrict the 

spatial locations of the anchor positions of the epitopes, which further limits the possible 

conformations of the epitopes and influences their interactions with TCRs. This led us to 

incorporate MHC protein sequences in pMTnet.  

Furthermore, a suite of genome-wide analyses was now enabled by pMTnet, which has revealed 

interesting biological discoveries. This work provided a large scale and unbiased estimate of the 
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immunogenicity potential of neoantigens and self-antigens (including HERV-E). Recently, Gee 

et al carried out yeast-display screening in two HLA-A∗02:01 homozygous patients with 

colorectal adenocarcinoma and identified four TCRs and their peptide targets (Gee et al. 2018). 

Surprisingly, three of the four receptors recognized unmutated self-antigens. Consistent with the 

observations of Gee et al in a limited number of patients, I confirmed in several large cohorts that 

self-antigens do have immunogenic potential, though neoantigens are still more likely to be 

immunogenic. But HERVs, a special class of self-antigens in kidney cancer, seems to be more 

immunogenic than neoantigens. 

One caveat of the current study is the potential problem caused by the biased representation of 

certain epitopes and their clonally expanded pairing TCRs in the training dataset. Admittedly, the 

training dataset collection has many common epitopes such as those Ill studied ones from CMV. 

In the future, I expect more training TCR-pMHC pairing data to be accumulated by the field, 

especially given the advent of high-throughput technologies such as T-scan and 10X Immune 

Profiling. These data will more accurately represent the whole space of possible epitopes for 

training pMTnet, and will be powerful for helping move the field forward. 

Overall, I proved that the pairing between TCRs and pMHCs, just given the TCR, the antigen, 

and the MHC sequences, is “machine learnable”, which sets a foundation for future studies based 

on my work. I expect pMTnet to propel tumor immunogenomics research and also to enhance 

the design and implementation of immunotherapy in the modern era of personalized medicine. 

 

 

 

CHAPTER FOUR 

Inferring the evolution of neoantigen-T cell interactions in tumors
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Background and rationale 

Neoantigens are key markers for the recognition of T cells, and the binding of T cells with 

neoantigens initiates their tumor cytotoxic effects. Unfortunately, researchers within the field are 

far from clearly understanding neoantigens’ impact on tumorigenesis, prognosis, and treatment 

response. An elucidation of how neoantigens participate in past tumor evolution has been absent 

but could give us a sneak peek into the behavior of the tumors in the future, particularly their 

response to immunotherapies. 

The survival fitness of cancerous cells diminishes when mutations within tumor DNA arise that 

give way to neoantigens presented on the surface of these tumor cells. In a tumor 

microenvironment with actively-infiltrating T cells, these mutations will be recognized and the 

tumor cells bearing them will be selected against during evolution. With constant external 

immune selection pressure, the numbers of neoantigens generated by newly occurring tumor 

somatic mutations are expected to stay constant over the course of tumorigenesis. When anti-

tumor T cell immunity is strong, it is anticipated that the mutations that generate more 

neoantigens will be more strongly selected against. On the contrary, when there is not enough T 

cell infiltration or there is functional exhaustion/inhibition of the T cells, selection pressure will 

be substantially lessened for tumor cells with mutations of high neoantigen counts. Thus, 

ascertaining the dynamics of neoantigen distributions throughout molecular time can reveal the 

evolutionary history of the anti-tumor immune pressure during tumorigenesis. 

To achieve this task, it is critical to time the genetic events that happened to the tumors. Tumors 

at the time of diagnosis often consist of heterogeneous clones (Deshwar et al. 2015; Miller et al. 

2014; Roth et al. 2014), each with a unique set of somatic mutations sharing similar variant 

cellular prevalence. The tumor clones can be easily detected through the clustering of mutations 

https://sciwheel.com/work/citation?ids=32485,3797256,2892024&pre=&pre=&pre=&suf=&suf=&suf=&sa=0,0,0
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via algorithms such as PyClone (Roth et al. 2014), PhyloWGS (Deshwar et al. 2015), and 

SciClone (Miller et al. 2014). However, detection of the developmental time-ordering of these 

clones is a much harder problem. Each child clone is grown from a tumor cell within the parent 

clone, due to the occurrence of a tumor-driving event, along with possible passenger mutations 

also taking place. One parent clone may yield two or more child clones. Due to the large 

potential search space, it is difficult to reliably order the clones into a phylogenetic tree of 

parent-child relationships. Also, the clonal size is an unreliable indicator of the appearance times 

of the tumor clones, due to sampling bias and the fact that different clones have different 

proliferating potentials. However, the prevalences of the clones can help distinguish which 

mutations occurred earlier from those that occurred later. 

I employed an innovative approach of treating the intra-clone cellular prevalences of the somatic 

mutations as a surrogate of a molecular clock within each tumor clone, and developed a Bayesian 

hierarchical model, named netie, to infer the evolution of neoantigen-CD8+ T cell interactions in 

tumors by sampling from different clones. Netie is systematically validated by a series of 

simulation studies and real human tumor data. We utilized netie to evaluate 3,211 tumors of 18 

cancer types, and provided the first pan-cancer landscape of the impact of neoantigens on 

tumors’ molecular phenotypes, prognosis, and treatment response to immunotherapies. While 

most prior studies of neoantigens focus on immunogenic tumors (Lu et al. 2020; Łuksza et al. 

2017), such as lung cancer, we also showed an effect of neoantigens on non-immunogenic 

tumors using netie. Our work achieved an understanding of how neoantigens participate in 

tumorigenesis and how they impacted the molecular makeup of the tumors, which is neglected 

by most other works on neoantigens. Translationally, netie revealed a curious synergy between 

neoantigen distributions and T cell infiltrations for the prediction of patient prognosis and 

https://sciwheel.com/work/citation?ids=32485&pre=&suf=&sa=0
https://sciwheel.com/work/citation?ids=3797256&pre=&suf=&sa=0
https://sciwheel.com/work/citation?ids=2892024&pre=&suf=&sa=0
https://sciwheel.com/work/citation?ids=8349109,4493333&pre=&pre=&suf=&suf=&sa=0,0
https://sciwheel.com/work/citation?ids=8349109,4493333&pre=&pre=&suf=&suf=&sa=0,0
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treatment response to immunotherapies, which advocates for development of future combo 

biomarkers consisting of these and other potential components. 

Method 

Each patient is modeled separately. For each patient, there are S ≥ 1 samples. Let c denote the 

tumor clones inferred by PyClone for c = 1, ..., Cs , for each sample s. Let as,c denote the anti-

tumor immune selection pressure for each clone in each sample. Note that some clones in 

different samples are essentially the same clone, sharing a very similar set of mutations and 

similar ranks of variant allele frequencies. Thus, their as,c values (see below) should be the 

same. For convenience of notation, we will record them as different clones in different samples. 

For each clone, we have k = 1, ..., Ks,c mutations. The prevalence of each mutation is vs,c,k, 

which is bounded between 0 and 1. For each mutation, we have the associated number ns,c,k of 

neoantigens generated from that mutation. In our neoantigen calling pipeline, we only consider 

mutations with VAF > 0.05, as only these mutations’ neoantigens have been called. We only 

consider clones with at least two mutations and at least one mutation with neoantigen count > 0. 

For patients with multiple samples, we define a function, φ(s, c) = 1, 2, ..., Φ, to denote whether 

the different clones of the different samples are actually the same clone. If the φ(s, c) returns the 

same value, they are actually the same clone. Thus, as,c should be treated as an alias of aφ(s,c). If a 

mutation has variant allele frequency (VAF) > 0.05 in any sample, we will consider it. In some 

samples, this mutation’s VAF may be < 0.05, and thus will not have neoantigens called for that 

sample. But this mutation’s neoantigens should still be considered and its neoantigen count can 

be obtained from the samples in which this mutation has VAF > 0.05.   

Bayesian hierarchical model  
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Given the observed neoantigen count data and the prevalence of mutations, we aim to infer the 

anti- tumor selection pressure as,c for each clone and a for the whole tumor. There are two 

scenarios for modeling: only one unique clone detected across all samples, and more than one 

clone detected across all samples.  

First scenario: only one unique clone detected (degenerate case) 

I assume a zero-inflated Poisson distribution to model the number of neoantigens generated for 

each mutation. That is, 

        

λs,c,k is the expected number of neoantigens of the non-zero inflation part, as a function of the 

time in the history of the tumor development. The “time in history” is inferred by the prevalence 

of each mutation, vs,c,k, which serves as a molecular clock surrogate. In particular, we assume  

 

We let zs,c,k donate whether the mutation comes from the first component (zs,c,k=0) with 

probability , or the second component (zs,c,k=1). In other words, Pr(zs,c,k=0|π)=π   

Second scenario: more than one unique clone detected  

We still assume the same zero-inflated Poisson distribution as in the first scenario. However, 

different clones should share some similarity in properties. Therefore, we assume a hierarchical 

structure; for aφ(s,c), we have  
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where εφ(s,c) ∼ N(0, σa2) and σa2 is a predefined positive number.  

Results 

Netie is validated by simulation studies 

We applied netie to three simulated tumor samples. The first sample had four clones and 100 

mutations (Fig. 9a); the second sample had one clone and 100 mutations (Fig. 9c); the third 

sample had eight clones and 400 mutations (Fig. 9d). Cellular prevalences from the same clone 

were sampled from normal distributions with the same means and variances. The number of 

clones and mutations, prevalences, and the clonal structures were simulated to be comparable to 

those observed in typical real human tumors. The performance of netie was evaluated with 

respect to the estimation of each variable. For the estimated immune selection pressure “ac” and 

overall “a”, we compared the posterior estimates with the ground truths of the simulation. The 

true values were all located within the 95% highest posterior density interval (Fig. 9b), meaning 

that netie has correctly inferred the trend of variation in immune selection pressure. In Fig. 9b, 

the traceplot shows the sampled a and ac at each MCMC iteration. The fluctuations of the 

sampled variables around stable values (minimum upward or downward shift in average) 

represent a good dynamic of convergence. The potential scale-reducing factors for all the 

inferred parameters are less than 1.1, which also demonstrates that MCMC converged (Fig. 9e) 

(Kulmon 2021; Li et al. 2021). All of these indicate dependable performance characteristics of 

netie. 

https://sciwheel.com/work/citation?ids=1019915,11560216,11560217&pre=&pre=&pre=&suf=&suf=&suf=&sa=0,0,0


 

 

48 

 



 

 

49 

 

Figure 9. Applying netie on simulation data. (a) The setup of the simulation data, where the 

assumed clones and their parental relationships were shown. (b) The posterior density curves of 

the random variables to be estimated, with the 95% highest posterior density intervals presented 

by blue bars on the x-axes. The vertical red lines are located at the true assumed values. Trace 

plots showing the convergence of the netie estimates of the random variables around the true 

values, throughout the MCMC iterations. (c-d) Two more simulation datasets. The same 

simulation and analysis procedures, as in Figure 9b, were carried out. (e) The potential scale 

reducing factors (PSRFs) for all the inferred variables of the simulation dataset in a. “ac” is the 

inferred trend of change in anti-tumor selection pressure for each clone. “bc” and “pi” are the 

posterior estimates of the other variables in the Bayesian model.  
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Patients with increasing immune pressure demonstrate stronger T cell activation 

I also validated netie in real data through demonstrating its power in revealing biologically 

meaningful signals. I applied it to The Cancer Genome Atlas Program (TCGA) and kidney 

cancer patients from our in-house UTSW Kidney Cancer Program cohort (Wang et al. 2018). We 

included a total of 17 cancer types in the study. Netie analyses were successfully performed on 

2,545 patients’ genomics data. Some samples with available genomics data were lost in the 

analysis pipeline for a number of reasons, such as no somatic mutations nor neoantigens 

detected, or failure of PyClone’s inference to generate clusters in the output. We divided 

successfully processed patients based on the trends of their tumor immune pressure’s variation 

over time, “a”. We first define three groups of patients: patients with high “a” (more than 70% of 

MCMC iterations have inferred “a”>0), patients with low “a” (fewer than 30% of iterations have 

inferred “a”>0), and the other patients in the middle. Fig. 10a shows the proportion of patients in 

each category, for each tumor type. In every cancer type that was investigated, we observed that 

there were patients who displayed an increase in anti-neoantigen immune pressure over time, 

while others exhibited a decrease in this trend, showing that heterogeneous tumor evolutionary 

processes, as a result of T cell-mediated pressure, exist in all cancer types. In addition, we found 

that in certain tumor types (Fig. 10a) there were much greater proportions of patients who 

demonstrated an increased immune selection pressure over time, such as Adrenocortical 

carcinoma (ACC), Lymphoid neoplasm diffuse large B-cell lymphoma (DLBC), and Uveal 

melanoma (UVM); meanwhile, other tumor types had many more patients who showed 

decreasing immune pressure, such as Pancreatic adenocarcinoma (PAAD), and Uterine 

carcinosarcoma (UCS). This suggests that the nature of the tumor-immune interactions also 

https://sciwheel.com/work/citation?ids=5398262&pre=&suf=&sa=0
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varies in a sophisticated manner across different cancer types, which could inform 

immunotherapy choices for treating these cancers. 

It is unclear from present studies as to whether and how neoantigen presentation can alter the 

molecular phenotypes of the tumors. To answer this question, for each cancer type, we divided 

patients into a group “INisp”, with increasing immune pressure over time (a>0 in more than 50% 

of iterations), and another group “DEisp”, with decreasing immune pressure over time (a<0 in 

more than 50% of iterations). We compared the expression profiles of INisp patients and DEisp 

patients, and performed gene ontology (GO) analyses to identify enriched pathways in 

differentially expressed genes. We identified immune-related pathways in the differentially 

expressed genes for every tumor type we investigated. Immune-related pathways are defined as 

GO terms with any keyword related to any type of immune cells, or keyword related to 

immune/interleukin/cytokine/chemokine/bacteria. The top enriched pathways with the most 

significant P-values, for Kidney renal clear cell carcinoma (KIRC) and Melanoma (SKCM), are 

shown as examples in Fig. 10b. In fact, Fig. 10c shows that every tumor type has at least three 

enriched immune-associated pathways identified. Among the most immunogenic cancer types 

(Lung squamous cell carcinoma (LUSC), Lung adenocarcinoma (LUAD), Melanoma, and 

Kidney renal clear cell carcinoma) (Wang et al. 2018), kidney cancer has the highest number of 

immune-related pathways. Curiously, immune-related pathways are also detected in the 

differentially expressed genes for other cancer types that are usually considered non-

immunogenic, such as Adrenocortical carcinoma (ACC), Bladder urothelial carcinoma (BLCA), 

and Uveal Melanoma (UVM). This observation suggests that neoantigens broadly impact the 

tumor evolutionary processes of non-immunogenic cancer types, in addition to immunogenic 

https://sciwheel.com/work/citation?ids=5398262&pre=&suf=&sa=0
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cancer types, which the field has been focusing on for neoantigen-related research and 

applications previously. 
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Fig. 10 Immune selection pressure variations correlate with the phenotypes of the tumor and 

tumor clones. (a) Applying netie on the TCGA plus the in-house KCP data. The percentages of 

the patients with high “a” (a >0 in more than 70% MCMC iterations) and low “a” (a<0 in more 

than 70% iterations) were shown for each tumor type. The other patients in the middle can be 

deduced by 1 minus the proportions of patients with high “a” and low “a”, but omitted from 

plotting to avoid cluttering the figure. (b) Circos plots showing the enriched pathways in the 

genes that are differentially expressed between INisp and DEisp patients (a> or <0 in more than 

50% of iterations, unlike the (a) panel). Left: KIRC; right: SKCM. Only the top pathways are 

shown in each panel for ease of presentation. (c) The number of enriched immune-related 

pathways found in the genes differentially expressed between INisp and DEisp patients, for each 

cancer type. (d) The top differentially enriched pathways between INisp and DEisp patients, 

detected by GSEA. For this analysis, all patients regardless of cancer types were combined. (e) 

Volcano plot showing the genes that are differentially expressed between INisp and DEisp 

patients of SARC. A positive value on the X axis means the gene is up-regulated in the INisp 

patients. (f) A heatmap showing the differential expression of HAVCR2, LAG3, IL-2, IFNG, and 

TNF, in all cancer types. Red refers to higher expression in INisp patients, and blue refers to 

higher expression in DEisp patients. 

 

To confirm our findings above, I also performed Gene Set Enrichment Analysis (GSEA) 

(Subramanian et al. 2005) between the expression profiles of INisp patients and DEisp patients. 

We observed that a large number of immune-related pathways, especially T cell related 

pathways, are differentially enriched between INisp and DEisp patients (the top pathways shown 

in Fig. 10d). 

https://sciwheel.com/work/citation?ids=49078&pre=&suf=&sa=0
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Then I focused on studying individual genes that were directly related to T cell functions. The 

volcano plot of differential gene expression of Sarcoma (SARC) is shown in Fig. 10e as an 

example. I found that IL-2 and IFNG, which are landmark genes up-regulated in activated T cells 

(Yi et al. 2010), have higher expression levels in sarcoma INisp patients. I also found another 

gene, TNF, which promotes T cell activation (Unable to find information for 2006230; Yi et al. 

2010), is up-regulated in INisp patients in many other cancer types such as Head and Neck 

squamous cell carcinoma (HNSCC) and Adrenocortical carcinoma (ACC). I systematically 

demonstrated the differential expression of these genes between INisp and DEisp patients in all 

the cancer types analyzed (Fig. 10f). Across almost all cancer types, we observed higher 

expression of IL-2, IFNG, and to a lesser extent, TNF in INisp patients. In Fig. 10f, we also 

included two genes, LAG-3 and HAVCR2, which are markers of T cell exhaustion (Anderson 

2012; Unable to find information for 6662975), and displayed their consistent up-regulation in 

DEisp patients. 

We also examined whether the patient neoantigen repertoires were correlated with tumors’ 

epigenetic profiles. By comparing the methylation levels between INisp patients and DEisp 

patients, we identified two cancer types, kidney renal clear cell carcinoma and Head and Neck 

squamous cell carcinoma (HNSCC), with 16 and 2 enriched immune-related pathways in the 

differentially methylated genes.  

Overall, netie built a link between patient neoantigens and tumor molecular profiles, which is 

capable of yielding novel mechanistic insights into the complicated process of host-tumor 

interactions. 

Immune pressure variations are correlated with the genotypes of tumor clones 

https://sciwheel.com/work/citation?ids=86319&pre=&suf=&sa=0
https://sciwheel.com/work/citation?ids=2006230,86319&pre=&pre=&suf=&suf=&sa=0,0
https://sciwheel.com/work/citation?ids=2006230,86319&pre=&pre=&suf=&suf=&sa=0,0
https://sciwheel.com/work/citation?ids=4236172,6662975&pre=&pre=&suf=&suf=&sa=0,0
https://sciwheel.com/work/citation?ids=4236172,6662975&pre=&pre=&suf=&suf=&sa=0,0
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Next, I investigated whether the immune pressure variations inferred by netie are correlated with 

the genotypes of the tumor clones by looking at whether the tumor clones with and without 

somatic mutations in each gene display any difference in the immune pressure variations ac. For 

this analysis, I pooled all tumor clones from all patients and employed a two-sided Wilcoxon test 

to compare ac. I plotted a histogram of the Wilcoxon test P values of all genes, and interestingly 

observed an enrichment towards small P values, while the null distribution will be a uniform 

distribution of P values between 0 and 1. This suggests that there are indeed some genes whose 

mutations impact the performance of cytotoxic T cells in the tumor microenvironment and affect 

the immune selection pressure, inferred by netie. In Fig. 11a, I display the top genes with the 

smallest P values. Interestingly I noticed two genes, SETDB1 and FN1, with prior implications 

of their involvement in tumor-T cell interactions (Dang et al. 2017; Griffin et al. 2021; Unable to 

find information for 11382656). In Fig. 11b, we showed that when SETDB1 is mutated, the 

tumor clones will more likely demonstrate an increase in immune pressure. Fig. 11c shows the 

same phenotype for FN1. 

https://sciwheel.com/work/citation?ids=10999136,11382656,4757608&pre=&pre=&pre=&suf=&suf=&suf=&sa=0,0,0
https://sciwheel.com/work/citation?ids=10999136,11382656,4757608&pre=&pre=&pre=&suf=&suf=&suf=&sa=0,0,0
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Fig. 11 Immune selection pressure variations correlate with the genotypes of the tumor and 

tumor clones. (a) The top genes with smallest Wilcoxon test P values comparing the immune 

pressure variations in the tumor clones with and without mutations in each gene. (b,c) Boxplots 

of the immune pressure variation (ac) in the tumor clones with and without mutations in 

SETDB1 (b) and FN1 (c). 

Multi-region sampling reveals intra-tumor heterogeneity of immune pressure 

Netie is also applicable for joint-analysis of multiple samples from the same tumor. In the prior 

analyses with only one sample per patient, netie infers the clone-specific immune selection 

pressure and reports an overall tumor-wise average. The availability of multiple samples per 
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patient and the unique composition of tumor clones in each sample allows for closely examining 

the differences between different samples and individual clones, providing a more fine-grained 

insight into the intra-tumor heterogeneity of immune selection pressure. I generated WES and 

RNA-seq data for four non-small cell lung cancer patients (NSCLC), for each of whom three 

samples from different regions of the tumors were collected. The phylogenetic tree for each 

patient was reconstructed by Pyclone (Roth et al. 2014) and Clonevol (Dang et al. 2017). One 

example showed one patient's phylogenetic tree in Fig. 12a. There were a total of 13 clones 

found in the three samples of this patient (one common clone, and 12 private clones). 

Interestingly, netie inferred that the private clones demonstrated an enhancement of immune 

selection pressure over time, while the sole shared clone demonstrated the opposite trend (Fig. 

12b). I also found a stronger decrease in immune pressure for the shared clones of each of the 

other three patients’ multi-region sampled tumors, compared with their private tumor clones 

(Fig. 12c). One possible explanation for this curious observation could be the different levels of 

immune selection pressure inflicted upon the distinct tumor clones. The tumor clones with 

stronger decrease of immune responses, due to certain unknown reasons, are more likely to 

persist and evolve in more regions of the tumor (and thus become the observed “shared” clone). 

https://sciwheel.com/work/citation?ids=32485&pre=&suf=&sa=0
https://sciwheel.com/work/citation?ids=4757608&pre=&suf=&sa=0
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Fig. 12 Netie is capable of performing multi-sample joint analyses. (a) Netie analysis of the 

multi-site samples of one MDACC lung cancer patient (Patient ID 886403). The tumor clones 

were visualized in the phylogenetic tree plot and the fish plot. (b) The immune selection pressure 

scores of the shared and the private tumor clones of this patient in (a). (c) The immune selection 

pressure scores of the shared and the private tumor clones of the other MDACC lung cancer 

patients with multi-region sampling. (d) Netie analysis of the pre-treatment and post-treatment 

samples from the Riaz cohort. The immune selection pressure scores were also visualized in 

barplots for comparison between clones that occurred in pre-treatment samples and new clones 

that occurred only in the post-treatment samples. The P value of paired T test for testing the 

differences in “a” (before vs. after treatment) for the 8 patients is 0.015. (e) Boxplots of the 

expression levels of the T cell exhaustion signature, comparing the pre-treatment and post-

treatment samples. (f) GO analysis of the genes differentially expressed between the pre-

treatment and post-treatment samples. The lengths of the bars are proportional to the -log(P 

value) of the GO analysis. 

 

Additionally, I analyzed a cohort of melanoma patients treated with checkpoint inhibitors (Riaz 

et al (Riaz et al. 2017)). There are a total of eight patients from the Riaz cohort for whom both 

pre- and post-treatment samples were collected and for whom netie, Pyclone, and Clonevol 

analyses were all successfully performed. These patients were mostly stable disease and 

progressive disease patients, without any complete response patients present in this dataset. Netie 

showed that these patients’ tumors demonstrated an overall decreasing trend of immune activity 

(Fig. 12c, ac<0), which seemed to be consistent with the lack of responsiveness in these patients. 

Due to the availability of both pre- and post-treatment samples, we were able to distinguish 

s 

https://sciwheel.com/work/citation?ids=4381395&pre=&suf=&sa=0
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which tumor clones occurred later on. I compared the evolutionary patterns of the immune 

selection pressure of the clones that were pre-existing in the pre-treatment samples and those that 

had newly occurred in the post-treatment samples. Interestingly, I found that the clones that 

newly arose after immune-checkpoint blockade therapy all had stronger waning of anti-tumor 

immune activity than clones that already existed in the pre-treatment samples (Fig. 12d, 

Pval=0.015). This observation could be caused by the exhaustion of T cells after checkpoint 

blockade. To confirm this, I examined the expression of a T cell exhaustion gene signature  (Yi 

et al. 2010) in these samples. I observed that the T cell exhaustion level was indeed higher in 

post-treatment samples than in pre-treatment samples, with statistical significance achieved (Fig. 

3d, Pval=0.037). I also examined the differential expression of pre-treatment and post-treatment 

samples in an unbiased manner. In Fig. 12f, we showed that the differentially expressed genes 

were enriched in pathways essential for immune system activation, leukocyte activation, and 

leukocyte aggregation. Overall, netie analyses revealed, from the perspective of the evolution of 

neoantigens, an exhaustion of T cell anti-tumor activity after checkpoint blockade. 

Overall, multi-sample genomics data, when viewed through the lens of netie, revealed that the 

out-growth of particular tumor clones is concomitant with a weakening of T cells’ immune 

surveillance on these clones.   

Discussion 

This work provided a tool, netie, to infer the footprint left by anti-tumor T cells on the evolution 

of each subclone of a heterogeneous tumor over the course of tumorigenesis. Netie was 

systematically validated by simulation data with assumed gold-standard and through application 

in large scale real human tumor data. This is the first study that has explicitly modeled how 

https://sciwheel.com/work/citation?ids=86319&pre=&suf=&sa=0
https://sciwheel.com/work/citation?ids=86319&pre=&suf=&sa=0
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tumor neoantigens and T cells shaped the clonal structures of tumors. Interestingly, this study 

showed that tumor neoantigens shape the intra-tumor heterogeneity structure of not only the 

most immunogenic cancer types, but also many non-immunogenic cancer types - hinting to the 

broad opportunities of neoantigen-based immunotherapies (such as neoantigen vaccines) for 

these cancer types. With the model netie, we were also the first to characterize the extent to 

which tumor neoantigens impact the transcriptomic states of the tumors. While previous studies 

focus on studying the relationship between neoantigen loads and patient clinical phenotype, this 

analysis provided mechanistic insights into the inter-relationship between neoantigen repertoire 

and tumor genotypes/phenotypes, and the roles of neoantigens during tumorigenesis and clonal 

evolution. On the other hand, netie revealed that the past history of tumor-immune interactions 

can inform the prediction of patients’ future prognosis and responsiveness to immunotherapy 

treatment. As netie is built for the inference of tumor-T cell interactions, it seems fitting and 

logical to observe the strong synergistic effects between T cell infiltration and the netie 

INisp/DEisp classifications for predictions of prognosis and treatment response. I envision future 

work to systematically evaluate the incorporation of netie in biomarkers for patient outcomes in 

prospective clinical trials. 

This work was enabled by the innovative design of leveraging the clusters of mutations 

(representing tumor clones) detected by software such as PyClone, PhyloWGS and SciClone, 

and also the cellular prevalences of the mutations in the same tumor clone to serve as a 

molecular clock for timing the occurrence of each genetic event. While the usage of these tumor 

clone detection software has been commonplace, very few works have examined each individual 

clone in a manner near-paralleling the thoroughness conducted during this study. I expect this 

surrogate molecular clock approach to be generally applicable to other domains of tumor 
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genomic research, and to provide new discoveries beyond the scope of tumor neoantigens. Based 

on this core rationale, we developed an advanced and robust Bayesian Hierarchical model to 

infer the history of neoantigen-T cell interactions during tumorigenesis. The Bayesian framework 

allows netie to probabilistically consider all tumor clones in a random effect model, which 

respects the characteristics of each individual tumor clone but also digests the shared information 

across clones at the same time. Furthermore, the netie model is highly flexible and can handle 

either single or multiple samples from the same patient. 

One limitation of our study is that the trend of the variation in the anti-tumor immune pressure is 

simply categorized as increasing or decreasing in netie. The interaction between tumors and the 

immune system is usually complicated and the trend of change in the immune selection pressure 

may not necessarily be linear throughout the evolution process. We hope future works from the 

field of in silico dissection of intra-tumor heterogeneity will develop more reliable software to 

time the occurrences of different tumor clones and mutations, which will enable netie to model 

the relationships more comprehensively between tumors and anti-tumor immunity, and to 

capture their complicated, nonlinear interactions. 

Overall, netie bridged the field of neoantigen research and the field of tumor clonal 

deconvolution research, revealing an exciting and uncharted territory for future studies. 

 

CHAPTER FIVE 

Discussion 

In this thesis, I introduced and discussed neoantigens and their application to clinical science. 

The development of genome sequencing technology and bioinformatics has greatly improved our 
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capability to study the interaction between tumor and immune system and understand the 

functions of neoantigens in physiological and tumor development. Then I showed my work on 

methodologies development. I developed three tools, CSiN, pMTnet, netie to study the function 

of neoantigens. Then, I validated these tools in the real datasets and made novel biological 

discoveries using the tools. Finally, I presented the impact of neoantigens on tumor development 

and patients’ clinical outcomes from different aspects by using the tools. Overall, I contributed to 

the tumor immunity research community from the bioinformatics side by describing the 

neoantigen repertoires in human tumors, understanding the interaction between neoantigens and 

T cells, and investigating the impact of neoantigens on tumorigenesis and progression. 

The development of the next generation sequencing greatly improves the study of tumor 

immunology. NGS enabled the comparison between tumor and normal cell genome and 

identification of mutations and neoantigens with high efficiency. Notwithstanding the effort to 

predict neoantigens from the whole exome sequencing, it is possible that false-positive and false-

negative neoantigens convoluted the neoantigen assessment and analyses. Combining genomics 

sequencing technologies and transcriptomics sequencing technologies with proteomics-based 

technologies for identifying neoantigens could possibly increase the accuracy of identification of 

neoantigens and the accuracy for predicting patients’ clinical outcomes by neoantigens. Mass 

spectrometry, mild acid elution (MAE), and immunoprecipitation (IP) (Kote et al. 2020) 

provided possible ways to isolate MHC-neoantigens from the tumor cell surface of human tissue. 

The direct detection of neoantigens by proteomics-based technologies would help decrease the 

errors brought by genomics and transcriptomics-based methods. 

With the maturation of both the sequencing technology and bioinformatics tools, more 

discoveries and predictions based on neoantigens could be more accurate. For example, the 

https://sciwheel.com/work/citation?ids=10994897&pre=&suf=&sa=0
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assessment of neoantigens could be improved by validating predicted neoantigens with mass 

spectrometry. The prediction for T cell-pMHC could also be improved by more validated 

training data. Another future direction of neoantigen TCR MHC binding is to incorporate TRA 

sequencing into the training data and collect more training data from the large-scale screening 

methods. All these efforts will help us better understand tumor immunology and the clinical 

treatment to cure cancer, and auto-immune diseases. 
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