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This study investigated the factors that influence post-TBI functional connectivity within 

three intrinsically connected networks; the default mode network (DMN), central executive 

network (CEN), and salience network (SN). The aim was to develop a predictive model for 

each network, based off a combination of cognitive performance, brain volumetric factors, 

aging/demographic factors, and TBI-related factors. A secondary aim was to examine the 

relationship between the SN and the anticorrelation (i.e., between-network BOLD signal 

 



correlation) between the DMN and CEN. Participants (n=63) sustained a mild-to-moderate 

TBI within six-months of participating in the study. They completed a cognitive assessment 

battery consisting of measures of executive functioning, language, memory, reasoning, and 

intelligence estimates. They also underwent structural MRI, resting-state fMRI, and 

completed mood symptom questionnaires. A seed-based, resting-state functional connectivity 

analysis was conducted for the DMN, CEN, and SN. Measures of brain volumetrics were 

calculated from the structural MRI. Stepwise multiple linear regressions using cognitive 

factors, demographic and injury factors, functional outcomes, brain volumetric factors, and 

symptoms of depression were preformed in order to develop predictive models of DMN, 

CEN, and SN functional connectivity. A Pearson correlation was used to examine the 

relationship between SN functional connectivity and DMN/CEN anticorrelation. 

 The predictive model for the DMN accounted for approximately 50% of the variance 

within the network, and was comprised of factors which included TBI severity, age at 

assessment, volumetric factors, and cognitive factors (including attention and abstract verbal 

reasoning). The predictive model for the CEN accounted for 37% of the network’s variance, 

and was comprised solely of cognitive factors, including verbal ability, attention, and 

inhibition. The SN model accounted for 45% of the variance, and was comprised of factors 

that included gender, functional outcomes, volumetric factors, and cognitive factors 

(including attention and cognitive switching). The functional connectivity within the SN had 

a trending positive correlation with the degree of anticorrelation between the DMN and CEN. 

These results not only reveal the factors that contribute to functional connectivity, but they 

 



also highlight the differences between networks, including that the DMN may be more 

sensitive to volumetric changes and TBI severity than the CEN or SN.
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LIST OF DEFINITIONS 

Default Mode Network (DMN) – A resting-state network that increases in activation in 

absence of an externally imposed task, and decreases in activation during an externally 

imposed task. The DMN is typically considered to be composed of the ventral-medial 

prefrontal cortex (VmPFC), left lateral parietal cortex (LLPC), right lateral parietal cortex 

(RLPC), bilateral hippocampi, and posterior cingulate cortex (PCC). 

 

Salience Network (SN) – A neural network composed of the anterior insula (AI) and the 

anterior cingulate cortex (ACC), believed to play a role in activation/deactivation of relevant 

neural networks and detection of salient external stimuli. 

 

Central Executive Network (CEN) -- A network comprised of the bilateral dorsolateral 

prefrontal cortex (DLPFC) and the posterior parietal cortex (PPC), believed to play a role in 

judgment, decision making, working memory, and executive functions. 

 

Blood oxygen level-dependent (BOLD) – A measurement derived from levels of 

oxygenation in blood, based on the concept that increased neuronal activity will require the 

bloodstream to deliver greater amounts of oxygen. BOLD is commonly used as a proxy 

measurement for neural activity used in fMRI. 

 

Resting-state - An imaging modality involving measuring the BOLD response in fMRI while 

the subject is awake, but at rest, in absence of an externally imposed task.  

xiv 
 



 

Functional Connectivity - The degree of correlation between the fluctuations in the BOLD 

signal in disparate neural areas. Areas that have high degrees of BOLD synchrony are said to 

have functional connectivity or to be functionally connected. 

 

Cohesiveness: For the purposes of this study, cohesiveness describes whole-network 

connectedness. The greater the overall functional connectivity within a network, the greater 

the network cohesiveness. It can also be used to describe the relationship between networks, 

as the greater the functional connectivity between networks, the greater the internetwork 

cohesiveness. 

 

Anticorrelation- In the context of functional connectivity, anticorrelation refers to distal 

neural regions that have a strong negative correlation in BOLD signal fluctuation. 
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CHAPTER ONE 

Introduction 

Approximately 1.7 million people suffer a traumatic brain injury (TBI) in the United States 

each year. Brain injury is one of the leading causes of emergency room visits, and can have 

drastic impacts on an individual’s life (Faul, Xu, Wald, & Coronado, 2010). For example, 

TBI commonly results in cognitive deficits, including difficulties with memory, cognition, 

language, adaptive abilities, and other cognitive functions (Arciniegas, Frey, Newman, & 

Wortzel, 2010; Dikmen, Machamer, Powell, & Temin, 2003). This can lead to social deficits, 

adaptive skill deficits, and diminished opportunities for employment. However, changes to 

cognitive ability are not the only sources of disability following TBI. Post-TBI psychiatric 

issues are increasingly recognized as contributing to functional deficits (O’Donnell et al., 

2013). Mood symptoms, anxiety symptoms, and symptoms of PTSD have been reported 

post-TBI (Zatzick et al., 2007). From where do these deficits and changes arise? What 

happens in the brain to cause these post-TBI alterations in cognition, emotion, and functional 

status? One potential answer to these questions may lie in changes to neural networks in the 

brain. The last decade has seen an increase in research on intrinsically connected networks, 

identified not by physical neural connections or by cortical geography, but rather by 

correlations in activity. These correlations in activity are even seen in so-called “resting 

scans”; neuroimaging conducted while participants are awake, but resting in a scanner. Three 

such networks are the default mode network (DMN), the central executive network (CEN), 

and the salience network (SN). Each of these networks is believed to play a role in various 

aspects of cognition and emotional processes, and all three are believed to be altered by TBI. 
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Investigating these networks post-TBI, and their relationship with cognitive measures, 

functional outcomes, depressive symptoms, and demographic factors may shed light into 

their functioning. 
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CHAPTER TWO 

Review of the Literature 

Imaging Modalities 

The brain is the ultimate “black box” of the human body. For millennia, mankind understood 

rudimentary associations between the brain and behavior. Ancient Egyptians, who in 

antiquity were regarded as having relatively advanced knowledge of anatomy and medicine, 

recognized that injuries to the head could affect cognitive and motor functioning. Centuries 

later, the ancient Greeks similarly regarded the brain as the seat of intelligence, though 

competing theories at the time implied that the brain simply helped cool the blood. Yet, 

despite thousands of years of behavioral observations, battle injuries, and dissections, the 

detailed functioning of a live, healthy brain remained a mystery.  

 In the latter half of the 20th century, several methods emerged that allowed for in-vivo 

study of the central nervous system. In the 1970s, computed tomography (CT) allowed for 

the first three-dimensional views of a living brain. In the 1980s, Positron emission 

tomography (PET) and single-photon emission computed tomography (SPECT) provided a 

glimpse into the metabolism and function of cerebral architecture. Though initially 

introduced in the 1970s, improvements in magnetic resonance imaging (MRI) throughout the 

1980s resulted in clearer structural images than CT. Furthermore, the risks associated with 

exposing an individual to the radiation levels associated with CT were avoided with MRI, 

since MRI measured the response of water-based hydrogen atoms to a strong magnetic field. 

MRI was also discovered to be sensitive to the paramagnetic properties of blood, including 

the ferromagnetic differences between oxygenated and deoxygenated blood. This led to the 
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development of functional magnetic resonance imaging (fMRI) paradigm in the 1990s, which 

allowed us to overlap functional information onto structural information, further refining the 

ability to examine in-vivo neural activity. Within the fMRI modality, a marker for brain 

activity was developed: the blood-oxygen level dependent (BOLD) response. Briefly, this 

indicator makes use of the paramagnetic properties of blood to measure the rate at which 

oxygen is released from the bloodstream to nearby neurons, which hypothetically require 

increasing amounts of oxygen with greater activity. This hemodynamic response to the 

increased neuronal oxygen demand is theoretically considered to be a marker for neural 

activity (Ogawa, Lee, Kay, & Tank, 1990). This discovery allowed researchers to examine 

which areas of the brain required greater amounts of oxygen during particular tasks by 

observing regional increases in BOLD signal while the patient participated in a cognitively 

demanding in-scanner task.  

 One more recent development in neuroimaging is recognition of the utility of resting-

state imaging. In contrast to active imaging, participants undergo imaging while they are 

resting, but awake, in the scanner. Typical instructions to participants in these studies include 

statements to fixate their gaze on a target cross on a neutral screen, or to close their eyes but 

remain awake. This method captures the brain’s naturally occurring BOLD fluctuations in 

absence of an externally imposed task. Though once considered to be statistical “noise”, 

these fluctuations are now believed to reveal significant information about the brain and its 

cognitive abilities. Resting-state imaging, though possessing shortcomings of its own, avoids 

some of the pitfalls associated with active imaging. For example, a participant’s engagement 

or effort in a task are no longer a concern, nor is the delay in BOLD response that can build 
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up during repeated trials or blocks of an in-scanner task. Furthermore, the brain does not 

operate like a simple on-off switch. Though areas of the brain are often considered to be “on” 

or “activating” in response to a specific stimuli, in reality, the changes in BOLD signal 

following task engagement are usually relatively small, i.e., less than 5% of the basal rate 

during rest (Raichle & Mintun, 2006). This represents only a small change in the brain’s 

overall energy consumption. Thus, even the brain’s “resting” metabolism represents a 

significant portion of its “active” metabolism, approximately 95%. Since the metabolism of 

the brain at rest is relatively high, resting-state provides a glimpse into the brain at the state in 

which it uses most of its energy, and spends a majority of its time. At the same time, the 

naturally occurring fluctuations in the BOLD signal typically represent a 2-3% signal change, 

comparable to task-induced changes (Damoiseaux et al., 2006). Furthermore, resting-state 

analyses offer a greater signal-to-noise ratio than active analyses, as eloquently explained by 

Fox and Greicius (2010). Therefore, resting-state imaging research provides important 

information about the inner workings of the brain, and is a valid line of exploration for 

modern imaging methods.  

 

Functional Connectivity 

 Within neuroimaging, several different methods exist for examining neural activity. A 

common technique is simply to measure levels of brain activity via the BOLD response. 

Since higher levels of BOLD signal are believed to be indicative of greater levels of brain 

activation, differences in neural activity can be measured between various brain regions, 

across different time points, and during different tasks. Building on BOLD-inferred neural 
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activity, a more recent imaging paradigm is to examine the degree to which brain regions 

display a synchrony of BOLD fluctuation. This is known as functional connectivity, and it 

can be calculated by correlating BOLD signal change in one area of the brain with BOLD 

signal change in another area of the brain. Areas of the brain that display a high correlation in 

their BOLD fluctuation are considered to have “functional connectivity,” or to be 

functionally connected. Studying areas of the brain that are functionally connected has lead 

to the identification of previously unstudied neural networks (Raichle et al., 2001; Seeley et 

al., 2007; Sridharan, Levitin, & Menon, 2008), allowed for new ways to examine the 

relationship between neural regions (Raichle, 2011), and provided new insights into disease 

(Zhang & Raichle, 2010). Coherent, neural network-related BOLD fluctuations are believed 

to account for much of the inter-trial variability in signal that, as mentioned before, was once 

regarded as noise, and may play a role in the variability in human behavior (Fox, Snyder, 

Zacks, & Raichle, 2006). For example, spontaneous fluctuations in the BOLD signal in the 

somatomotor cortex have also been related to variability in performance on a simple motor 

task (Fox, Snyder, Vincent, & Raichle, 2007). 

 Functional connectivity has been a useful tool for studying the relationship between 

bilateral brain structures, and exploring regions that have been traditionally difficult to 

image. For example, Roy et al. (2009) found the bilateral amygdala to have a high degree of 

functional connectivity in healthy individuals, and could be divided into three distinct sub-

networks, based on each network’s unique functional connectivity pattern. Resting-state 

functional connectivity was used to identify bilateral motor neural circuits (the rostral, 

ventral, and dorsal cingulate motor areas) that had only been hypothesized to exist in 
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humans, based on research on monkeys (Habas, 2010). Functional connectivity analyses have 

been useful for verifying theoretical in-vivo connections that were too small to capture with 

DTI or fMRI resolution. For example, Nioche, Cabanas, and Habas (2009) were able to 

provide further evidence for neural circuits involving the red nucleus and the substantia 

nigra, which were too small to accurately image using other in-vivo techniques, by 

measuring their functional connectivity. Functional connectivity analyses have also been 

used to study changes in patterns of activation. Hampson, Olson, Leung, Skudlarski, and 

Gore (2004) were able to study task-related changes in the visual system in response to 

stimuli, by tracking functional connectivity changes. Functional connectivity has also been 

used on a larger scale to investigate changes in global, whole-brain connectivity. Balthazar,  

de Campos, Franco, Damasceno, and Cendes (2013) noted significant differences in whole-

brain functional connectivity between healthy controls and patients with Alzheimer’s disease,  

while Bohr et al. (2012) found increased whole-brain functional connectivity in older adults 

with depression. Skudlarski et al. (2008) used whole-brain functional connectivity maps to 

demonstrate parity between fMRI and DTI methodology. 

 Functional connectivity is believed to relate to underlying structural connectivity by 

the way of white matter connections between brain regions (Quigley et al., 2003). One 

opportunity to investigate this theory arises from patients with white matter damage, like that 

which results from traumatic axonal injury (TAI). TAI is essentially a fracturing or shearing 

of axons following strong rotational and/or acceleration/deceleration forces (Meythaler, 

Peduzzi, Eleftheriou, & Novack, 2001). Disruption in white matter between functionally 

connected areas has been shown to correlate with impairments in functional connectivity 
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between those regions. For example, Sharp et al. (2011) found a significant, large negative 

correlation between white matter integrity in the corpus callosum (as measured by mean 

diffusivity from a DTI scan) and functional connectivity in the default mode network 

following TBI. When examining a sample of TAI patients, Marquez de la Plata et al. (2011) 

noted a significant decline in interhemispheric functional connectivity between the 

hippocampi, compared to healthy controls. In a more drastic example, Johnston et al. (2008) 

studied interhemispheric functional connectivity in an individual with intractable epilepsy, 

before and after a complete callosotomy. They predicted a sharp decline in interhemispheric 

functional connectivity, as the corpus callosum represents the major white matter structure 

that connects the hemispheres. Their hypothesis was confirmed, and the patient displayed a 

significant decline (88.5%) in functional connectivity acutely post-surgery. Of note, 

intrahemispheric functional connectivity, which was not predicted to be affected by the 

callosotomy, was preserved. However, the relationship between functional and structural 

connectivity may more complex than a simple measure of white matter volume and integrity. 

In a study of the effects of a callosotomy in monkeys, O’Reilly et al. (2013) found significant 

reductions in interhemispheric functional connectivity post-callosotomy. However, when the 

researchers failed to sever the anterior commisure, a relatively small interhemispheric white 

matter connection, the decline in functional connectivity was significantly reduced. The 

authors theorized that perhaps non-callosoal commisures and indirect structural connections 

may be enough to maintain functional connectivity in following a callosotomy. Of note, this 

study was conducted eight months post-surgery, allowing time for reorganization, in contrast 

to Johnston et al. (2008), who examined a human callosotomy patient acutely post-surgery, 
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with minimal time for reorganization. As commented on by Uddin (2013), subcortical inputs 

and neurotransmitter systems may play a role in functional connectivity as well. Honey et al. 

(2009) noted that regions of the brain lacking strong anatomical connections can still show 

functional connectivity. However, they hypothesized this may be due to subcortical 

connections (e.g., thalamic or limbic), signal noise, or the inherently flexible nature of a 

functionally connected network when compared to a structurally connected network.  

  While functional connectivity is based on strong positive correlations in BOLD 

fluctuation, there is also value in examining strong negative correlations. The degree to 

which the BOLD signal is negatively correlated between two brain regions or networks is 

known as anticorrelation (Fox et al., 2005). Just as a strong positive correlation and high 

functional connectivity imply a relationship between two regions or networks, so does strong 

anticorrelation. Both anticorrelation and strong positive correlation imply the existence of 

some degree of underlying neurophysiologic structure, which influences positive BOLD 

synchrony in one situation, and negative BOLD synchrony in the other. Though 

anticorrelation has been viewed as relating to competition between neural networks (Kelly, 

Uddin, Biswal, Castellanos, & Milham, 2008), it may also represent inhibitory responses 

(and cooperation) shared between networks (Liang, King, & Zhang, 2012). However, there is 

some thought that anticorrelation may simply be a set of spurious negative correlations 

artificially introduced by preprocessing methods. Murphy, Birn, Handwerker, Jones, and  

Bandettini (2009) and Weissenbacher et al. (2009) argued that anticorrelation findings may 

be an artifact of the global signal regression (a form of statistical analysis) commonly used in 

preprocessing. Subsequent research demonstrated that anticorrelation could be discovered 
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through methods that did not involve global signal regression; however, and that the results 

from global signal regression and non-global signal regression methods were similar (Chai, 

Castanon, Ongur, & Whitfield-Gabrieli, 2012; Liang, et al., 2012). Of note, anticorrelation is 

not to be confused with an overall lack of correlation, where there is neither positive nor 

negative correlations of BOLD signal between two brain regions. Lack of correlation does 

not imply the strong relationship assumed in strong positive correlations or in anticorrelations 

(Fox, et al., 2005). Rather, it implies an overall lack of relationship between the two areas. 

However, as noted by Honey et al. (2009), functional connections are more flexible than 

structural ones. Though two regions may have a lack of functional connectivity at a given 

time point, they may display functional connectivity or anticorrelation under different 

circumstances.  

  

Resting-State Network Measurement 

 Areas of the brain that share strong functional connectivity are increasingly being 

recognized as belonging to discrete, intrinsic, neural networks. Such networks cannot be 

located simply by means of an examination of the physical anatomy of the brain, or by 

tracing the white matter pathways. They become visible when constructed via functional 

connectivity maps. There are two basic and generally accepted methods for evoking and 

measuring large-scale resting-state neural networks (Fox & Raichle, 2007). The first is 

known as independent component analysis (ICA), and the second is known as a seed-based 

approach. There are several variations on these two methodologies, including some methods 

that combine aspects of each. With ICA, the BOLD signal for all the voxels in the brain are 
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analyzed, and statistically separated into spatial areas of high correlation that may represent 

functionally connected networks (Calhoun, Adali, Stevens, Kiehl, & Pekar, 2005; Calhoun, 

Liu, & Adali, 2009; Fox & Raichle, 2007). One advantage of this method is that the 

statistical processes used in the creation of the maps minimize noise intrusions into the 

signal. This method is useful for finding and identifying multiple networks, regardless of 

their relation to one another, which makes finding and quantifying anticorrelated networks 

easier. No a priori selection of networks occurs before the analysis, which some ICA 

practitioners claim reduces researcher bias. However, this approach does have disadvantages. 

An ICA has the potential to identify a high number of potential networks throughout the 

brain. The researcher must decide, post-hoc, which network (or networks) best represent their 

network of interest. Alternatively, if no networks meet the researcher’s criteria, an ICA may 

need to be re-run with changes to the statistical parameters. Additionally, there can be a 

degree of guesswork when initially setting up an ICA, as the researcher will often have to 

specify the number of networks the ICA analysis should discover. If set too low, this can lead 

to a conglomeration of mildly related networks. If set too high, this can lead to a fractioning 

of coherent networks into smaller, seemingly nonsensical sub-networks.  

 An alternative to the ICA approach is the seed-based approach, which allows a 

researcher to identify a priori which networks should be analyzed, based on their goals (Fox 

& Raichle, 2007). A region of interest (ROI) from each network is selected to serve as a 

“seed” for the network. Statistical programs determine which areas of the brain display 

significant levels of BOLD signal synchrony with selected voxels within these ROIs. The 

resulting correlation map (also known as a z-value map) reveals the extent of the desired 
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network. This method is considered to be a good choice when a research question 

specifically involves a particular network, as it results in precise, researcher-chosen 

networks. Though not as strongly robust to noise as an ICA, seed-based approaches have 

been shown to be sufficiently resistant to noise effects (Z. Li, Kadivar, Pluta, Dunlop, & 

Wang, 2012). This method is also not without its limits. First, it is difficult to study multiple 

networks without running multiple calculations, one for each network (Fox & Raichle, 2007). 

Second, the results from seed-based approaches are highly dependent on the placement of the 

ROI, and small changes in the location of the network seed can have significant changes on 

the resulting evoked network, as observed by Margulies et al. (2007). Overall, both methods 

can produce similar results through significantly different methodology (Joel, Caffo, van Zijl, 

& Pekar, 2011), and both methods have proven sufficiently reliable in test-retest conditions 

(C. C. Guo et al., 2012). 

 

The Default Mode Network 

 One resting-state neural network is the default mode network (DMN). The DMN 

displays increased activation in absence of an externally imposed task, and is less active 

during increased cognitive demand, such as while completing externally imposed tasks 

(Raichle, et al., 2001; Shulman et al., 1997). The regions involved in the DMN were first 

identified by Shulman et al. (1997) during a meta-analysis of task-induced brain 

deactivations in PET studies. Mazoyer et al. (2001) noted the self-referential, 

autobiographical thinking that occurred during these resting-states. Raichle et al. (Gusnard & 

Raichle, 2001; Raichle, et al., 2001) were the first to use the term “default network” and 
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outline the generally accepted neuroanatomy of the DMN, which is typically considered to be 

comprised of the posterior cingulate cortex (PCC), ventromedial prefrontal cortex (VmPFC), 

and can be expanded to include the bilateral hippocampi, and the bilateral inferior parietal 

cortexes (LLPL and RLPL) (Buckner, Andrews-Hanna, & Schacter, 2008; Greicius, 

Krasnow, Reiss, & Menon, 2003; Raichle, et al., 2001). These regions show strong functional 

connectivity during resting and active states. There exists a degree of controversy as to the 

inclusion of the bilateral hippocampus with the DMN, with some studies intentionally 

excluding it from analysis (Arenivas et al., 2012) while other studies make no mention of its 

involvement (Mayer, Mannell, Ling, Gasparovic, & Yeo, 2011; Petrella, Sheldon, Prince, 

Calhoun, & Doraiswamy, 2011).  

 Various explanations have been proposed for the function of the DMN, including 

roles in planning and imagination, consolidation and stabilization of memories, setting the 

context for future information processing, maintaining activation in frequently used neural 

pathways, and maintaining episodic memory (Buckner & Vincent, 2007; Greicius & Menon, 

2004). Functional connectivity within the DMN, and also between the DMN and areas 

associated with visual processing, have been associated with greater emotional intelligence 

traits (Takeuchi et al., 2013). Another hypothesis about the DMN is that it serves to maintain 

a competitive balance between excitation and inhibition that helps the brain respond quickly 

to environmental changes, with minimal effort. Essentially, DMN activity keeps the brain in 

a balanced state where relatively little external stimulus is needed to activate and stabilize 

other neural networks as needed (Deco, Jirsa, McIntosh, Sporns, & Kotter, 2009), much like 

a well-balanced scale where little weight is needed to shift the balance in one direction or the 
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other. One somewhat contrarian view to the role of the DMN is posited by Boly et al. (2008; 

2009) who note the existence of the DMN in studies of comatose, anesthetized, or sleeping 

individuals, and postulate that DMN fluctuations may not reflect conscious thought, but may 

reflect a deeper, more basic level of brain functioning, though likely not so basic as to be a 

statistical artifact of respiration, cerebral blood flow, or neurometabolism.  

 With regards to a role in cognition, diminished deactivation of the DMN (compared 

to its activation level during rest) during tasks requiring focus has been associated with 

poorer cognitive performance (Singh & Fawcett, 2008). For example, increased DMN 

activation during mentally challenging tasks is believed to be related to distractibility 

(Fassbender et al., 2009) as well as poor performance on tasks of attention (Bonnelle et al., 

2011), working memory (Anticevic, Repovs, Shulman, & Barch, 2010) and overall executive 

function (Damoiseaux et al., 2007). Essentially, DMN deactivation is needed during tasks 

requiring increased focus. However, the DMN may remain active without measurable impact 

on performance on simpler tasks. As task difficulty increases, activity level in the DMN 

decreases (Singh & Fawcett, 2008). In contrast to studies of activation levels, DMN 

functional connectivity has been shown to positively correlate with performance on working 

memory tasks; specifically, functional connectivity between the medial frontal gyrus/anterior 

cingulate cortex and the PCC (Hampson, Driesen, Skudlarski, Gore, & Constable, 2006). 

Greater levels of functional connectivity were associated with better cognitive performance, 

indicating that strong cohesiveness within the DMN may be a marker of healthy cognition or 

cognitive functioning. Activation changes in the DMN have been shown to relate to 

subsequent changes in activation in other areas of the brain. For example, the degree to 
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which the DMN is suppressed during a simple sensory task correlates positively with the 

degree of increase in activation in the somatosensory cortex needed for the task (Greicius & 

Menon, 2004), which may be indicative of competition between networks, or possibly that a 

larger, overreaching network has a role in coordinating network activity. 

 Though the DMN thus far has been discussed as if it were a solitary whole, there is 

evidence that the DMN may be best conceptualized as cooperating, but dissociable, 

subsystems. Leech, Kamourieh, Beckmann, and Sharp (2011) examined the differences 

between the dorsal and ventral PCC. Each displayed a different pattern of functional 

connectivity during cognitively demanding tasks, with the ventral PCC becoming less 

integrated with the DMN and more functionally connected with task-positive networks. In 

contrast, the dorsal PCC became more integrated with the DMN and showed greater 

anticorrelation with task-positive networks. The researchers theorized that this was due to the 

PCC’s role as a coupling station between the DMN and task-positive networks. This may 

provide evidence that the DMN is part of a larger neural network comprised of smaller, 

resting state and task-positive networks. If so, these patterns of connectivity displayed by the 

PCC may be a potential mechanism by which discrete neural networks could “cooperate” and 

function together as a larger network. This also reinforces the idea that functional 

connectivity between networks (internetwork) may be as important as functional connectivity 

within networks (intranetwork), and a suitable target for further research.  
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Susceptibility to change within the DMN following TBI 

 The DMN has been shown to be sensitive to disruption following TBI, though there is 

disagreement in the literature as to the nature of those changes. Zhou et al. (2012) examined 

mild TBI patents at two months post-injury, and found declines in functional connectivity 

between posterior regions of the DMN (namely, the PCC and parietal regions) and increased 

functional connectivity in the frontal regions (the VmPFC). The authors noted that the 

posterior decline may explain post-TBI cognitive problems, while anterior increase may 

relate to symptoms of depression, fatigue, and anxiety that are often reported post-TBI. These 

findings are somewhat contrary to Mayer, Mannell, Ling, Gasparovic, and Yeo (2011), who 

found decreased functional connectivity within the DMN and increased functional 

connectivity between the DMN and right anterior cingulate cortex and lateral prefrontal 

cortexes in patients with mild TBI, compared to healthy controls. These scans were 

conducted within three weeks of sustaining a mild TBI, during the acute phases of recovery. 

A follow-up scan three to five months post-TBI found no significant changes in functional 

connectivity from the acute stage; the differences from controls observed acutely in 

functional connectivity persisted into the chronic stages of recovery. Even in this 

“radiologically normal” sample, reduced connectivity within the DMN, and increased 

connectivity between the DMN and areas associated with attention control, may represent 

attempts to compensate for declines in attention abilities. Several possible explanations exist 

for the discrepancy in findings between Zhou et al. (2012) and Mayer et al (2011). First, 

Zhou’s sample had a mean age of 37.8, while Mayer’s sample’s mean age was one decade 

younger, at 27.15. Second, while Zhou and Mayer both examined mild TBI, they defined it 
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differently. Zhou reported GCS scores ranging from 12-15, and required participants to have 

experienced at least a 10-second loss of consciousness. Mayer’s sample’s GCS score ranged 

from 13-15, and had no requirement for loss of consciousness, indicating that this sample 

may have been less severely injured. Third, the methods employed for evoking and 

measuring the DMN were different, with Zhou using an ICA, and Mayer employing a seed-

based approach. Zhou et al. noted that this may explain, albeit slightly, the difference in 

findings between the two studies. In addition, both groups had slightly different post-TBI 

recovery timeframes during which patients were examined. Meyer et al.’s patients were 

likely still in the acute phases of recovery during the first scan, though symptoms of a mild-

TBI should have resolved by the time of their three to five month follow-up scans.  

 Stevens et al. (2012) used ICA to examine a sample of mild-TBI patients two to 

twenty weeks post-injury. They found decreases in functional connectivity within the DMN, 

and between the DMN and the medial frontal gyrus, parahippocampal gyrus, and right 

inferior frontal/premotor cortex area. In a sample of moderate-to-severe TBI patients at three 

to six months post-injury, Hillary et al. (2011) found that patients had lower functional 

connectivity between the anterior and posterior nodes of the DMN. However, they also found 

changes in the DMN and other networks during follow-up scans, which will be discussed in 

greater detail in following sections. Sharp et al. (2011) studied a group of patients with mild-

to-severe TBI, and found increased DMN functional connectivity (specifically, the PCC) 

compared to controls. Of note, the time since injury for this group ranged from six months to 

eighty months, a much greater range than other studies. The researchers also found that TBI 

patients with higher resting DMN functional connectivity did better on cognitive tasks than 
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patients with lower functional connectivity. Additionally, patients with more white matter 

damage displayed lower functional connectivity, and thus, poorer cognitive task 

performance. Patients also showed greater DMN deactivation during a working-memory 

task, potentially due to increased cognitive load. This was interpreted by the authors to mean 

that the brain requires greater DMN deactivation for difficult tasks, but would not need to 

deactivate as much for less demanding tasks.  

 A similar set of findings was reported by Tang et al. (2012), who found increased 

DMN functional connectivity in a group of mild-to-severe TBI patients, compared to 

controls, though no mention was made of the time since injury. The authors also reported a 

global decline in white matter integrity, which they hypothesized likely made it more 

difficult for the nodes of the DMN to communicate effectively, resulting in increased 

functional connectivity as an attempt at compensation. Palacios et al. (2013) examined 

individuals with severe TBI at four years post-injury. They noted increases in functional 

connectivity within the anterior node of the DMN compared to healthy controls. This 

increase was viewed as a compensatory measure, due to a decline in structural integrity in the 

cingulate tract, which connects the anterior and posterior regions of the DMN. The 

researchers also observed that individuals with higher functional connectivity in the anterior 

regions of the DMN did better on cognitive testing. This relationship was not found among 

the healthy controls. Vanhaudenhuyse et al. (2010) used an ICA to examine severely injured 

patients who were in minimally conscious states, ranging from locked-in syndrome (brain 

activity and likely conscious thought, but complete bodily paralysis) to vegetative coma. 

When compared to healthy controls, they found decreases in functional connectivity within 
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the DMN. Furthermore, functional connectivity within the DMN correlated positively with 

level of consciousness, with the most severely comatose patients displaying the lowest DMN 

functional connectivity. Boly et al. (2009) found the DMN to be preserved in comatose 

patients, though with significantly less functional connectivity than healthy controls. 

However, in a patient who was clinically “brain-dead” but physically alive, no evidence of 

DMN functional connectivity was discovered, indicative that the DMN is more than simply 

an artifact of respiration, blood flow, or other neurometabolic processes.  

 From the wide variation in results when studying the DMN in a TBI population, a 

conclusion can be drawn that demographic information about the sample, including type and 

severity of injury, and time since injury, must be taken into consideration when examining 

results. Sample demographics likely play a large role in post-TBI DMN results. When 

considering the breadth of results reported, it may be possible that there exists an optimal 

amount of DMN functional connectivity post-TBI. Very high functional connectivity and 

very low functional connectivity could both be indicators of abnormality.  

 Though the DMN is sensitive to disruption, it has also been shown to be responsive to 

intervention. For example, studies have revealed alterations in DMN activation patterns due 

to psychiatric medication (Marquand et al., 2011; Posner et al., 2013; Sambataro et al., 

2010). Lewis, Baldassarre, Committeri, Romani, and Corbetta (2009) documented decreases 

in DMN deactivation during a visual search task in healthy controls, after intensive training 

on the task. They also observed increases in functional connectivity in the visual cortex 

associated with the visual search, and changes in connectivity between networks following 

training. Meditation’s impact on the DMN has also been explored (Taylor et al., 2013), with 
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experienced mediators displaying greater functional connectivity among nodes of the DMN 

during non-meditative rest when compared to novice meditators. After four weeks of 

intensive memory training, Takeuchi et al. (2012) found an increase in functional 

connectivity in the external attention system and the DMN in healthy controls, after working 

memory training. They noted increases in functional connectivity between the VmPFC and 

the PCC, and decreased functional connectivity between nodes of the DMN and nodes of 

task-positive networks.  

 As mentioned earlier, Hillary et al. (2011) studied predominantly severe TBI at three 

and six months post-injury. They found declines in functional connectivity within the DMN 

at three months and increases in DMN functional connectivity at six months. At six months, 

both the PCC to middle frontal and PCC to medial/temporal functional connectivity in TBI 

patients were greater than healthy controls. Sharp et al. (2011) found DMN functional 

connectivity in both controls and TBI patients was negatively correlated with performance on 

measures of processing speed. In the patient group, individuals with the highest DMN 

functional connectivity also had the least cognitive impairment. The authors explained these 

changes as compensatory increases in functional connectivity, due to patients being in the 

chronic phase of their injury, and thus having developed compensatory adaptive changes. 

Overall, while the DMN is sensitive to disruption post-TBI, it is also sensitive to recovery 

effects, including medication, meditation, and cognitive rehabilitation. Even in a sample of 

chronic-stage TBI patients, one might expect to see changes within the DMN, and between 

the DMN and other networks, as a result of cognitive training. 
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The Central Executive Network 

 In contrast to resting-state networks like the DMN, the brain also possesses task-

positive networks. These networks activate in the presence of externally imposed tasks that 

require focus, and deactivate in absence of such tasks. One task-positive network is the 

central executive network (CEN), which is comprised of the bilateral dorsolateral prefrontal 

cortex (DLPFC) and the bilateral posterior parietal cortex (PPC) (Dosenbach et al., 2007; 

Seeley, et al., 2007; Sridharan, et al., 2008). The CEN is believed to play a role in judgment, 

decision making, working memory, and executive functions (Dosenbach, et al., 2007; Seeley, 

et al., 2007); processes which have been shown to be commonly impaired in individuals with 

TBI (Ponsford, Olver, & Curran, 1995; Spitz, Ponsford, Rudzki, & Maller, 2012). The 

DLPFC has been shown to be active during inhibition, such as during go no-go tasks 

(Menon, Adleman, White, Glover, & Reiss, 2001). Functional connectivity within the CEN 

has been shown to correlate with executive functions in healthy individuals (Seeley, et al., 

2007).  

 To date, little research has been conducted to examine the effects of TBI on the CEN. 

However, the pattern of common cognitive deficits following TBI suggests that the CEN may 

be vulnerable to disruption. Stevens et al. (2012) studied a mild-TBI population at 13-136 

days post-TBI using ICA. Though they did not explicitly examine the CEN, they noted post-

injury increases in functional connectivity in areas usually associated with the CEN. 

Similarly, Hillary et al. (2011) found increases in CEN functional connectivity in 

predominantly severe TBI patients between the DLPFC and the parietal lobes at three months 

post-injury. However, at a six-month follow-up scan, functional connectivity within the CEN 
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had dropped to a level lower than healthy controls. The increased CEN functional 

connectivity at the earlier scan may have represented a degree of compensation for reduced 

abilities, which faded as the patients continued to recover skills. The lower-than-control 

functional connectivity at the six-month scan may be the result of structural damage to the 

white matter connections within the CEN, only evident after the initial higher, compensatory 

functional connectivity faded. In an EEG study of individuals with mild TBI due to blast 

injury, lateral frontal areas (consistent with the nodes of the CEN) were found to be less 

synchronous with each other in TBI patients than in healthy controls (Sponheim et al., 2011). 

Similar to findings reported in earlier sections, this may represent damage to the commisural 

fibers that connect the left and right hemispheres, resulting in impaired functional 

connectivity in bilateral structures. Though not a direct investigation of the CEN, Marquez et 

al. (2011) found no differences in bilateral DLPFC (a node of the CEN) functional 

connectivity between controls and mild-to severe TBI patients at seven months post-TBI. 

 When examining activation levels, several studies have noted increased post-TBI 

activation in the nodes of the CEN, or increased activation in the cortex around the nodes of 

the CEN (Christodoulou et al., 2001; Dettwiler et al., 2013). Interestingly, similar patterns 

have been noted in multiple sclerosis patients, indicating that this pattern may be attributable 

to alterations in white matter, or perhaps general mild cognitive dysfunction, as opposed to 

specifically related to TBI (Chiaravalloti et al., 2005). This increased activation in additional 

areas of the prefrontal cortex may indicate some form of neural recruitment or compensation 

for reduced performance ability (Reuter-Lorenz & Park, 2010). As commented on by Hillary 

(2008), there is thought that post-TBI increased frontal involvement during cognitively 
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demanding tasks may be related to plasticity or compensation. However, Hillary alternatively 

proposed that this increased prefrontal activation may be related to a natural mechanism of 

effortful “top-down” cognitive control by the individual. Along a similar line of thought, 

Turner, McIntosh, and Levine (2011) examined patterns of frontal activation in three groups: 

a sample of TBI patients, a sample of healthy older adults, and a sample of younger adults 

undergoing a cognitively difficult task. They found similar patterns of frontal activation 

across all three samples. They concluded that what others may view as “recruited” cortical 

areas are actually a natural part of the frontal network that becomes activated during difficult 

tasks or with aging. In TBI patients, this area is activated during less-demanding cognitive 

tasks. An alternative explanation for this phenomenon was proposed by Hillary and Biswal 

(2007), who hypothesized that some post-TBI changes in neural activation may be due to 

changes in cerebral blood flow, especially if the vasculature in the brain has been 

compromised. 

 In sum, research into the effects of TBI on the CEN have revealed varied results, 

similar to the range of findings on the effects of TBI on the DMN, possibly as a result of 

varied patient demographics. The field lacks a clear, generally accepted theory as to the 

mechanisms or reasons for these changes, or the long-term implications. Like other neural 

systems, there may be an optimal amount of post-TBI CEN functional connectivity with 

regards to cognitive performance, with levels too high or to low signaling inefficiency and 

impairment. 

 Compared to the DMN, less is known about the effects of intervention in the CEN. 

Though the cognitive skills associated with the CEN have been shown to improve with 
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cognitive training (Spikman, Boelen, Lamberts, Brouwer, & Fasotti, 2010; Vas, Chapman, 

Cook, Elliott, & Keebler, 2011), few studies have specifically examined the CEN bas a 

whole, post-intervention. Strangman et al. (2009) trained patients with TBI-related memory 

difficulties and healthy controls to use a semantic memory strategy as part of cognitive 

rehabilitation program, which is generally accepted as an effective strategy for list-learning. 

While using the semantic strategy to learn a list of words, TBI patients displayed less 

functional connectivity between the left DLPFC and the angular gyrus (AG), compared to 

healthy controls, and performed worse on the task. When free to use any strategy to perform 

the memory task except the semantic strategy, TBI patients displayed increased activity in 

the DLPFC, compared to controls, and no significant difference in the AG. Thus, in TBI 

patients, when the DLPFC should have displayed increased functional connectivity with the 

AG during the semantic-recall trial, it did not. When the DLPFC should have been less active 

during the non-directed recall trial, it was more active. The authors concluded that these 

patterns may be due TBI patients having to use different neural mechanisms to complete the 

same tasks as healthy controls, possibly due to diminished neural resources or altered neural 

connections. The authors noted that similar “same strategy, different pathway” changes are 

seen in cognitively normal healthy adults when performing the same task using the same 

strategy as younger adults. To extrapolate the results from this study and apply them to the 

current study, individuals with TBI may display altered patterns of functional connectivity 

compared to healthy controls, which may results in a different overall pattern of connectivity 

within the CEN, and between the CEN and other networks.   
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 Cognitive rehabilitation programs and retraining programs are not the only methods 

for affecting functional connectivity within the CEN. Other interventions have been shown to 

have an impact on behavioral outcomes, as well as functional connectivity. For example, 

neurofeedback as a treatment for anxiety has been demonstrated to increase functional 

connectivity in the DLPFC (Scheinost et al., 2013). Electroconvulsive therapy for depression 

has been shown to “normalize” hyper-activation in the orbitofrontal cortex and increase the 

functional connectivity between the DLPFC, PCC, and ACC (Beall et al., 2012). Children 

with ADHD who displayed lower bilateral DLPFC activation during a working memory task 

displayed normalized activation following administration of atomoxetine, a medication used 

in ADHD treatment (Cubillo et al., 2013). In other ADHD studies, decreased activation in the 

DLPFC and the ACC has been shown to become normalized with long-term medication use 

(Hart, Radua, Nakao, Mataix-Cols, & Rubia, 2013). Similar to the conclusions about the 

DMN, these studies indicate that the CEN is capable of change post-TBI in response to 

rehabilitative efforts. 

 

The Salience Network 

 Like the DMN and CEN, the salience network (SN) is another neural network that 

has been identified by functional connectivity. It is comprised of the anterior insula (AI) and 

the anterior cingulate cortex (ACC) (Seeley, et al., 2007; Sridharan, et al., 2008). Though this 

network has been associated with a variety of cognitive processes, one of its primary 

functions may be to filter stimuli that come through the senses to detect relevant stimuli, then 

activate regions of the brain necessary for higher order cognitive tasks, such as the CEN, and 
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simultaneously deactivate resting-state networks, such as the DMN (Menon & Uddin, 2010; 

Seeley, et al., 2007; Sridharan, et al., 2008). In this way, the SN may act as a switching 

network in the brain, responsible for activating and de-activating neural networks in response 

to external stimuli. Within the SN, the right anterior insula (rAI) has been hypothesized to 

serve as a “cortical outflow hub”, receiving information from a wide range of brain regions 

and regulating activity in other areas of the brain (Ham, Leff, de Boissezon, Joffe, & Sharp, 

2013; Menon & Uddin, 2010; Sridharan, et al., 2008).  

 Compromise to the SN may alter the activation patterns and functional connectivity 

“downstream” areas that have connectivity with the SN, such as the DMN and CEN. For 

example, in TBI patients, white matter integrity across the SN has been shown to predict 

DMN deactivation during cognitively demanding tasks (Bonnelle et al., 2012). On a larger 

level, this finding suggests that alterations in activity and functional connectivity in a given 

network may be due to influences from outside the network, possibly from other intrinsic, 

functionally connected networks. On a more specific level, this interaction between the DMN 

and SN hints at a larger, possibly hierarchically-organized network, composed of discrete 

intrinsic networks that simultaneously influence and are influenced by each other.  

 Additional evidence of a relationship between the SN and other intrinsic networks 

was reported by Sridharan, Levitin, and Mennon (2008). They reported event-related fMRI 

signal activity in the SN started earlier than in the CEN and DMN, indicating that the SN (in 

particular, the right fronto-insular cortex) plays a causal role in activation/deactivation of the 

DMN and CEN. The authors further noted that the SN, with its rich structural connections 

across the cortex, is neuroanatomically positioned to generate control signals to the CEN and 
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DMN. Chen et al. (2013) investigated this concept by using transcrainal magnetic stimulation 

(TMS) to explore directionality and causality between these networks. When stimulating the 

DLPFC node of the CEN with TMS, they observed a subsequent decline in DMN functional 

connectivity with the CEN and SN. Conversely, when applying an inhibitory TMS pulse to 

the DLPFC, they found a shift in signal frequency of the DMN consistent with disinhibition 

(i.e., increased activity) of the network. However, activating the only node of the SN 

accessible to TMS (due to neuroanatomical restrictions) resulted in no significant changes to 

the DMN or CEN. The authors concluded that this indicates a causal relationship between 

this node of the CEN and the DMN, and is possibly evidence against the view of the SN as a 

switching station for the DMN and CEN. However the authors further noted that activating 

other areas of the SN, which they were not able to reach with TMS, may reveal different 

effects on the DMN or CEN. Additionally, the relationship between the SN, CEN, and DMN 

may not be accurately captured by TMS impulses. Taken together, this set of studies may 

point to a relationship between the DMN, CEN, and SN, that is more complex than the 

notion that they are three competing, yet discrete, intrinsic neural networks. They may 

actually be part of a larger, more complex, unifying network that plays a large role in 

cognition. 

 In addition to widespread neural connections and effects on other neural networks, 

the SN also seems to be involved in a variety of cognitive processes, as mentioned earlier. 

The SN seems play a role in social cognition, as functional connectivity within the SN has 

been related to greater interpersonal emotional intelligence trait scores (Takeuchi, et al., 

2013). Activation in the SN has been shown to relate to the likelihood of an individual 
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helping another individual (Greening et al., 2013), while lesions in the SN have been related 

to decreased empathy (Leigh et al., 2013). In a study of social responsibility, activation in the 

ACC was associated with reinforcement of behaviors related to personal gain (P. Li et al., 

2013). The SN has also been shown to play a role in resiliency after childhood abuse (van der 

Werff et al., 2013) and in moral reasoning (Chiong et al., 2013). In addition to its role in 

social process, the SN seems to play a role in error detection. The ACC has been shown to 

activate when an individual perceives that they have made an error (Menon, et al., 2001) or 

when the outcomes of an action are unexpected (Greening, et al., 2013). Activation in the 

ACC increases steadily throughout adolescence and into adulthood, which may play some 

role in social maturation and increased self-inhibition (Ordaz, Foran, Velanova, & Luna, 

2013). As noted earlier, the SN is believed to play a role in detecting salience of stimuli. 

Listening to distorted speech has been noted to increase activation in the nodes of the SN, 

possibly due to the increased effort to screen the speech for relevant information. However, 

activation levels are reduced as the listener adapts to the distorted speech, and requires less 

effort to screen (Erb, Henry, Eisner, & Obleser, 2013). One of the nodes of the SN, the AI, 

has also been associated with saliency and reward related to food consumption (Oberndorfer 

et al., 2013). Baseline SN functional connectivity before a painful stimulus has been 

associated with perception of pain post-stimulus (Wiech et al., 2010). Similarly, pre-scanner 

ratings of anxiety have been found to correlate positively with functional connectivity within 

the SN, particularly the ACC (Seeley, et al., 2007).  

 The SN is also believed to play a role in memory. For example, in a study comparing 

patients with Alzheimer disease to healthy controls, Alzheimer patients displayed decreased 
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functional connectivity within areas of the SN, This reduced functional connectivity was 

associated with poorer performance on a complex-figure memory task and a list-learning task 

in the Alzheimer patients, but not in healthy controls (Xie et al., 2012). In a study of working 

memory training in healthy adults, the ACC showed increased functional connectivity with 

the medial frontal gyrus after six weeks of training. There was a positive relationship 

between degree of functional connectivity change and increase in working memory 

performance (Jolles, van Buchem, Crone, & Rombouts, 2013). Nodes of the SN are also 

believed to play a role in working memory performance. Krawczyk and D’Esposito (2013) 

noted increased functional connectivity between the left insula and the left prefrontal cortex 

during specific reward-related working memory tasks, while Lenartowicz and McIntosh 

(2005)  observed that different patterns of ACC functional connectivity were related to 

performance on an n-back task. One potential reason may be due to the relationship between 

salience/relevance of information and probability of recall (Fine & Minnery, 2009). If the SN 

does play a role in detection and evaluation of salient information, perhaps its strong 

anatomical connections with areas on the temporal and frontal lobes assist with working 

memory and episodic memory. In summary, the SN has been associated with a wide variety 

of cognitive and emotional processes, and it shares rich anatomic connections and strong 

functional connections with other networks (most notably the DMN and CEN). Taken 

together, this may indicate that the SN has a role in integrating or coordinating interactions 

between networks, or itself may be a node of a larger group of networks. 

 Little is known about the effects of TBI on the functional connectivity within the SN. 

To date, research has primarily examined post-TBI changes in functional connectivity 
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between the SN and other networks, not within the SN itself. In a study of patients under 

sedation, the SN displayed significant declines in functional connectivity (Guldenmund et al., 

2013). Altered functional connectivity within the SN, and between the SN and other 

networks, has been noted in several psychiatric disorders, which will be discussed in later 

sections. Thus, changes in the SN post-TBI, following rehabilitation, maybe a rich area for 

research. 

 Compared to the research on the DMN and CEN, less is known on the potential 

changes that occur in the SN in response to training or intervention. In a study examining the 

effects of exercise on the DMN and SN in obese adults, exercise and weight loss were 

associated with declines in DMN activity, but no change in SN activity was observed 

(McFadden, Cornier, Melanson, Bechtell, & Tregellas, 2013). Increased functional 

connectivity between the DMN and SN has been noted following a few minutes of 

meditation in experienced meditators (Froeliger et al., 2012), though this may reflect a 

transitory shift as opposed to lasting alterations. In a similar study, experienced meditators 

displayed higher resting functional connectivity within the SN, and between the SN and 

nodes of the DMN and CEN than novice meditators (Hasenkamp & Barsalou, 2012). 

Individuals who were trained to increase rAI BOLD signal via biofeedback displayed higher 

activation post-training, compared to controls or a placebo sham-training group (Lawrence et 

al., 2013). Following successful treatment of joint pain, the degree of pain reduction 

correlated significantly with decline in AI activation (Lickteig, Lotze, & Kordass, 2013). 

Taken together, these studies indicate that the SN may be responsive to medication and non-

medicinal interventions, much like the DMN and CEN. Alterations in the SN have been 
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noted after undergoing training, such as meditation. However, on the whole, evidence for 

lasting changes in the SN is relatively weak, and more research would be needed before 

definitive conclusions could be reached. 

 

Anticorrelation Between Networks 

 Thus far, intrinsically connected networks have been discussed in light of positive 

correlations between nodes and networks. However, some networks also possess opposite 

patterns of activation, resulting in significant negative correlations between networks. The 

degree and strength of these negative correlations, known as anticorrelations, has become a 

topic for research, especially between the DMN and CEN. One study by Kelly, Uddin, 

Biswal, Castellanos, and Milham (2008) observed the degree of anticorrelation between the 

DMN and various task-positive networks during at rest. Stronger levels of anticorrelation 

(i.e., greater negative correlation) between the DMN and task-positive networks predicted 

better performance on a later task of attention and processing speed. Sours et al. (2013) noted 

a decrease in the level of anticorrelation between the DMN and CEN in a mild-TBI 

population with memory complaints, compared to a mild-TBI population without memory 

complaints, or healthy controls. However, one weakness of this study is that no measure of 

attention was included in their cognitive battery, meaning that attention difficulties (which 

could lead to poor performance on memory tests) could not be ruled out in the sample. This 

is especially relevant in light of the previously mentioned relationship between 

anticorrelation and attention. In their study of resting-state networks and social cognition, 

Takeuchi et al. (2013) found greater anticorrelation between the DMN and CEN to be related 
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to higher emotional intelligence interpersonal traits. However, they also found a relationship 

between connectivity between the nodes of the SN and DMN and traits of emotional 

intelligence. The researchers theorized that these findings may indicate that greater 

anticorrelation between the DMN and CEN allows for better self-referential processing and 

better attention to external stimuli. Individuals with these traits are likely to score better on 

measures of emotional intelligence, as they are attentive to others, and aware of their own 

emotional processes. Thus, DMN-CEN anticorrelation may relate, via its role in attention, to 

emotional intelligence. Further evidence for the role of DMN-CEN anticorrelation in 

attention was found in a medication study of children with ADHD. Methylphenidate was 

shown to decrease activation of the DMN during working memory tasks, while increasing 

activation in nodes of the CEN, thus having the effect of increasing anticorrelation (Cubillo, 

et al., 2013). Taken together, these studies indicate that there may be an optimal balance of 

anticorrelation between task-positive networks and task-negative networks, and the DMN-

CEN anticorrelation appears to play a role in attention. Though anticorrelation could be 

viewed as an indicator of competition between networks, it can alternatively be viewed as an 

indicator of internetwork cooperation and resource sharing. Strong anticorrelation could also 

be a sign that the DMN and CEN are part of a larger network, or that a third network 

influences and coordinates activity in both networks. 

 

The DMN, CEN, SN, and Psychiatric Disorders 

 Changes within and between the DMN, CEN, and SN have been found in a variety of 

psychiatric conditions. In a study of individuals with schizophrenia, patients displayed more 
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variability in their DMN spatial maps, which were significantly different compared to 

controls. Patients also displayed correlations between reported positive symptoms of 

schizophrenia and increased deactivation in the medial frontal gyrus, PCC, and left middle 

temporal gyrus (Garrity et al., 2007). Compared to healthy controls, patients with post-

traumatic stress disorder (PTSD) displayed greater functional connectivity within the DMN 

(Bluhm et al., 2009) and weaker functional connectivity within the CEN (Daniels et al., 

2010). Patients with depression have been found to have increased DMN activity while 

reevaluating negatively-charged emotionally-related stimuli (Sheline et al., 2009). 

Alterations in DMN functional connectivity have also been noted in depression, including 

between the DMN and the dorsal medial prefrontal cortex (Sheline, Price, Yan, & Mintun, 

2010), which shows increased functional connectivity with several networks in depressed 

individuals.  

 Given its high degree of connectivity with other cortical regions, it is not surprising 

that the SN has been implicated in a variety of psychiatric conditions. A review of the 

literature reveals a role of the SN, or nodes of the SN, in nearly every class of psychiatric 

disorder. Hyperconnectivity within the SN has been associated with autism, which is not 

surprising, given its aforementioned role in social processing (Uddin & Menon, 2009; Uddin 

et al., 2013). In aging, resting-state SN functional connectivity has been used to distinguish 

patients with fronto-temporal dementia from patients with Alzheimer disease, and from 

healthy controls (Day et al., 2013; X. He et al., 2013). Similar to findings in the DMN, 

dysregulation within SN has been noted in schizophrenia (Orliac et al., 2013; White, Joseph, 

Francis, & Liddle, 2010). More specifically, Zhou et al. (2010)  found decreased SN 
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functional connectivity in frontotemporal dementia, but increased functional connectivity in 

Alzheimer disease. Furthermore, lower rAI activation has been found in patients with 

schizophrenia, and has been associated with increased intensity of hallucinations (Manoliu et 

al., 2013). Aberrant patterns of functional connectivity have also been found in PTSD, 

including deficits in switching between the DMN and other networks (Daniels, Frewen, 

McKinnon, & Lanius, 2011; Daniels, et al., 2010). Areas of the SN have been implicated in 

obsessive-compulsive disorder, as volumetric studies have shown reduced volume in the 

bilateral AI and the ACC (de Wit et al., 2013). Methamphetamine addicts have displayed 

decreased SN activation in response to pleasant stimuli, compared to healthy controls (May, 

Stewart, Migliorini, Tapert, & Paulus, 2013). In response to the perception of sweet flavors, 

women who had recovered from anorexia displayed decreased AI activation, while women 

who had recovered from bulimia had increased AI activation, compared to controls 

(Oberndorfer, et al., 2013). While performing self-identity and social knowledge tasks, 

individuals with anorexia displayed lower activation in the ACC than individuals with 

bulimia, and both groups displayed less activation than healthy controls (McAdams & 

Krawczyk, 2013). Considering the wide range of psychiatric literature that reveals some 

degree of SN involvement in various disorders, the SN may play a role in emotional and 

cognitive processes. It also indicates that any model that would attempt to tie together 

various discrete neural networks would likely need to include the SN, due to its apparently 

crucial role in daily experiences. 

 Though changes within the DMN, CEN, and SN have been discussed as individual 

networks, changes in the relationship between pairs of these networks have also been 
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identified in psychiatric conditions. The CEN and DMN have both been implicated in 

schizophrenia, as patients with schizophrenia have been shown to display hyperconnectivity 

compared to controls in both networks at rest (Unschuld et al., 2013). The DLPFC within the 

CEN has also been shown to display decreased functional connectivity with other brain 

regions in patients with schizophrenia, as well as their first degree relatives. Furthermore, the 

decline in functional connectivity had a positive correlation with decline in scores on 

executive function tasks in patients and their relatives (Su et al., 2013). Less anticorrelation 

(i.e., increased functional connectivity) between the DMN and CEN has been found in 

schizophrenia, and is believed to correlate with the severity of hallucinations (Manoliu, et al., 

2013; Williamson, 2007). Increased resting functional connectivity between the left DLPFC 

and the DMN has been found in medication-naive adults with ADHD. This suggests the CEN 

plays a role in ADHD, in addition to the DMN, which displays decreased deactivation in 

ADHD (Hoekzema et al., 2013). Furthermore, individuals with ADHD display decreased 

activation in the ACC and DLPFC, which have been linked to poor inhibition and deficits in 

attention. (Hart, et al., 2013). Compared to healthy controls, patients with frontotemporal 

dementia displayed increased functional connectivity between the DMN and SN, while 

patients with Alzheimer’s displayed decreased functional connectivity between the DMN and 

SN (J. Zhou, et al., 2010). Taken together, these results indicate a role for interactions 

between networks, not just within networks, in a wide range of conditions, from psychiatric 

disorders to aging to TBI. Conversely, this also indicates that interactions between networks 

also play a role in healthy functioning, and that there might exist an optimal, healthy 

relationship between the DMN, CEN and SN which may serve as a biomarker for treatment 
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and recovery. Thus, understanding these three networks is clearly important to understanding 

cognitive processes and adaptive functioning. 

 

Neural Networks and Aging  

 The DMN and CEN have been shown to be temporally and spatially consistent in 

healthy controls across relatively short periods of time (Damoiseaux, et al., 2006). On a 

larger timescale, functional connectivity in the brain is known to change across the lifespan. 

Between the ages of 18-89, the brain experiences a gradual decline in functional connectivity 

in the large networks that are characterized by low-frequency correlations (Schlee et al., 

2012). In the SN, activation in response to empathy (i.e., viewing another in pain) has been 

found to decrease with age (Y. C. Chen, Chen, Decety, & Cheng, 2013). Healthy older adults 

display less intrinsic activity in the anterior regions of the DMN at rest than younger adults 

(Damoiseaux et al., 2008). When studying changes within specific components of the DMN, 

one study of healthy seniors found an increase in activity in the medial temporal lobes and 

decreases in activity in the PCC, which overlap with areas of the DMN (Schlee, Leirer, 

Kolassa, Weisz, & Elbert, 2012). Older adults have also been found to show less recovery at 

one-year post-TBI than younger adults, which may be a reflection of age-related diminished 

cognitive reserve, or greater physiological susceptibility to injury with age (Rothweiler, 

Temkin, & Dikmen, 1998). 

 The term “cognitive reserve” has been used to refer to the concept that the brain has a 

“reserve” that somehow protects it from functional decline in the light of neurological insult 

(Stern, 2002). Theories as to what contributes reserve have included factors such as brain 
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volume, volumetric differences, genetic factors,  level of education, verbal abilities, 

intelligence, and age (Stern, 2009). Cognitive reserve (measured by education and verbal 

intelligence) was found to negatively correlate with resting-state activity in the DMN, among 

healthy seniors (Bastin et al., 2012). Additionally, the same study found memory and 

executive function performance positively correlated with cognitive reserve and negatively 

correlated with cerebral activation. In healthy and cognitively normal elderly, amyloid 

buildup has been associated with a decline in functional connectivity among select nodes of 

the DMN (Sheline et al., 2010). The authors related increased amyloid to disruption in the 

connective pathways between nodes. Amyloid, as measured by distribution volume ratio as 

measured by Pittsburg Compound B on PET, has also been related to aberrant DMN activity 

in cognitively normal older and mildly impaired older adults when compared to healthy 

young controls (Sperling et al., 2009). Strong evidence exists for changes within the DMN in 

Alzheimer disease, including lowered glucose metabolism in the PCC (Minoshima et al., 

1997), atrophy in the medial temporal lobe and PCC which accelerates with disease 

progression (Buckner et al., 2005), amyloid deposits throughout the areas of the DMN 

(Buckner, et al., 2005), and decreased functional connectivity in the DMN (including 

declines between the DMN and the PCC) (Cha et al., 2013).  

 In a sample of older adults with amnestic mild cognitive impairment, increases in 

DMN activity were found during resting-state in the middle cingulate cortex, middle 

prefrontal cortex, and left inferior parietal cortex, while decreases were noted in the lateral 

prefrontal cortex, medial temporal lobe, right angular gyrus, and the PCC. Correlations were 

found between activation patterns in some of these areas (left prefrontal, left medial temporal 
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gurus, and right angular gyrus) and memory, with lower levels of activation associated with 

poorer memory performance (Jin, Pelak, & Cordes, 2012). Taken together, this indicates that 

a study investigating intrinsic, functionally connected networks should be mindful of the 

effect that aging may have on functional connectivity. When exploring the factors that 

contribute to functional connectivity, age should not be ignored. As noted above, even non-

symptomatic older adults may experience alterations in their network profiles. 

 

Changes in Networks During Recovery from Brain Injury 

 Since the DMN, CEN, and SN are all believed to undergo some degree of alteration 

after TBI, it stands to reason that they may continue to undergo changes during recovery 

from injury. Previous research on a sample of post-stroke aphasic patients who made a strong 

recovery with regard to speech skills revealed higher functional connectivity in the semantic 

processing network during a language processing task, compared to healthy controls (Sharp, 

Turkheimer, Bose, Scott, & Wise, 2010). Furthermore, a similar increase in functional 

connectivity in healthy controls was found when a language processing task became more 

difficult, leading to the conclusion that the increased functional connectivity displayed in the 

aphasic patients was likely due to the effects of inefficient language processing. To 

generalize these findings to other networks, increased frontoparietal functional connectivity 

may be associated with recovery of cognitive skills post-TBI.  

 Functional connectivity within the DMN (specifically, between the PCC to middle 

frontal and the PCC to medial temporal/hippocampal) has been shown to increase across the 

first six months of recovery following severe TBI (Hillary, et al., 2011). This same study also 
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found a decrease in functional connectivity (ACC to parietal and DLPFC to PCC) in goal-

directed networks (similar to the CEN) in a patient group during the same timeframe. 

Notably, and perhaps significantly, the functional connectivity between the insula 

(recognized as part of the SN) and the DLPFC (part of the CEN) increased between during 

rehabilitation. Mayer et al. (2011) examined the DMN at the acute state of TBI recovery (3 

weeks post-injury) and again at a later, post-acute state of recovery (3-5 months post-injury). 

Like Hillary et al., they found a decrease in functional connectivity within the DMN at the 

acute stage, compared to healthy controls. However, they also found increased functional 

connectivity with nodes of the DMN and areas associated with effortful, top-down 

processing (between the rACC and lateral prefrontal cortex, and between the right prefrontal 

cortex and PCC) at the acute stage. They found no significant changes in functional 

connectivity in the TBI sample between the acute and post-acute scans.  

 Post-TBI functional connectivity in the DMN during resting-state has been used to 

predict impairment in sustained attention (Bonnelle, et al., 2011). Patients displayed 

increasing DMN activation levels as in-scanner tasks progressed (ie, the longer they 

performed a task, the greater the level of DMN activation at the end of the task), though it 

remained consistent in controls. Impairments in sustained attention were associated with 

higher DMN functional connectivity in patients, but not in controls. Higher levels of 

functional connectivity were associated with white matter compromise and poorer 

performance on measures of sustained attention in patients. When examining more severely 

injured patients, Nakamura, Biswal, and Hillary (2009) used graph theory to note changes in 

large-scale resting networks during recovery from TBI. Between three and six months post-
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injury, networks displayed increased path length, improvements in local efficiency and 

global efficiency, and a decline in networks strength, which the authors noted had the result 

of making the patient’s networks appear more like the networks of healthy controls.  

 

Section Summary 

The DMN, CEN, and SN are three intrinsically connected networks that may be vulnerable to 

disruption following TBI. Though studies have related these three networks to various 

cognitive outcomes, volumetric change, and psychiatric symptoms, no study to date has 

attempted to predict post-TBI network functional connectivity cohesiveness from these 

factors. Furthermore, relatively little attention has been focused on how these networks 

interact with each other, and the factors that may influence inter-network connectivity. 
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CHAPTER THREE 

Study Goals and Aims 

Overall Aim 

 This study examined three intrinsic functionally connected networks (the DMN, 

CEN, and SN) in a population of individuals who suffered a TBI. The relationships between 

resting-state network cohesiveness, cognitive performance, and demographic factors were 

assessed. Furthermore, the relationship between networks, including the relationship between 

the cohesiveness of the SN and the degree of anticorrelation between the DMN and CEN, 

were assessed.  

 

Hypotheses 

Hypothesis 1:  Combining neuropsychological measures of executive functioning, 

depressive symptoms, demographic factors, and injury data will result in a significant model 

that will predict default mode network functional connectivity in mild-to-moderate TBI. 

 

Rationale:  Individually, age, severity of TBI, gender, time since injury, working memory, 

sustained attention, episodic memory, white matter volume, and depressive symptoms have 

all been associated with the DMN. In some cases, DMN functional connectivity has been 

used to attempt to classify individuals into various disease categories (i.e., controls vs. TBI). 

However, no study has examined combinations of these factors in an attempt to develop a 

model of the factors that feed into DMN functional connectivity, including the amount of 

variability that each factor accounts for. Functional connectivity is likely multi-faceted and 
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complex, and is likely influenced by a variety of factors, to varying degrees. This study 

provided a unique opportunity to examine combinations of these factors, as a wide range of 

cognitive measures were included as potential predictor variables. This allowed for a wider 

range of variables to be assessed for their relationship with the DMN. 

  

Hypothesis 2:  Combining neuropsychological measures of executive functioning, 

depressive symptoms, demographic factors, and injury data will result in a significant model 

that will predict CEN functional connectivity in mild-to-moderate TBI. 

 

Rationale: Similar to the rationale for Hypothesis 1, age, severity of TBI, gender, time since 

injury,  working memory, sustained attention, cognitive flexibility (“switching”), planning, 

white matter volume, and depressive symptoms have all been associated with CEN 

functional connectivity. However, no study has clarified the factors that feed into CEN 

functional connectivity, which is likely multi-faceted and complex. This study provided a 

involved a wider range of cognitive and functional measures than is typical of most resting-

state functional studies, allowing for the development of a more complex model to explain 

CEN functional connectivity. 

 

Hypothesis 3: The relationship between the DMN and measures of attention will be stronger 

than the relationship between the SN and measures of attention. 
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Rationale: The DMN, CEN, and (to a lesser degree) SN have all been broadly associated 

with executive functions. One crucial component of executive functioning is attention, which 

has been associated with the DMN and SN. To date, no study has compared the relative 

strengths of these associations, especially in light of the theory that the SN is responsible for 

the level of activation/deactivation of the DMN and CEN. Thus, understanding the 

relationship that each of these networks have with attention may help elucidate the 

relationship between the networks, which will be explored further in a subsequent 

hypothesis. Since the SN is hypothesized to function as a switching network, it would have 

an influence on the activity level and functional connectivity of the DMN and CEN. 

Therefore, the SN would still display a relationship with attention, albeit a weaker 

relationship than the DMN. Evidence of a relationship between the SN and attention, though 

at a lower level of significance than the relationship between the DMN and attention, would 

lend evidence to concept that the SN is a switching network. 

 

Hypothesis 4: The relationship between the CEN and measures of cognitive flexibility will 

be stronger than the relationship between the SN and measures of cognitive flexibility. 

 

Rationale: Similar to the rationale for Hypothesis 3, the SN will have a relationship with 

cognitive flexibility, albeit weaker than the relationship between the CEN and cognitive 

flexibility, due to the influence of the SN on the activity level, and possible functional 

connectivity, of the CEN. Therefore, the SN will display a relationship with cognitive 

flexibility, albeit weaker than the relationship between the CEN and cognitive flexibility. 
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Exploratory Hypothesis 5: The degree of anticorrelation between the DMN and CEN will 

be significantly and positively correlated with the coherence of the SN. 

 

Rationale: One theoretical function of the SN is to activate and deactivate neural regions as 

needed, to respond to environmental stimuli. As explored in previous hypotheses, the SN has 

been proposed to play a significant role in the activation/deactivation of the DMN and CEN. 

Furthermore, previous research has linked structural integrity of the SN to the degree of 

anticorrelation between the DMN and CEN. To expand on this idea, it is proposed that a SN 

with stronger functional connectivity will result in stronger anticorrelation between the DMN 

and CEN.  
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CHAPTER FOUR 

Methodology 

MATERIALS AND METHODS 

Participants 

 Data were collected as part of a study to evaluate the effectiveness of reasoning 

training in military and civilian chronic TBI patients. This sample was composed of soldiers 

and civilians, age 19-65, who have sustained a mild to moderate TBI, and are at least six 

months post-injury. Inclusion criteria included the ability to safely have an MRI, tolerate at 

least two hours of intervention sessions at a time, and participate in tasks involving motor 

abilities, as some of the neuropsychological measures require a motor response. Participants 

must have been able to speak, read, and comprehend English well enough to participate in 

the testing. Exclusion criteria included a history of cerebral palsy, mental retardation, autism, 

epilepsy, schizophrenia, pervasive developmental disorder, other neurological disorders, or 

psychosis. Individuals with a history of previous TBI were allowed in the study, and data was 

gathered as to the number of previous TBI, age at previous TBI, and severity of previous 

TBI. Medical information was obtained from the available medical records of potential 

participants. Informed consent was obtained from all individuals. Those included in the study 

underwent neuropsychological testing and neuroimaging, which included a resting-state 

fMRI and a structural T1-weighted image.  
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Outcome Measures 

 A variety of tests and measures were chosen for inclusion in this study, based on their 

accepted validity in the field of neuropsychology. See Appendix A for further information on 

these measures. Briefly, they included the GOS-E, GCS, BDI-II, VSLT, Daneman-

Carpenterm, Digit Vigilance, WAIS-III Digit Span, and selected subtests of the WASI, 

WTAR, WMS-IV, and D-KEFS.   

 

Functional and Structural Magnetic Resonance Image Acquisition and Processing 

 Image Acquisition: Functional and anatomical magnetic resonance images were 

obtained for each participant using a Philips 3-Tesla Scanner (Philips MR systems Achieva 

Release 2.5.3.0). Functional images were acquired with an echo-planar image sequence 

sensitive to BOLD-contrast (TE 30ms, TR 2s, flip angle 70°). The volume covered the whole 

brain with a 64x64 matrix and 37 transverse slices (4 mm thickness with no gap, voxel size 

3.44x3.44x4 mm). Resting-stated data consisted of two runs, each consisting of 205 volumes. 

Structural images of individual subjects were acquired to serve as template images onto 

which the functional data were mapped and for volumetric assessment. The structural scans 

included a T1-weighted spin echo image sequence with 36 transverse slices and a 

Magnetization Prepared Rapid Access Gradient Echo (MPRAGE) image sequence with 160 

sagittal slices. 

 Image Processing: Functional images were processed using the Data Processing 

Assistant for Resting-State fMRI (DPARSF) (Chao-Gan & Yu-Feng, 2010), run through 

SPM 8 in MATLAB 2012a. Preprocessing consisted of the following steps, which represent 
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commonly accepted practices in the literature: slice timing correction, motion correction and 

realignment to the T1 image, removal of the linear trend, transformation to standard 

Talairach space (matrix = 61 x 73 x 61, resolution = 3 x 3 x 3 mms), and smoothing by a 

Gaussian filter with a full width at half maximum (FWHM) of 4 mm. Appropriate low-

frequency fluctuations was isolated and kept using band-pass filtering (0.01-0.1 Hz). White 

matter and cerebrospinal fluid signals were regressed out using averaged signals from the 

white matter and the ventricles for each ROI. Six head-motion parameters were similarly 

regressed out of the signal. Of note, the global mean signal was not regressed out.  

 A motion-correction toolbox, known as McFLIRT (Jenkinson, Bannister, Brady, & 

Smith, 2002) was operated through FSL (Jenkinson, Beckmann, Behrens, Woolrich, & 

Smith, 2012) in order to assess the mean and maximum level of motion for each participant. 

Individuals with relative mean motion greater than .25 mm were removed from further 

analysis, as were individuals with maximum instances of motion greater than 3.5mm. 

 Brain tissue volume, normalized for subject head size, was estimated with SIENAX 

(Smith et al., 2002), a toolbox operated through FSL. SIENAX starts by extracting brain and 

skull images from the structural T1 image. The brain image was then affine-registered to 

MNI152 space, using the skull image to determine the registration scaling. This is done 

primarily to obtain the volumetric scaling factor, used as normalization for head size. Next, 

tissue-type segmentation with partial volume estimation was carried out in order to calculate 

total volume of brain tissue (including separate estimates of volumes of grey matter, white 

matter, peripheral grey matter and ventricular CSF). 
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 As mentioned earlier, a seed-based approach was used to create functional 

connectivity maps for each network. For the DMN, the bilateral posterior cingulate cortex 

was seeded using the accepted MNI coordinates of (±10 -56 12). The CEN was seeded using 

the dorsolateral prefrontal cortex, MNI coordinates of (±45 +16 +45). For the SN, the 

bilateral fronto-insular cortex was seeded using coordinates of (+37 +25 -4) and (-32 +24 -6) 

(Sridharan, et al., 2008). An ROI toolkit that functions within SPM, MARSbar v0.43(Brett, 

Anton, Valabregue, & Poline, 2002), was used to create spheres with a 4mm radius at the 

voxel coordinates for each network, which served as network seeds. Using DPARSF, the 

cross-correlation coefficient between these seed voxels and all other voxels were calculated 

to generate a correlation map, which was transformed to a z-score map. Next, an ROI 

analysis was performed, based on four known CEN regions (bilateral DLPFC and bilateral 

inferior parietal cortexes), four DMN regions (PCC, VmPFC, LLPC, RLPC), and three SN 

regions (ACC and the bilateral AI). To obtain these ROIs, all participants’ functional 

connectivity z-maps were combined to create an averaged functional connectivity z-map for 

each network. These maps were examined in order to identify the voxels with the highest z-

score (representing the greatest connectivity) in each network node. For example, the 

averaged DMN map was used to find the coordinates of the peak voxels in the PCC, 

VMPFC, RLPC, and LLPC. Next, between-node functional connectivity was calculated for 

each network, using DPARSF. This was accomplished by defining an ROI (i.e., a sphere 

with a 5mm radius) at the coordinates of each peak voxel (one in each network node). The 

functional connectivity analysis was performed between each ROI for the main nodes of the 
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DMN. Due to inconsistencies in the literature, the bilateral hippocampi were not included as 

part of the DMN, nor was the anterior cingulate cortex included as part of the CEN.  

 Once the cross-ROI functional connectivity had been calculated for each network, a 

statistical method known as the function of the determinant was used to conceptualize and 

quantify the networks. This method has been used in previous studies of resting-state 

networks before, most notably by Arenivas et al. (2012). The same procedure was used for 

each network. First, the functional connectivity was calculated between each node of a 

network (for example, the DMN) with every other node in the network. For example, in the 

DMN, this resulted in six between-node correlations (i.e., VMPFC to PCC, VMPFC to 

LLPC, VMPFC to RLPC, PCC to LLPC, PCC to RLPC, and LLPC to RLPC). The resulting 

six correlation coefficients were then entered into a square correlation matrix (see Figure 1). 

The degree of cohesiveness between the nodes within the network was represented by a 

determinant statistic, which was obtained by computing the function of the square matrix 

containing the correlations. This function of the determinant was then statistically corrected 

for symmetry and variance using a negative logarithm and square root of the determinant, 

which allowed for comparisons between networks. The resulting single numerical value 

represented whole-network connectedness, and higher values indicated greater levels of 

network cohesiveness. This assessment was completed for the DMN, CEN, and SN. Next, a 

pooled map was created for each network. To do this, the functional connectivity z-value 

maps for each individual participant were combined and averaged, using a custom script run 

through MATLAB 2012a. This was done to create an average map of the DMN, CEN, and 

SN (Figures 3, 4, and 5, respectively). 
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Figure 1 

Within network Correlation Matrix 

 

Anticorrelation Between the DMN and CEN: 

 In order to measure the degree of anticorrelation between the DMN and CEN, the 

degree of functional connectivity between each node of the CEN and each node of the DMN 

was calculated using a Pearson correlation (represented by the top right quadrant of Figure 

2). This was done using each individual’s unique DMN and CEN node coordinates, and each 

individual’s resting-state fMRI data. The resulting Pearson correlations were then 

transformed z-values, using a Fisher’s z transformation. Next the mean and standard 

deviation of the between-network z-values was calculated, which was used to represent the 

degree of anticorrelation between the DMN and CEN. 

 

 

 

 

 

 

MFC PCC LLPL RLPL

MFC 1 r r r
PCC r 1 r r
LLPL r r 1 r
RLPL r r r 1

r =  the value of the correlation between nodes
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Figure 2 

Between-network Anticorrelation Matrix 

 

r = the value of the between-node correlation 

 

Hypothesis-Specific Methods and Statistics 

 The relationship between network cohesiveness and predictive factors was 

investigated using multiple regressions. Descriptive results were produced for all variables, 

and statistical assumptions were checked before conducting analyses. When available, 

standardized scores were used from the cognitive measures in order to minimize the impact 

of demographic factors such as age, gender, and education level. 

 The following steps were followed in order to conduct each multiple regression. In 

step one, an initial stepwise forward multiple regression was conducted, and variables were 

added if alpha <0.25 and removed if alpha >0.26. This provided a list of potential predictors. 

In step two, this list was then entered into a backward multiple regression. Variables were 

entered into the model if alpha <0.05, and were removed from the model if alpha >0.1. 
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node 
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DMN 
node 
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DMN 
node 
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node 
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CEN 
node 

1

CEN 
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2

CEN 
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3
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DMN node 1 1 r r r r r r r

DMN node 2 r 1 r r r r r r

DMN node 3 r r 1 r r r r r

DMN node 4 r r r 1 r r r r

CEN node 1 r r r r 1 r r r

CEN node 2 r r r r r 1 r r

CEN node 3 r r r r r r 1 r

CEN node 4 r r r r r r r 1
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Variance inflation factor (VIF) statistics were run to assess the degree to which any 

significant predictor variable exhibited significant multicollinearity with any other significant 

predictor variable. The same group of factors were included as potential predictors for the 

DMN, CEN, and SN, and are listed as follows:  Cognitive tests: D-KEFS Card Sorting 

condition 1, D-KEFS Card Sorting condition 2, D-KEFS Verbal Fluency condition 1, D-

KEFS Verbal Fluency condition 2, D-KEFS Verbal Fluency condition 3, Verbal Fluency 

total set-loss errors, Verbal Fluency total repetition errors, D-KEFS Color Word Interference 

condition 1, D-KEFS Color Word Interference condition 2, D-KEFS Color Word 

Interference condition 3, D-KEFS Color Word Interference condition 4, Digit Vigilance 

Total Time, Digit Vigilance Total Errors, Daneman-Carpenter Reading Span Test Total 

score, D-KEFS Trail Making Test condition  1, D-KEFS Trail Making Test condition 2, D-

KEFS Trail Making Test condition  3, D-KEFS Trail Making Test condition  4, D-KEFS 

Trail Making Test condition 5, WMS-IV Logical Memory Immediate Recall, WMS-IV 

Logical Memory Delayed Recall, WASI Similarities, WASI Vocabulary, WASI Matrix 

Reasoning, WASI Estimated FSIQ, WTAR estimated premorbid FSIQ, Digit Span Forward 

Total, Digit Span Backward Total, Digit Span Combined Total, and VSLT Total Score. 

Measures of depression: BDI-II Cognitive Subscale, BDI-II Non-cognitive subscale, and 

BDI-II Total Score. Volumetric measures: normalized grey matter volume, normalized 

peripheral grey matter volume, normalized ventricular CSF volume, normalized white matter 

volume, normalized total brain volume. Demographic and injury factors: age at first TBI, 

number of previous TBIs, age at most recent TBI, age at assessment, time between injury and 

assessment, TBI severity, GOS-E, years of education, gender, and civilian/military status. 
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The factors that survived the initial step of the multiple regression for each network are listed 

in the subsection regarding their respective hypotheses. 

  

Hypothesis 1: After entering all of the aforementioned predictors for DMN cohesiveness 

into the stepwise multiple regression, the following factors met criteria for inclusion into the 

second step and were entered into the stepwise backward multiple regression: age at first 

TBI, age at assessment, Daneman-Carpenter, D-KEFS Card Sort condition 2, Digit Span 

Total, normalized global grey volume, normalized global ventricular CSF volume, TBI 

severity, time since injury, D-KEFS Trail Making Test condition 1, D-KEFS Trail Making 

Test condition 2, D-KEFS Trail Making Test condition 3, D-KEFS Trail Making Test 

condition 4, normalized total brain volume, WASI Similarities, and WMS Logical Memory 

Delayed Recall. 

 

Hypothesis 2: After entering all of the aforementioned predictors of CEN cohesiveness into 

the stepwise multiple regression, the following factors met criteria for inclusion into the 

second step and were entered into the stepwise backward multiple regression: Age at injury, 

Digit Vigilance Total Errors, D-KEFS Card Sort condition 2, D-KEFS Color Word Inhibition 

condition 1, D-KEFS Color Word Inhibition condition 2, D-KEFS Color Word Inhibition 

condition 3, D-KEFS Trail Making Test condition 1, D-KEFS Verbal Fluency condition 1, 

D-KEFS Verbal Fluency Total Set-Loss Errors, Digit Span Forward, normalized global 

ventricular CSF, D-KEFS Trail Making Test Condition 2, VSLT Total Score, WASI 

Vocabulary, WMS Logical Memory Immediate Recall.  

 



54 
 
 

Hypothesis 3: After entering all of the aforementioned predictors of SN cohesiveness into 

the stepwise multiple regression, the following factors met criteria for inclusion into the 

second step and were entered into the stepwise backward multiple regression: Age at 

assessment, D-KEFS Card Sort condition 1, D-KEFS Card Sort condition 2, D-KEFS Color 

Word Inhibition condition 1, D-KEFS Color Word Inhibition condition 3, D-KEFS Color 

Word Inhibition condition 4, D-KEFS Verbal Fluency condition 1, Digit Span Backwards, 

Digit Span Forwards, Digit Span Total, gender, normalized ventricular CSF volume, GOS-E, 

TBI severity, D-KEFS Trail Making Test condition 2, D-KEFS Trail making Test condition 

5, normalized total brain volume, and VSLT Total Score.  

 Of note, the DMN multiple regression results from the analysis of hypothesis one 

were used again when assessing this hypothesis. The portion of the variance accounted for by 

measures of attention in the SN were compared the same metrics on the DMN. To do this, 

the standardized beta (represented by “ß”) was examined for each variable, which represents 

the degree to which each predictor affects the outcome of the effects if all other predictors are 

held constant.  

 

Hypothesis 4: To assess hypothesis four, the results from the multiple regression performed 

on the CEN while assessing hypothesis two were compared with the results of the linear 

regression performed on the SN while assessing hypothesis three. The portion of variance 

explained on the linear regression by measures of cognitive flexibility in the SN was 

compared to that explained by the same tests on the CEN by examining the standardized beta 
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(represented by a “ß”) of each variable, which represents the degree to which each predictor 

affects the outcome of the effects of all other predictors are held constant.  

  

Exploratory Hypothesis 5: To assess exploratory hypothesis five (the relationship between 

the SN and the degree of anticorrelation between the DMN and CEN), a Pearson’s 

correlation was used to examine the relationship between the cohesiveness of the SN and the 

anticorrelation between the DMN and CEN. As mentioned earlier, z-scores will be used to 

represent the degree of anticorrelation. Due to methodological concerns with correlating z-

scores with a determinant scores (due to score distributions), SN cohesiveness for this 

hypothesis will be represented z-scores. These will be calculated by transforming the 

between-node correlations (obtained in an earlier step of calculating the determinant) into z-

scores using a Fisher’s z transformation. The z-scores will then be averaged, with the mean 

z-score representing the network connectivity. As a secondary analysis, the relationship 

between DMN cohesiveness, CEN cohesiveness, SN cohesiveness, and degree of 

anticorrelation were explored with a Pearson’s correlation. 

 

 

 



 

CHAPTER FOUR 
 

RESULTS 

 
Descriptive Statistics: A total of 63 participants were included in the study. Demographic 

features and clinical characteristics for the participants are shown in Table 1. The means, 

standard deviations, ranges, and frequencies of all cognitive measures are listed in Table 2. 

For the most part, participants’ mean scores were in the average range on cognitive measures, 

with the exception of Digit Span, which was below average. Of note, the mean BDI-II total 

score was 17.56, which is indicative of mild symptoms of depression. Two individuals 

reported more scores over 40, indicative of more severe symptoms. Details on the volumetric 

measures are listed in Table 3, and the results of the network cohesiveness analysis are in 

Table 4. The mean GOS-E score was 6.43, which falls between the “upper moderate 

disability” and “lower good recovery” ranges.  
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Table 1 

Sample Demographic Characteristics 

Characteristic Mean (SD) Range 

Age at Assessment   40.05 (12.05)   19 - 65 
Age at Injury   32.97 (13.36)  16 - 64 
Age at 1st TBI   20.59 (11.82)    3 - 48 
Years since Injury   7.29 (6.73) 0.5 - 25 
Education (yrs) 16.13 (2.58)    12 - 20+ 
Est. Current IQ 108.82 (11.84)    83 - 141 
Est. Premorbid IQ                  111.20 (8.23)   90 - 123 

 
 

Percent  

TBI Severity 90.5% mild, 9.5% moderate 
Number of Previous TBIs 0: 61%;  1: 29%;  2: 8%;  3: 2% 
Civilian/Military 66% civilian, 34% military 
Gender 62% male, 38% female 
Ethnicity 84% Caucasian, 13% African American, 3% Hispanic 
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Table 2 

Mean, SD, and Range of Neuropsychological Scores 

Measure Mean (SD) Median Range 

GOS-E     6.43 (0.67)     7    5 - 7 
 
BDI-II Total 

 
  17.56 (10.79)   16.5 

 
0 - 50 

BDI-II Cognitive Subscale     5.89 (4.73)     5 0 - 18 
BDI-II Non-Cognitive Subscale   11.68 (7.13)   10 0 - 32 
 
WASI Estimated Current IQ (standard score) 

 
108.82 (11.84) 110 

 
83 - 141 

WTAR Premorbid IQ Estimate (standard score) 111.20 (8.23) 112.5 90 - 123 
    
Daneman-Carpenter Reading Span Task (raw)     2.82 (0.85)     2.5 1.5 - 4.5 
Digit Vigilance Total Time (t-score)   50.57 (10.93)   51 31 - 79 
Digit Vigilance Total Errors (t-score)   47.97 (10.70)   48 26 - 71 
D-KEFS Card Sort Condition 1 (SS)   10.64 (2.57)   11  5 - 17 
D-KEFS Card Sort Condition 2 Description (SS)     9.92 (3.44)   10  1 - 17 
D-KEFS Color Word Condition 1 (SS)     9.05 (3.34)   10  1 - 14 
D-KEFS Color Word Condition 2 (SS)     9.52 (3.24)   11  1 - 14 
D-KEFS Color Word Condition 3 (SS)     9.38 (3.25)   10  1 - 15 
D-KEFS Color Word Condition 4 (SS)     9.59 (3.16)   11  1 - 14 
D-KEFS Trail Making Test Condition 1 (SS)   11.60 (2.55)   12  1 - 15 
D-KEFS Trail Making Test Condition 2 (SS)   10.87 (3.19)   12  1 - 16 
D-KEFS Trail Making Test Condition 3 (SS)   10.79 (3.36)   12 1 - 15 
D-KEFS Trail Making Test Condition 4 (SS)   10.82 (2.83)   12 1 - 15 
D-KEFS Trail Making Test Condition 5 (SS)   11.87 (2.04)   12 1 - 15 
D-KEFS Verbal Fluency Condition 1 (SS)   10.98 (2.85)   11 3 - 18 
D-KEFS Verbal Fluency Condition 2 (SS)   10.79 (3.77)   11 2 - 19 
D-KEFS Verbal Fluency Condition 3 (SS)   11.11 (3.55)   11 4 - 18 
D-KEFS Verbal Fluency Total Set Loss Errors (raw)     1.08 (1.57)     1    0 - 8 
D-KEFS Verbal Fluency Total Repetition Errors 
(raw)     2.40 (3.01)     2    0 - 17 
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Visual Selective Learning Task, Total (Standard 
Score) 114.67 (38.12) 114  29 - 200 

WAIS-III Digit Span Forward Total (SS)   10.48 (2.26)   10 6 - 16 
WAIS-III Digit Span Backward Total (SS)     7.19 (2.24)     7 3 - 13 
WAIS-III Digit Span Total (SS)   10.48 (2.67)   10 5 - 18 
WASI Similarities (t-score)   54.51 (6.34)   56  39 - 68 
WASI Matrix Reasoning (t-score)   59.08 (6.74)   60  39 - 70 
WASI Vocabulary (t-score)   59.97 (9.50)   53  24 - 80 
WMS-IV Logical Memory Immediate (SS)   13.14 (4.14)   13.5 4 - 22 
WMS-IV Logical Memory Delayed (SS)   11.27 (4.66)   12 1 - 20 

Note:  SS= Scaled Score 

 

Table 3 

Volumetric Measures Descriptive Statistics 

Volumetric Measure (mm3) Mean (SD) Range 

Normalized Peripheral Grey 642,620 (45,194)       549,629 - 791,057 
Normalized Ventricular CSF  41,808 (20,621)    9,682 - 110,565 
Normalized Global Grey  811,445 (55,935)       710,119 - 991,835 
Normalized Global White  734,617 (41,894) 647,781 - 827,798 
Normalized Total Volume  1,546,062 (77,101) 1,371,948 - 1,723,987 
Note: CSF= Cerebral Spinal Fluid 

 

 As a whole, the sample was relatively well educated, and the average participant was 

approximately 40 years of age. A vast majority received a mild TBI, with the remainder 

receiving a moderate TBI. They were well into the chronic stages of recovery, and reported 

to fall in to the lower end of what would be considered “good” recovery. On average, the 

sample was reporting mild symptoms of depression. 
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 With regard to network functional connectivity, the pooled connectivity maps for the 

DMN, CEN, and SN are presented in Figures 3, 4, and 5, respectively. With regard to 

network cohesiveness, histograms of the distribution of the determinant statistic values for 

the DMN, CEN, and SN are displayed in Figures 6, 7, and 8, respectively. Figure 9 displays a 

histogram of the distribution of z-values for the DMN/CEN anticorrelation. 

 

Table 4 

Network Cohesiveness Descriptive Statistics 

Network Cohesiveness Mean (SD) Range 

DMN (determinant) 1.37 (.25)  0.93 - 1.94 
CEN (determinant)   1.62 (0.25)  1.00 - 2.14 
SN (determinant)   1.13 (0.23)  0.65 - 1.67 
Anticorrelation (z-value)   0.35 (0.23) -0.16 - 1.02 
Note: DMN= Default Mode Network, SN= Salience Network, CEN=Central Executive 
Network 
 

 

Research Hypotheses 

Hypothesis 1: Predictors of DMN network cohesiveness. It was postulated in hypothesis 1 

that the cohesiveness of the DMN could be predicted from a combination of cognitive test 

scores, volumetric data, outcome measures, depressive symptoms, and demographic and 

injury data. The hypothesis was supported. When all of these factors were entered into a 

stepwise linear regression and then eliminated using a backward stepwise procedure, it was 

found that a model consisting of age at assessment, D-KEFS Card Sorting condition 2, Digit 

 



61 
 
Span Total Score, normalized global grey matter volume, normalized ventricular CSF 

volume, TBI severity, D-KEFS Trails Making Test condition 2, D-KEFS Trail Making Test 

condition 3, normalized total brain volume, and WASI Similarities significantly predicted  

DMN cohesiveness (Table 5). The results indicate that these predictors explained 50% of the 

variance (R2 = .449, F(10, 57)=3.83, p<.001). A histogram of the DMN cohesiveness 

(determinant statistic) values is displayed in Figure 6. 

 

Hypothesis 2: Predictors of CEN network cohesiveness. It was postulated in hypothesis 2 

that CEN cohesiveness could be predicted from a combination of cognitive test scores, 

volumetric data, outcome measures, depressive symptoms, and demographic and injury data. 

This hypothesis was supported. When all of the aforementioned factors were entered into a 

stepwise linear regression and then eliminated using a backward stepwise procedure (Table 

6), it was found that a model consisting of D-KEFS Color Word Inhibition condition 3, D-

KEFS Verbal Fluency condition1, D-KEFS Verbal Fluency Total Set-Loss Errors, Digit 

Span Forward, D-KEFS Trail Making Test condition 1, and WASI Vocabulary explained 

37% of the variance (R2= .370, F (6,57)=4.99, p<.001). A histogram of the CEN 

cohesiveness values (determinant statistic) is displayed in Figure 7. 

 

Hypothesis 3: The DMN, SN, and attention. It was proposed in hypothesis 3 that the 

relationship between the DMN and measures attention would be stronger than the 

relationship between the SN and measures of attention. This hypothesis was not supported. A 

backwards stepwise multiple regression was performed to examine the effect of cognitive test 
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scores, volumetric data, outcome measures, depressive symptoms, and demographic and 

injury data on SN cohesiveness. The results (Table 7) indicated that a model consisting of D-

KEFS Card Sorting condition 2, D-KEFS Color Word Inhibition condition 1, D-KEFS Color 

Word Inhibition condition 4, Digit Span Backwards, Digit Span Total, gender, normalized 

ventricular CSF volume, GOS-E, and normalized total brain volume explained 45% of the 

variance in the cohesiveness of the SN (R2=.45, F(9,60) = 4.65, p<.001). A histogram of the 

SN cohesiveness values (determinant statistic) is displayed in Figure 8. As mentioned earlier, 

age at assessment, D-KEFS Card Sorting condition 2, Digit Span Total Score, normalized 

global grey matter volume, normalized ventricular CSF volume, TBI severity, D-KEFS 

Trails Making Test condition 2, D-KEFS Trail Making Test condition3, normalized total 

brain volume, and WASI Similarities significantly predicted  DMN cohesiveness and 

explained a significant portion of cohesiveness in the DMN. 

 

Hypothesis 4: The CEN, SN, and cognitive flexibility. Hypothesis 4 stated that the 

relationship between the CEN and cognitive flexibility would be stronger than the 

relationship between the SN and cognitive flexibility. This hypothesis was not supported. As 

mentioned above, significant predictive factors for the CEN were D-KEFS Color Word 

Inhibition condition3, D-KEFS Verbal Fluency condition1, D-KEFS Verbal Fluency Total 

Set-Loss Errors, Digit Span Forward, D-KEFS Trail Making Test condition 1, and WASI 

Vocabulary. Predictive factors for the SN were found to be D-KEFS Card Sorting 

condition2, D-KEFS Color Word Inhibition condition 1, D-KEFS Color Word Inhibition 

condition 4, Digit Span Backwards, Digit Span Total, gender, normalized ventricular CSF 
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volume, GOS-E, and normalized total brain volume. No measures of cognitive flexibility 

were included in the predictive model for the CEN; perhaps the closest measure was one of 

inhibition, the D-KEFS Color Word Inhibition condition 3 (ß= -0.435). One measure of 

cognitive flexibility included in the predictive model for the SN, D-KEFS Color Word 

Inhibition condition 4 (ß=-0.301). 

 

Exploratory Hypothesis 5: The SN and Anticorrelation: Exploratory Hypothesis 5 

postulated that the degree of anticorrelation between the DMN and CEN would be 

significantly and positively correlated with the coherence of the SN. This hypothesis was 

partially supported. A Pearson’s correlation revealed a moderate correlation approaching 

significance between SN cohesiveness and DMN/CEN anticorrelation (r= .220, p=.084). In 

addition, significant relationships were found between DMN and CEN cohesiveness (r=.292, 

p<.02) and between CEN and SN cohesiveness (r=.295, p=.019). Degree of anticorrelation 

had a positive correlation with DMN cohesiveness (r=.373, p=.003) and CEN cohesiveness 

(r=.865, p<.001). However, no significant relationship was found between DMN and SN 

cohesiveness (r=.135, p=.291). A histogram of the anticorrelation z-values is displayed in 

Figure 9. 
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CHAPTER FIVE 
Conclusions and Discussion 

 

 This study examined the factors influencing the resting-state functional connectivity 

(i.e., network cohesiveness) of three intrinsically-connected networks in a population of 

individuals with mild to moderate TBI. Multiple linear regressions were used to develop a 

predictive model for the default mode network (DMN), central executive network (CEN), 

and the salience network (SN). Predictive factors entered into the models included 

demographic factors, injury factors, volumetric data, and results from a cognitive assessment 

battery. Furthermore, the interaction between networks, specifically between the SN and the 

anticorrelation between the DMN and CEN, was evaluated. 

 With regard to the cognitive aspects of the assessment battery, mean test scores 

appeared to fall within the average range. This included estimates of pre-morbid and current 

IQ, as well as verbal fluency, verbal reasoning, immediate and delayed memory, nonverbal 

reasoning, processing speed, and cognitive switching. However, a measure of working 

memory, Digit Span Backwards, was below the expected population mean. These results 

indicate that, as a whole, the sample was relatively cognitively intact, with average scores 

largely falling within one SD of the mean. The exception to this was Digit Span Backwards, 

which was one SD below the expected mean. Overall, the sample was middle aged, mildly 

injured, experiencing few cognitive difficulties as measured by testing, in the chronic stages 

of recovery, of average intelligence, and reporting mild symptoms of depression. 
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Hypothesis 1:  Hypothesis 1 posited that a combination of neuropsychological measures of 

executive functioning, depressive symptoms, demographic data, and injury data would 

predict default mode network functional connectivity in mild-to-moderate TBI. This 

hypothesis was supported, as a combination of volumetric measures (grey, ventricular CSF, 

and total brain volumes), measures of simple attention (Digit Span), measures of complex 

attention (D-KEFS Trail Making Test conditions 2 and 3), verbal reasoning (WASI 

Similarities), reasoning and concept formation (D-KEFS Card Sorting condition 2), 

demographic factors (age at assessment), and injury factors (TBI severity), when entered into 

a multiple linear regression, resulted in a significant predictive model (Table 5). This was 

found to predict approximately 50% of DMN cohesiveness variance.  
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Table 5 

Multiple Linear Regression Results, DMN 

Domain Variables Entered ß Sig VIF 
 Age at Assessment* 0.46 .002 1.75 

Demographic/Injury TBI Severity* 0.24 .046 1.15 
 Age at 1st TBI    
 Time since injury    
 D-KEFS Trail Making Test 2* 0.51 .005 2.51 
 Digit Span Total* 0.44 .002 1.55 
 D-KEFS Trail Making Test 3* -0.37 .034 2.42 

Cognitive WASI Similarities * -0.33 .022 1.67 
 D-KEFS Card Sort Condition 2* -0.32 .02 1.52 
 Daneman Carpenter    
 D-KEFS Trail Making Test 1    
 D-KEFS Trail Making Test 4    
 Normalized Global Grey Volume* 0.88 .001 4.97 

Volumetric Normalized Total Brain Volume* -0.74    .002 4.28 
 Normalized VCSF Volume* -0.34 .013 1.52 

*included in final predictive model 

 

Cognitive Factors: Attention 

 As noted earlier, relationships have been reported between DMN functional 

connectivity and performance on tasks of attention (Bonnelle, et al., 2011), working memory 

(Anticevic, et al., 2010) and overall executive functions (Damoiseaux, et al., 2007). 

Therefore, the inclusion of a measure of attention in the factor model was expected. One 

explanation may be the special position that attention plays in executive functioning. For 

example, in the D-KEFS, attention is considered to be a “fundamental” basic cognitive skill 

that is essential in order to perform more advanced, “higher-order” cognitive skills (Delis, 

Kaplan, & Kramer, 2001). Though the D-KEFS Trail Making Test condition 2 and 3 are not 
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explicitly considered to be attention tests, they have a great deal of similarity to the classic 

Tail Making Test A, which is considered to have a significant attention component (Strauss, 

Sherman, & Spreen, 2006). The inclusion of several measures that rely heavily on 

fundamental cognitive skills, and the lesser role of tests that strongly involve higher-order 

executive function skills (such as planning, problem solving, switching, inhibition, etc.) lends 

evidence to the view that the DMN represents some degree of “basic” brain functioning.  As 

discussed earlier, the DMN has been theorized to perhaps represent a neural “holding 

pattern,” allowing the brain to remain in a state of readiness to more quickly respond to 

environmental demands (Deco, et al., 2009). This view of the DMN as a more base-level 

network is further supported by the relatively heavy weight given to volumetric measures, 

age, and (to a lesser degree) TBI severity in this model. This would seem to indicate that the 

DMN is more sensitive to these factors as opposed to the CEN (which will be discussed 

later), and alterations to the DMN the fundamental cognitive skills associated with it may 

underlie changes in higher-order skills seen with age, illness, and injury. This is also 

somewhat in-line with research from Boly et al. (2008; 2009), who reported declines in DMN 

functional connectivity that corresponded with deepening levels of unconsciousness, and 

concluded that the DMN reflected a basic level of brain functioning (though more than 

simply an artifact of respiration or blood flow).  

 

Cognitive Factors: Verbal  

 When examining the factors included in the DMN model, two measures stood out as 

representing domains not typically associated with the DMN; WAIS Similarities, an 
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assessment of abstract verbal reasoning, and the D-KEFS Card Sorting condition 2, an 

assessment of  reasoning and concept formation. Though verbal reasoning ability was not 

traditionally associated with the DMN, recent research has noted strong anticorrelation at rest 

between pre-supplementary motor areas associated with language and the DMN (Ter 

Minassian et al., 2014), though research relying on anticorrelation may be problematic in 

itself (which is discussed further in the context of hypothesis 4). Another study examined the 

resting-state functionally connected network that resulted from seeding Broca’s Area, and 

noted significant overlap with nodes of the DMN (Muller & Meyer, 2014). This burgeoning 

idea of a relationship between language and the DMN may again relate to the more 

established view of the DMN’s relationship with attention; a more cohesive DMN may use 

fewer resources during cognitively demanding tasks, thus allowing more efficient utilization 

by other neural networks, such as language networks or the CEN. If the DMN is less 

cohesive, then perhaps the resulting increased variability in neural activity would result in an 

inefficient use of neural resources, thus disrupting attention, concentration, and higher-order 

cognitive skills. Therefore, individuals with better DMN cohesiveness may have better 

attention, and may be better able to concentrate while attempting to answer abstract verbal 

reasoning questions. On the other hand, there is thought that the DMN plays a role in 

maintaining activation in frequently used neural pathways (Buckner & Vincent, 2007; 

Greicius & Menon, 2004). If true, then perhaps the DMN has a role in maintaining some 

degree of “readiness” in pathways associated with verbal abilities.  

 A similar line of reasoning may underlie the inclusion of the D-KEFS Card Sorting 

condition 2 in the predictive model for the DMN. The pattern identification, classification, 

 



69 
 
cognitive flexibility, and reasoning skills involved in identifying the pattern another 

individual is following during a card sort task are likely skills that require attention and 

concentration—skills associated with the DMN. Alterations in the DMN could result in 

poorer attention and concentration, which, in turn, have a negative impact on verbal ability 

and reasoning skills. However, this explanation is likely too simplistic. If a simple 

relationship with attention and concentration were enough to include a test into the predictive 

model for the DMN, then nearly all tests in the battery would be included. The explanation 

for the inclusion of D-KEFS Card Sorting must involve other factors. Breaking down the 

tasks involved in the card sorting test reveals that one key component is conceptualization. 

Resent research into the neural processes involved during the process of solving a math 

problem examined neural activity during each step of the problem solving process. During an 

early phase in the process, when individuals were simply defining the problem, increased 

activity was noted in regions associated with the DMN (J. R. Anderson, Lee, & Fincham, 

2014). Activation in nodes of the DMN was not observed during other steps in problem 

solving, such as computing or encoding. The researchers hypothesized that this activation 

was related to aspects of visual attention and search during the time when participants are 

attempting to conceptualize the problem to be solved. This is similar to the card sorting 

descriptive task, during which participants have to visually examine the cards in order to 

deduce the sorting pattern that the examiner is following, as they try to conceptualize the 

pattern and verbally explain it. This raises the question as to why D-KEFS Card Sort 

condition 1 was included, but not D-KEFS Card Sort Condition 2. Though there is a lot of 

similarity between these tasks, there is one fundamental difference. In D-KEFS Card Sort 
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condition 1, the individual taking the test has to come up with the categories by which to sort 

the cards. Though this is speculation, perhaps the process of developing one’s own sort 

strategy does not have as strong of a relationship with the DMN as trying to conceptualize 

someone else’s sort strategy. 

 The D-KEFS Card Sorting condition 2 also involves a task that is relatively unique in 

the battery. The participant must observe another individual and deduce their intentions and 

motives, and transform these into coherent verbal explanations. This hints at the possibility 

of some involvement of social processing, mirroring, theory of mind, or perspective taking. 

Though the relationship between these variables and performance on the card sort descriptive 

task is likely not strong, there is evidence of a relationship between the DMN, social 

cognition, and understanding others (W. Li, Mai, & Liu, 2014; Molnar-Szakacs & Uddin, 

2013). Perhaps this card sorting task involved significant degrees of attention, 

conceptualization, and predicting/understanding the actions of another person to allow its 

inclusion into the DMN predictive model.  

   

Volumetric and Age Factors 

 Further examination of the weight of the different cognitive factors included in the 

model reveals information about the DMN. As mentioned earlier, two of the factors with the 

greatest ß were volumetric factors, one of which is normalized volume of grey matter. There 

is evidence in the literature tying grey matter volume to functional connectivity. For 

example, grey matter loss has been associated with attenuated DMN functional connectivity 

in multiple sclerosis (Bonavita et al., 2011), epilepsy (Voets et al., 2012), and dementia 
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(Bozzali, Padovani, Caltagirone, & Borroni, 2011). The second heaviest weighted factor in 

the model was normalized ventricular CSF, which had a large negative ß. This indicates that 

increases in ventricular CSF were related to declines in DMN cohesiveness. Taken together, 

these two findings make intuitive sense. Increased ventricular space is often considered to be 

a sign of atrophy or injury, and declines in grey matter are associated with poorer cognitive 

and motor performance. However, the third volumetric measure included in the model was 

normalized total brain volume, which had a negative ß. This indicates that lower brain 

volumes are associated with higher DMN functional connectivity. Typically, declines in 

brain volume are associated with aging or disease (Scahill et al., 2003; Takao, Hayashi, & 

Ohtomo, 2012). Similarly, the factor of age at the time of assessment was a significant part of 

the predictive model, and itself had a positive ß, indicating that increases in age are 

associated with increases in DMN cohesiveness. These two findings appear to be contrary to 

the other research on age and functional connectivity, which typically finds a decline in 

functional connectivity with age (Schlee, Leirer, Kolassa, Weisz, et al., 2012). This finding 

seems to imply that age is associated with increased DMN cohesiveness. There is some 

support for this idea in literature, with one study finding a mixture of increases and decreases 

with age in various DMN sub-networks (Campbell, Grigg, Saverino, Churchill, & Grady, 

2013), and another finding that shorter-range connections are less sensitive to aging effects 

than longer range connections (Tomasi & Volkow, 2012a). 

 A possible explanation rests in the method used to conduct the multiple linear 

regression. Factors in a multiple linear regression that have a strong correlation with each 

other, but do not violate multicollinearity assumptions, may appear in the predictive model 
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with opposite ß signs. In the DMN model, none of the factors were significantly collinear. 

However, some of them were likely correlated, to some degree. For example, the DMN 

predictive model contained both D-KEFS Trail Making Test condition 2 and D-KEFS Trail 

Making Test condition 3. These tests are similar enough that there likely exists a degree of 

positive correlation between the scores, yet the multicollinearity analysis revealed that 

neither one was significantly collinear. Both appear in the predictive model, yet D-KEFS 

Trail Making Test condition 2 had a positive ß, while D-KEFS Trail Making Test condition 3 

had a negative ß. This same concept may affect other factors in the model which are likely 

correlated, yet not significantly collinear, such as age at assessment and the volumetric 

measures, which (as mentioned earlier) are believed to be sensitive to aging effects. 

Therefore, interpretation of the direction (sign of the ß) of various factors in the model should 

be interpreted with caution. 

 With the aforementioned methodological caveat in mind, several possible alternative 

explanations exist for unexpected direction of factors included in the model. However, these 

are speculative at this time. First, it has been theorized that there exists an optimal amount of 

functional connectivity for the intrinsically-connected networks, and levels of functional 

connectivity above this amount may reflect compensatory, yet inefficient changes in the 

network (Turner, et al., 2011) or vascular changes (Hillary & Biswal, 2007). This is 

especially relevant given the population of the present study, who suffered a mild to 

moderate TBI, and thus, may be slightly less efficient at some tasks but accurate nonetheless. 

The combination of age and the changes in brain volume as a result of TBI may have resulted 

in less processing efficiency which results in increases to functional connectivity with age. 
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Perhaps greater functional connectivity is required in order for these older participants to 

maintain cognitive scores that fall in the average range. Furthermore, as discussed earlier, 

there is equipoise in the field as to the effects of mild to moderate TBI on functional 

connectivity in general, with some studies finding an increase (hyperconnectivity), while 

others finding a decrease (hypoconnectivity). Lastly, another potential explanation for these 

findings may be found in a recent meta-analysis, which examined the effect of variations in 

tests used in a cognitive battery on task-based functional connectivity. The results suggested 

that different tests that are believed to assess the same cognitive domain (for example, the 

various tests that purport to study working memory), can result in significantly different 

patterns of task-based functional connectivity, with some studies reported hypoconnectivity 

and other reporting hyperconnectivity (Bryer, Medaglia, Rostami, & Hillary, 2013). Though 

the present study is a resting-state study, this does indicate that different tests related to the 

same domain may have different relationships with intrinsically connected networks, and 

may contribute to some of the findings that are seemingly contradictory to other resting-state 

findings. 

 An alternative to this explanation may involve changes to the size and shape of the 

DMN following injury or age. A recent study revealed that the DMN, during a heavy 

cognitive load, spatially decreases in size in healthy older adults, compared to young controls 

(Prakash, Heo, Voss, Patterson, & Kramer, 2012). Certain networks (such as the CEN) are 

believed to “recruit” nearby cortical areas in healthy aging, resulting in alterations in the 

spatial size of the network as well (Allard & Kensinger, 2014; Hillary, Genova, 

Chiaravalloti, Rypma, & DeLuca, 2006). Though there is debate on the cause of this change, 

 



74 
 
one line of thought is that this process helps the brain compensate for reduced efficiency. 

This same effect has been observed in asymptomatic individuals with mild TBI, when under 

heavy cognitive load (Sinopoli et al., 2014). This recruitment of nearby neural areas post-TBI 

may be akin to the brain accessing these areas that it would normally access with increased 

age. In the context of a TBI, these areas are recruited at a younger age, due to the effects of 

the TBI (Hillary, et al., 2006).  

 Taken together, perhaps the positive relationship between age and DMN cohesiveness 

and the negative relationship between brain volume and DMN may be a reflection of a 

geographically altered DMN. The method of generating ROIs in the present study created a 

unique set of coordinates for each ROI, for each individual. This method for evoking the 

DMN, while accepted in the field, likely results in increased accuracy and ability to 

accommodate geographic changes in the DMN present in each individual. Instead of 

examining the network with a one-size-fits-all approach, the method used in the current study 

allows for a functional connectivity map tailored to each individual’s unique pattern. Thus, 

age-related changes in DMN geography (which may affect the location of the voxels with 

peak functional connectivity) may not have such a strong effect on the data as in other 

studies. Using a one-size-fits-all map will miss individual variations in the locations of peak 

functional connectivity, and potentially result in artificially lowered levels of functional 

connectivity in individuals whose functional connectivity maps differ from the average map, 

or from a map generated from healthy controls. Therefore, the seeming aberrant relationships 

between total brain volume, age, and DMN cohesiveness may actually reflect an increased 

accuracy in mapping the DMN due to the aforementioned method, as well as increased DMN 

 



75 
 
functional connectivity related to group-level poorer performance on neuropsychological 

measures, potentially as a result of the participant’s history of TBI. Again, caution is urged 

when interpreting these findings, due to the aforementioned artifacts of the multiple linear 

regression. 

 

TBI Severity 

 On a similar note, the predictive model returned a positive ß for TBI severity. The 

inclusion of TBI severity in the predictive model was interesting, given the limited range of 

TBI severity included in the sample. This may be an indication of the relatively strong impact 

that TBI can have on the DMN, if this relatively small variance in TBI severity in the sample 

was still influential enough to warrant inclusion in the model. There is disagreement in the 

literature as to the effect that mild-to-moderate TBI has on DMN functional connectivity, 

including the direction of any potential change in DMN functional connectivity (Mayer et al., 

(2011) and Zhou et al., (2012), for example). The method used in this paper may again have 

resulted in a more accurate representation of each individual’s DMN. This may have 

decreased inaccurate results that may have arisen in other research as a result of individual 

variability in the location of the areas of peak activation in each DMN node, or alterations in 

size of the nodes in the DMN as a result of injury. Thus, the current method may have more 

accurately captured the effects of mild TBI on intrinsically-connected networks. 
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Excluded and Other Factors  

 Also worth examining are those measures which were not included in the model. 

Most notable, no measures of depression or functional status survived the second analysis. 

This may indicate that there is no significant relationship between the DMN and depression. 

However, there is evidence of alterations to the DMN in depressed individuals (W. Guo et 

al., 2013; Nixon et al., 2014; Sambataro, Wolf, Pennuto, Vasic, & Wolf, 2013). It is worth 

noting in the present study that even though the mean score on the BDI-II was indicative of 

mild symptoms of depression, the participants in the study were not diagnosed with 

depression, per se. Therefore, the lack of depressive symptoms in the predictive model may 

reflect the lack of clinical depression in the sample. On the other hand, specific symptoms of 

depression could be related to DMN cohesiveness, and perhaps the total and categorical 

totals from the BDI-II (which were the only data from the BDI-II included in the first step) 

were not sensitive enough to theses specific symptoms. On a similar note, the GOS-E may 

not be sensitive enough to capture the effects of changes in DMN cohesiveness, which 

perhaps does not have a significant effect on functional abilities.  

 Though the current model explained approximately 50% of the variance, leaving 50% 

still unaccounted. One possible contributing factor to post-TBI DMN cohesiveness could be 

sustained attention, like that which would be assessed using a sustained attention task such as 

the Connors Continuous Performance Task. There is evidence to suggest that alterations in 

DMN cohesiveness are more noticeable during tasks that require longer period of attention 

(Bonnelle, et al., 2011). Another potential source of variance is intra-individual differences in 

functional connectivity. This study did not capture pre-TBI DMN cohesiveness, which could 
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potentially have a strong relationship to post-TBI cohesiveness, since functional connectivity 

has been found to be relatively consistent in healthy controls, even when assessments are 

separated by as much as six years (Persson, Pudas, Nilsson, & Nyberg, 2014). Premorbid 

factors are often powerful predictors of post-TBI functioning (Dikmen et al., 1994), so it may 

stand to reason that pre-TBI functional connectivity may be a significant predictor of post-

TBI functional connectivity, especially considering the inter-individual variability in 

functional connectivity patterns.  

 

Hypothesis 2:  Hypothesis two posited that a combination of neuropsychological measures 

of executive functioning, depressive symptoms, demographic data, and injury data will 

predict CEN functional connectivity in mild-to-moderate TBI. This hypothesis was 

supported, as a combination of cognitive inhibition (D-KEFS Color Word Inhibition 

condition 3), simple attention (Digit Span Forward), visual attention/vigilance (D-KEFS Trail 

Making Test condition 1), and verbal ability (D-KEFS Verbal Fluency condition 1, D-KEFS 

Verbal Fluency Total Set-Loss Errors, and WASI Vocabulary), when entered into a multiple 

linear regression, resulted in a significant model (Table 6). This predicted 37% of CEN 

cohesiveness.  
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Table 6 

Multiple Linear Regression Results, CEN 

Domain Variables Entered ß Sig VIF 
Demographic Age at most recent Injury    
 D-KEFS Trail Making Test 1* 0.50 <.001 1.27 
 Digit Span Forward 0.46 .001 1.40 
 D-KEFS Color Word Condition 3* -0.44 .006 1.87 
 D-KEFS Verbal Fluency Condition 1* 0.30 .022 1.30 
 WASI Vocabulary* 0.27 .033 1.18 
Cognitive D-KEFS Verb. Fluency Total Set-loss 

Errors* 0.20 .08 1.05 

 Digit Vigilance Total Errors    
 D-KEFS Card Sort Condition 2    
 D-KEFS Color Word Condition 1    
 D-KEFS Color Word Condition 2    
 D-KEFS Trail Making Test 2    
 VSLT Total    
 WMS Logical Memory Immediate Recall    
Volumetric Normalized Global VCSF Volume    

 *included in final predictive model     
 

 

Role of Inhibition in the Model  

 Overall, the inclusion of D-KEFS Color Word Inhibition condition 3, which is similar 

to the classic Stroop Test, was generally expected. Inhibition is strongly associated with the 

prefrontal cortex (Blasi et al., 2006), which overlaps with a significant portion of the CEN. 

The direction of the relationship is worth noting, as the ß for this factor was moderate in size 

and negative, indicating that better performance on this measure was associated with mild 

decreases in CEN cohesiveness. However, no other factors that contributed to CEN 

cohesiveness had negative ß. As noted earlier, caution should be used when interpreting the 
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sign (positive vs. negative) of the ß in the predictive model. Though none of the variables had 

significant multicollinearity, they may correlate with each other, which can influence the sign 

of the ß.  

 With that caveat in mind, one potential explanation for this may be found through an 

examination of the cognitive domains encompassed by the other measures in the model with 

positive associations with CEN; verbal fluency, simple attention, verbal reasoning, and visual 

attention/vigilance. Of all of these domains, only inhibition has been strongly associated with 

the CEN, and inhibition is considered to be a higher-order, more complex skill. As discussed 

in the previous section, levels of functional connectivity that are too high may signal 

inefficiency in the network, and have been related to poorer performance on cognitive tasks. 

For example, in one study, individuals who experienced more difficulty on a working 

memory task (and were assumed to experience a heavier cognitive load because of their poor 

performance) actually displayed increased CEN functional connectivity, as well as increased 

CEN activity (Engstrom, Landtblom, & Karlsson, 2013). To extrapolate those findings to the 

current study, perhaps individuals who performed better on D-KEFS Color Word Inhibition 

had more efficient, effective CEN, and thus, had slightly lower functional connectivity than 

less efficient performers. Thus, better performances on this task may be associated with small 

declines in CEN cohesiveness. On a similar note, post-TBI individuals who had a chance to 

practice a working memory task displayed decreased BOLD activation in the frontal lobes 

when performing that task at a later time (Medaglia et al., 2012), which suggests that 

increased activation may be associated with less familiarity and poorer performance on a 

task. 
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 It is also worth noting that D-KEFS Color Word Inhibition condition 3 was the only 

measure of inhibition to show up in the predictive model. Though not detailed in the 

hypothesis, it was expected that more measures of higher-level executive functioning would 

be included in the CEN model. It is indeed curious that other measures involving higher-level 

executive functions were not included, and raises the question if the inclusion of this measure 

is perhaps a spurious finding. This may indicate that the association between higher-level 

executive functions and the CEN is not as strong as originally believed. This also could 

indicate that the relationship between the CEN and higher-level executive functions is 

secondary to the relationship between the CEN and lower-level executive functions. 

  

Attention and Verbal Factors 

 As noted above, two of the factors included in the CEN model were Digit Span 

Forward and D-KEFS Trail Making Test condition 1. Digit Span Forward is considered to be 

a measure of simple attention. The D-KEFS Trail Making Test condition  1 involves some 

degree of attention, but also is believed to involve degrees of vigilance and processing speed 

(Delis, et al., 2001). Three other factors included in the model were D-KEFS Verbal Fluency 

condition 1, D-KEFS Verbal Fluency Set-loss errors, and WASI Vocabulary. These three 

measures are typically considered to assess verbal fluency, monitoring during a verbal 

fluency task, and verbal knowledge. These three skills are not typically associated with the 

CEN. However, one view of the CEN is that it is an externally focused, goal-directed, task 

positive network, which plays a significant role in engaging executive functions on a task. 

The relationship between these factors and cohesiveness may reflective of better externally-
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directed goal-monitoring abilities, inhibition of competing responses, and increased cognitive 

focus. While the CEN may not directly relate to the aforementioned skill domains, it may 

help facilitate their performance.  

  

Excluded and Other Factors 

 Also worth noting are the factors that were not included in the model. No measures of 

demographics, injury-related aspects, or volumetrics were included in this model. This is 

quite different from the DMN model (and the SN model, which will be explored later), which 

featured such variables quite prominently. One reason for this may lie in the fundamental 

difference between networks. The CEN is a task-positive state network, while the DMN is a 

resting-state network. The predictive model for the DMN involved resting-state data, 

ostensibly capturing the network at its peak. However, the CEN was imaged at rest, when it 

is least likely to be active. Though resting state functional connectivity of the CEN is 

believed to strongly relate to task-based functional connectivity, surprising little research has 

been conducted into this concept. On a global level, changes in functional connectivity 

patterns and strengths were noted between rest and task-based imaging (Di, Gohel, Kim, & 

Biswal, 2013). Perhaps some aspect of this difference is responsible for the disparity, and 

repeating the current study with a task-based fMRI may yield different results for the CEN. 

 Finally, this model predicted 37% of CEN cohesiveness variance, which means that 

63% of variance was unaccounted for. Similar to the discussion for the DMN, perhaps pre-

morbid factors play some role CEN cohesiveness. Alternatively, perhaps the battery used, 

which was primarily reliant on the D-KEFS, contributed to this finding. As mentioned 
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earlier, variations in assessment tools that are designed to assess the same 

neuropsychological construct can result in differences in correlation between functional 

connectivity and test performance (Bryer, et al., 2013). Perhaps using a different assessment 

battery would result in model that predicts more of the CEN variance. Finally, the present 

study did not account for structural integrity within the brain. A model that included 

measures of structural connectivity, or of white matter integrity, may more fully explain CEN 

cohesiveness.  

 

Hypothesis 3: Hypothesis three stated that the relationship between the DMN and attention 

will be stronger than the relationship between the SN and attention. This hypothesis was not 

supported, as Digit Span was responsible for a fairly equal amount of variance in both 

predictive models. 

 

SN Predictive Model 

 Overall, the model for the SN accounted for 45% of the variance (Table 7). The 

remaining 55% of variance may be accounted for in part by social factors, which this study 

was not designed to evaluate. For example, the SN has been associated with feelings of 

anxiety (Seeley, et al., 2007), social behavior (Takeuchi, et al., 2013), and identifying 

potential salient stimuli that could become targets for cognitive focus (Critchley, Wiens, 

Rotshtein, Ohman, & Dolan, 2004). No measures addressing these functions were included in 

the cognitive battery in the present study. As discussed earlier, the sign (positive vs. 

negative) of the ß in the SN predictive model should be interpreted with caution, as this can 
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be influenced by the inclusion of factors in the model that are not significantly multicollinear, 

but do have a degree of correlation with each other. For example, in the SN model, Digit 

Span Backward has a negative ß, while Digit Span Total has a positive ß. Though neither of 

these factors violated the assumption of multicollinearity, they likely are positively correlated 

with each other, and thus, have opposing ß signs in the predictive model. 

 

Table 7 

Multiple Linear Regression Results, SN 

Domain Variables Entered, SN ß Sig VIF 
 Gender* -0.39 .001 1.07 
Demographic/Injury GOS-E* 0.20 .067 1.02 
 Age at Assessment    
 TBI Severity    
 D-KEFS Color Word Condition 1* 0.54 .001 2.02 
 Digit Span Total* 0.44 .047 4.40 
 Digit Span Backward* -0.35 .083 3.64 
 D-KEFS Color Word Condition 4* -0.30 .07 2.47 
 D-KEFS Card Sort Condition 2* -0.28 .033 1.55 
Cognitive Digit Span Forward    
 D-KEFS Card Sort Condition 1    
 D-KEFS Color Word Condition 3    
 D-KEFS Trail Making Test 2    
 D-KEFS Trail Making Test 5    
 D-KEFS Verbal Fluency Condition 1    
 VSLT Total Score    
Volumetric Normalized Total Brain Volume* 0.35 .008 1.49 
 Normalized Global Ventricular CSF* 0.25 .049 1.44 

 *included in final predictive model     
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 Examining the factors that were included in the SN model reveals an overlap with 

some factors included in the DMN model, as well as several factors unique to the SN. For 

example, the SN model included D-KEFS Card Sorting Condition 2, Digit Span Total, 

normalized ventricular CSF, and normalized total brain volume, all of which were included 

in the DMN model. Digit Span, a measure of simple attention, had nearly identical ß in both 

models. However, the DMN model revealed inclusion of D-KEFS Trail Making Test 2 and 3, 

which are more complex measures of attention, both involving visual scanning, motor 

planning, as well as attention abilities (Delis, et al., 2001). The SN model included Digit 

Span Backwards, considered to be a measure of working memory (Lezak, Howieson, & 

Lowing, 2004; Strauss, et al., 2006). A previous study found a similar link between working 

memory and SN activation (Engstrom, et al., 2013).  

  

The SN and Gender 

 In addition to normalized brain volume and normalized ventricular CSF, gender was 

also present in the SN model. The ß associated with this finding revealed that being male had 

a slightly positive effect on SN cohesiveness. There is disagreement as to the potential effect 

of gender on functional connectivity. One study found no significant difference between 

genders in DMN, CEN, or SN connectivity (Weissman-Fogel, Moayedi, Taylor, Pope, & 

Davis, 2010). An examination of global functional connectivity similarly found no 

significant gender differences (Nielsen, Zielinski, Ferguson, Lainhart, & Anderson, 2013). 

On the other hand, investigations into non-network specific gender and interhemispheric 

functional connectivity have revealed significant gender effects: Tomasi and Volkow (2012b) 
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studied global functional connectivity and network path length differences between genders, 

and noted that males had greater lateralization (right-sided) and more shorter-range 

connections than females, who had greater long-range connections. Alternatively, the 

presence of gender in the SN predictive model may simply reflect demographic differences 

that were not measured as part of this study, such as mechanism of injury (Hoppe, Kordahi, 

Paik, Lee, & Granick, 2014), the effect of sex hormones on recovery from TBI (Davis et al., 

2006), gender differences in response to trauma and injury (Holbrook et al., 2005), or 

perhaps the differential effects of gender on appraisals of salience (Grose-Fifer, Migliaccio, 

& Zottoli, 2014; Hahn, Xiao, Sprengelmeyer, & Perrett, 2013; Kana, Murdaugh, Wolfe, & 

Kumar, 2012). 

  

SN and Functional Outcomes 

 Finally, the SN predictive model was the only network predictive model in the current 

study to include a measure of adaptive functioning, the GOS-E. However, interpretation of 

this factor in the model is limited, due to the small range of GOS-E scores in the sample. 

Furthermore, the GOS-E is somewhat of a coarse estimate of adaptive functioning. 

Therefore, interpretation of this factor’s inclusion in the predictive model should proceed 

with caution. Additionally, the sub-items of multi-item scales (such as the GOS-E and the 

BDI-II) were not included in the regression analysis, as there was concern that their inclusion 

would result in a model that was too specific to the population and “over-fit” the data. Thus, 

the specific items of the GOS-E that may feed into the SN model are currently unknown. 

With those caveats in mind, an examination of the ß revealed that higher GOS-E scores, 
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indicating a better functional recovery, were associated with increased SN cohesiveness. 

Though the present study did not examine the different functional areas assessed in the GOS-

E, potential reasons for the GOS-E to predict SN connectivity may include the role that the 

SN is believed to play in error monitoring, social abilities, emotional intelligence, and 

salience detection. All of these skills would likely be vital to an individual who is 

successfully returning to work, engaging appropriately in social and leisure activities, and 

maintaining healthy relationships with family and friends; all of which are components of the 

GOS-E.  

  The findings from the present study (including a strong overlap between DMN and 

SN predictive factors) may indicate that the SN plays a larger role in basic cognitive 

processes than previously thought. This is in addition to its theorized role in monitoring the 

environment and activating/deactivating (“switching”) networks. Perhaps the association 

between the SN cohesiveness and working memory indicates that this executive function is 

important for switching networks, or for monitoring incoming stimuli for salient information. 

 

Hypothesis 4: The relationship between the CEN and cognitive flexibility will be stronger 

than the relationship between the SN and cognitive flexibility. This hypothesis was 

inconclusive; as mentioned earlier, no measure of cognitive flexibility was included in the 

predictive model for the CEN, though D-KEFS Color Word Inhibition condition 4 was 

included in the model for the SN. Though the SN is not considered to be a strict resting-state 

network like the DMN, it is also likely not strictly a task-positive network like the CEN. The 

SN has been conceptualized in the present study as a monitoring switching network, playing 
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a significant role in activating/deactivating networks, in response to salient environmental 

stimuli. Perhaps the predictive models for the CEN and the SN would change if the 

participants were imaged as they performed a task that required the detection of salient 

stimuli, or as they performed a task of cognitive flexibility, switching, or inhibition.  

 

SN and Inhibition/Switching 

 Though the factors included in the SN model were previously discussed, one 

significant factor in the SN model was the D-KEFS Color Word Inhibition condition 4. This 

is a higher-order cognitive inhibition/switching task, and was initially hypothesized to factor 

in the CEN model. Its inclusion in the SN model was predicted, consistent with the view that 

cognitive skills associated with the DMN and CEN would also relate, to a lesser degree, to 

the SN. However, the current results (e.g., the lack of a measure of switching in the CEN 

model) call that hypothesis into question, and instead push for the development of alternative 

explanations. One potential alternative theory behind the inclusion of an inhibition/switching 

task may have less to do with network switching, and more to do with the cognitive functions 

associated with the SN itself. As mentioned earlier, error detection has been associated with 

the SN (Menon, et al., 2001). Error detection may play an important role in a test such as D-

KEFS Color Word Inhibition condition 4, which requires participants to follow specific rules 

when performing a Stroop-like task. Awareness of errors one has committed could help 

participants avoid committing such errors again.  
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Exploratory Hypothesis 5: Hypothesis 5 stated that the degree of anticorrelation between 

the DMN and CEN would be significantly and positively correlated with the coherence of the 

SN. This hypothesis was partially supported, as a trending positive correlation was found 

between mean DMN/CEN anticorrelation and SN cohesiveness. However, the relationship 

between the DMN and the SN, and between the CEN and the SN were also examined. The 

CEN and DMN had moderate positive correlations with each other, and the CEN and a 

similar moderate positive correlation with the SN. Both the DMN and CEN had a positive 

correlation with the degree of anticorrelation, though the correlation between degree of 

anticorrelation and the CEN was much stronger. 

  

Anticorrelation and Regression of the Mean Signal 

 It was initially predicted that a strong degree of anticorrelation would be found 

between the DMN and the CEN. This was anticipated to take the form of a strong negative 

correlation between the DMN and CEN nodes. However, the results of this study revealed an 

overall small positive correlative relationship, contrary to expectations and much of the 

literature. Only four individuals in the sample had a negative mean anticorrelation (of note, a 

review of the medical history of these four individuals revealed nothing to mark them as 

outstanding from the rest of the sample, nor did their scores on the assessment battery set 

them apart). In this sample of predominantly mild TBI, it seems unlikely that injury severity 

alone would be responsible for this finding. One potential explanation for this may lay in the 

preprocessing methods employed for this study; the mean global signal was not regressed out 

of the data prior to conducting the functional connectivity analysis. This was done to avoid 
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over-inflating the degree of anticorrelation between the DMN and CEN, but instead it seems 

to have nearly removed it altogether. This would be consistent with the work of Anderson et 

al. (2011), who concluded that large-scale intrinsic network anticorrelation is an artifact of 

global signal regression. Additionally, the researchers reported that larger intrinsically 

connected networks, such as the ones examined in the present study, are more influenced by 

this artifact than smaller networks. Murphy, Birn, Handwerker, Jones, and Bandettini (2009) 

came to a similar conclusion after examining global signal regression. They note that the 

process of global signal regression results in a bell-shaped distribution of correlation values, 

with a mean of zero, and half of the correlations falling into the negative range. The process 

of removal of the global signal artificially creates these negative correlations, so that the sum 

of all correlations is equivalent to the mean of zero. As further noted by Murphy et al. (2009), 

inclusion of the global signal does not remove the positive correlations associated with the 

functional connectivity within the DMN. However, task-positive networks (such as the CEN) 

are not visible on a seed-based functional connectivity map of the DMN unless the global 

signal is removed. Similarly, they add that regressing out movement, white matter signal, and 

CSF signal can result in similar decreases in anticorrelation.  

  

DMN, CEN, and Anticorrelation 

 As noted earlier, the CEN and DMN had moderate positive correlations with each 

other, and the CEN had a similar moderate positive correlation with the SN. Both the DMN 

and CEN had a positive correlation with the degree of anticorrelation between them, though 

the correlation between degree of anticorrelation and the CEN was much stronger than for 
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the DMN. This may suggest that all three networks are affected by similar underlying 

conditions. For example, diffuse and traumatic axonal injury is known to disrupt functional 

connectivity within and across networks (Arenivas, et al., 2012; Sharp, Scott, & Leech, 

2014). Taken together, this may be an indication that the CEN plays some role in 

anticorrelation, or that the factors that govern anticorrelation also have a strong effect on the 

CEN. This would also seem to be evidence against the idea that the SN is strongly involved 

in maintaining the level of anticorrelation between the DMN and CEN (though the possibility 

exists that the SN modulates anticorrelation via influencing the CEN). Instead, this would 

indicate that the CEN exerts some degree of control over the DMN, which has some support 

in the literature.  

 

SN and DMN/CEN Anticorrelation 

 The current study is limited in its ability to extrapolate causality, due to the fact that 

correlations were used. However, the work by Chen et al. (2013) examined causality in 

relationship between the DMN, SN and CEN, via transcrainal magnetic stimulation. They 

were able to alter DMN functional connectivity by stimulating or inhibiting the DLPFC on 

the CEN, though no effect on the DMN was found by stimulating or inhibiting the SN. The 

positive correlation between CEN cohesiveness and anticorrelation may lend further 

evidence for role of the CEN in activating or deactivating the DMN.  

 In light of a general lack of “negative” anticorrelation, the SN-anticorrelation 

relationship is probably not as meaningful, especially in light of the very strong positive 

correlation between CEN cohesiveness and anticorrelation. The results of the present study 
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would seem to indicate that the CEN plays a larger role in maintaining the relationship 

between itself and the DMN. This would delegate the SN to a role of activating/deactivation 

networks, not maintaining the level of activation/deactivation, as proposed in the current 

hypotheses. This view of the SN is consistent with recent research, which further adds to the 

view that the SN plays a role in activating/deactivating the DMN and CEN (Goulden et al., 

2014). 

 Regardless of positive or negative “anticorrelation,” the relationship between the 

DMN and CEN is likely a worth topic of study. Carbonell, Bellec, and Shmuel (2014) 

studied the effect of global signal regression, and found that while regressing out the mean 

signal does indeed reduce anticorrelation, there is still evidence that anticorrelation between 

the DMN and CEN is more than statistical anomaly. They proposed mathematical 

correctional procedures that would allow for the discovery of truly anticorrelated regions, 

even within the context of global signal regression. Other research has proposed similar 

ideas, albeit through alternative correction methods (Carbonell, Bellec, & Shmuel, 2011; H. 

He & Liu, 2012). Furthermore, there is evidence that the relationship between the DMN and 

CEN may be fluid and able to change with regard to task demand. That is, researchers found 

that anticorrelation was not static or fixed, but rather, flexible and variable, depending on the 

demands of a given activity (Popa, Popescu, & Pare, 2009). If so, a resting-state paradigm, 

without regression of the global signal, may not be the best setting to capture this important 

relationship. Instead, imaging during a task, including shifts from rest to active and changes 

in type and difficulty of task, may provide relevant insight into the correlates of 

anticorrelation. 
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Difference Between Models 

 One notable finding was in the differences between predictive network models, with 

the difference between the DMN and the CEN models the most striking. For example, the 

DMN model featured volumetric measurements with relatively large ß values. However, the 

CEN model was comprised solely of cognitive factors. The SN model seemed to include a 

combination of factors from the DMN and CEN models. When considering the DMN model, 

it seems that the DMN is affected by things that physically affect the brain, such as 

volumetric alterations, age, and TBI factors. Furthermore, the DMN was associated with 

more basic cognitive processes in this study. This would indicate that the DMN seems to 

represent a basic level of “health” in the brain. This may be also why alterations in the DMN 

have been implicated in a wide range of disorders. Perhaps healthier brains have “better” 

DMN functional connectivity, which relates to better cognitive performance on basic 

cognitive skills (such as attention, focus, and concentration).  

 In contrast to the predictive model for the DMN, the model for the CEN did not 

include any volumetric, demographic, or injury factors; it was composed solely of cognitive 

factors. Perhaps this is indicative of a network that is less sensitive to structural changes in 

the brain, unlike the DMN. In fact, the predictive model of the CEN would suggest that it is 

influenced more by aspects of crystallized intelligence, schooling, and higher-level cognitive 

skills—though it is still reliant on lower-level skills, such as attention. While the DMN could 

hypothetically represent the “health” or the “base level” of the brain, the CEN could 

represent advanced specialized function, and therefore would serve as less of a barometer of 

brain health than the DMN. 
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 Along these lines, the SN appeared to contain a blend of factors from the DMN and 

CEN models. Earlier, it was hypothesized that this may be related to the SN’s role in 

switching/activating/deactivating the DMN and CEN. The SN model contains demographic 

and volumetric factors, like the DMN, but also contains a higher-level executive function 

factor, like the CEN.  Alternatively, the SN has been associated with complex skills, such as 

social abilities and emotional intelligence (Takeuchi, et al., 2013). Successfully performing 

these complex tasks likely requires the coordination of several different neural areas, as well 

as the integration of several different skill sets. This may be responsible for some of the 

variety of factors involved in the SN model. 

 One way of conceptualizing these results may be to consider the degree to which 

various factors are important to each network. Though no factor analysis was performed as 

part of this study, the factors included in the model could theoretically be conceptualized as 

factors related to structural integrity, factors related to intelligence, factors related to basic 

attention and awareness, and factors related to phasic attention. Each of these factors likely 

has different relevance for each network; the DMN was shown to be more sensitive to factors 

related to structural integrity, the CEN less so. Perhaps one way these networks may be 

conceptualized, categorized, or compared in future research is by the weight of their 

contributing factors. 

Future Directions 

 Several concepts from this study warrant further exploration, including 

methodological variations, the relationship between networks, and exploring other factors for 
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inclusion in the predictive models. First, the methods used in generating the networks have 

been mentioned several times during the discussion. It would be interesting to compare 

popular methods for network generation head to head, perhaps analyzing for differences in 

network cohesiveness and relationship with cognitive, volumetric, and demographic factors. 

Another topic for further exploration is the relationship between the DMN and the CEN. 

Though traditionally considered to be one of negative anticorrelation, the present study found 

a mostly positive “anticorrelation” between these two networks. One reason for this may be 

the inclusion of the global mean signal, which is traditionally removed during preprocessing. 

However, since there is thought that anticorrelation is merely an artifact of the process of 

removing the global mean signal, future research may further compare and contrast 

preprocessing methods for significant differences.  

 An additional direction for future research may be to perform a study similar to the 

present one, but during active executive function tasks in the scanner, instead of resting-state. 

This may allow for a better conceptualization of the CEN and the SN, as well for additional 

information as to the deactivation of the DMN during task. This could also help clarify the 

relationship between resting-state functional connectivity and task-state functional 

connectivity in task-positive networks. Additionally, the inclusion of a measure of structural 

integrity, such as an analysis of diffusion-weighted imaging, could potentially increase the 

amount of variance explained by the predictive models. 

 Further studies could involve conceptualizing or profiling individuals who performed 

better on the test battery compared to those who performed more poorly, or comparing 

individuals with strong network cohesiveness to those with weak network cohesiveness.  
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 Finally, the inclusion of control groups may be illuminating, as it would allow for 

direct comparison of cohesiveness levels to healthy individuals, as well as allowing for 

comparisons of volumetrics, demographics, and performance on the assessment battery. 

 

Limitations 

 First, the study lacked a group of healthy controls, which would allow for 

comparisons of performance on the assessment battery, comparisons of network profiles, and 

comparisons of predictive models. Second, a decision was made to not regress out the mean 

global signal. This procedure may have lead to falsely high levels of DMN/CEN 

anticorrelation in the past. The anticorrelation in the present study was much more positive, 

and less negative, than expected. This may make it difficult to compare the anticorrelation 

findings in the current paper with anticorrelation findings in other papers which regressed out 

the mean global signal. Third, there were some limitations due to demographic factors. For 

example, data on method of injury was not consistent enough for inclusion in the study, 

though it potentially could have made for stronger predictive models. There was large 

variability in the time since TBI, as well as variability in the number of previous TBI. As 

with most neuroimaging studies, inclusion a larger sample size would have been beneficial. 

With regard to the assessment battery, a large number of variables were included in the 

predictive models, and some of them were likely correlated. This had the potential to induce 

increased levels of error into the data. The use of a more focused cognitive assessment 

battery, based off the predictive models in this study, could reduce those levels of error. 

Furthermore, careful selection of a test battery to eliminate multicollinearity between test 
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measures (or strong correlations between test measures) may help clarify the roles of 

different factors in future predictive models, and reduce the chances of negative ß values 

arising from methodological artifacts. Finally, inclusion of a measure of white matter 

integrity (such as diffusion tensor imaging) may have further contributed to the predictive 

models. 

 
Summary and Conclusions 

 The present study investigated factors that influenced the cohesiveness of the DMN, 

CEN, and SN in a sample of relatively well-functioning of adults with a history of mild to 

moderate TBI. Previous studies had investigated the effects of TBI on functional connectivity 

in these networks, as well as the relationship between these networks and various cognitive 

functions. However, these factors were previously analyzed in isolation; this study combined 

demographic data, injury data, performance on a cognitive assessment battery, volumetric 

data, symptoms of depression, and functional outcomes in order to develop a more holistic 

model of network functioning. Furthermore, this study was conducted in a population of 

predominantly mild TBI, so that the participants in the study would have networks that were 

not normal, but only mildly impaired. 

 The first two hypotheses predicted that the cohesiveness of DMN and CEN could be 

predicted from the aforementioned factors. The predictive model for the DMN included a 

combination of volumetric factors, age at assessment, TBI severity, measures of complex 

attention, and abstract verbal reasoning. Results indicated that the DMN is indeed impacted 

by TBI, and functional connectivity has a relationship with cognitive factors. The CEN 
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predictive model was composed primarily of cognitive measures, and included indices of  

simple attention, cognitive inhibition, verbal fluency, and verbal knowledge. The predictive 

model for the SN included measures of brain volume, as well as gender, functional outcome, 

simple attention, working memory, and cognitive flexibility. Hypothesis three, which stated 

that the degree of variance accounted for by measures of simple attention in the DMN would 

be greater than the degree of variance accounted for by the same measures in the SN, was not 

supported. Hypothesis four, which stated that the percent of CEN cohesiveness variance 

accounted by measures of cognitive switching would be greater than the percent of variance 

accounted for by the same measures on the SN, was inconclusive. Exploratory hypothesis 5, 

which stated that the degree of anticorrelation between the DMN and SN would correlated 

with the cohesiveness of the SN, was partially supported.  

 Of note is the difference between the predictive models for each network, and what 

these differences indicate about the networks themselves. Aspects related to brain structure 

and integrity (age, volumetrics, TBI severity) were featured prominently in the DMN model, 

while the CEN model only included cognitive measures. This may be indicative of 

fundamental differences between the networks, with the DMN perhaps more related to the 

overall health and basic functioning of the brain, and the CEN more related to intelligence 

and experience. The SN model appeared to be a combination of factors from the DMN model 

and the CEN model. This may be due to its role as a switching network, or it may relate to 

the SN’s association with the process of assigning saliency to environmental stimuli. 

Furthermore, the SN has been strongly associated with social and emotional processes, which 

likely require the integration of complex cognitive factors. 

 



98 
 
 In light of the controversy as to the inclusion of the global mean signal and its impact 

on anticorrelated networks, the current findings would indicate that perhaps the relationship 

between networks may be more complex than previously believed. For example, there may 

be more subtleties to the relationship between the DMN and the CEN than mere 

anticorrelation. Furthermore, while the results of the present study do allow for commentary 

on the role of the SN as a switching or monitoring network, they would seem to indicate that 

the SN may not play a role in maintaining network functional connectivity, once a network 

has been activated. However, a study of activation levels at rest and during task may be better 

able to address this concept.  
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Figures 
 

Figure 3 

DMN Pooled Functional Connectivity Map 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 note: images were thresholded at 0.4 with a cluster size of 150. 
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Figure 4 

CEN Pooled Functional Connectivity Map 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
note: images were thresholded at 0.4 with a cluster size of 150. 
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Figure 5 

 SN Pooled Functional Connectivity Map 

 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
note: images were thresholded at 0.4 with a cluster size of 150. 
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Figure 6 
 
DMN Cohesiveness Histogram  
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Figure 7 
 
CEN Cohesiveness Histogram 
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Figure 8 
 
SN Cohesiveness Histogram 
 
 

 
 

 
 
 

 
 
 
 
 
 
 

 



105 
 
 
Figure 9 
 
Anticorrelation Histogram 
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APPENDIX A 
 

Functional Outcomes:  

Glasgow Outcome Scale-Extended (GOS-E):  The GOS-E is a structured clinical 

interview that assesses changes in multiple functional domains following a TBI. 

However, the GOS-E is less more general than other measures of post-TBI 

functioning, and higher scores are associated with better outcomes (Wilson, 

Pettigrew, & Teasdale, 1998).  

 

TBI Severity: 

Glasgow Coma Scale (GCS): The GCS is a way of measuring immediate and subsequent 

levels of TBI, based off of eye, motor, and verbal response. Scores range from 3-

13, with lower scores indicating more severe levels of TBI severity and 

impairment (Lezak, et al., 2004; Strauss, et al., 2006). When available, scores 

were obtained from participant medical records. When unavailable, scores were 

estimated from participant functional levels.  

 

Emotional Outcomes: 

Beck Depression Inventory-II (BDI-II): The BDI-II is a self-report measure for assessing 

the presence and severity of depressive symptoms. It contains 21 items divided 

into a four-point Likert scales which pertain to symptoms of depression, such as 

sadness, loss of pleasure, feelings of guilt, crying, agitation, etc. A total score can 
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be calculated, as well as cognitive and non-cognitive subscales, and a fast-screen 

subscale, which focuses on reported symptoms of sadness, pessimism, past 

failure, loss of pleasure, self-dislike, self-criticalness, and suicidal thoughts. 

Higher scores on the BDI-II and the subscales are related to greater severity of 

depressive symptoms (Beck, Steer, Ball, & Brown, 1996; Strauss, et al., 2006). 

 

Cognitive Outcomes: General Cognitive Functioning 

Wechsler Abbreviated Scale of Intelligence (WASI): The WASI is a brief estimate of 

intelligence. An estimated full-scale IQ (FSIQ) can be derived from four or two of 

its subtests, which consist of Vocabulary, Matrix Reasoning, Similarities, and 

Block Design. For this project, only Vocabulary, Matrix Reasoning, and 

Similarities were administered (and are described in further detail in subsequent 

sections). An estimated FSIQ was derived from Vocabulary and Matrix 

Reasoning, from norms published in the WASI manual (Strauss, et al., 2006; 

Wechsler, 1999).  

 

Cognitive Outcomes: Premorbid Estimate 

Wechsler Test of Adult Reading (WTAR): The WTAR requires participants to read out 

loud 50 irregularly spelled words. Word reading is believed to be a skill that 

correlates well with intelligence, and is also fairly resilient to decline after 

neurological insult. Because of this, premorbid intellectual functioning can be 

estimated from tests that assess word reading ability, like the WTAR, which has 
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been shown to be an accurate assessment tool for assessing premorbid intelligence 

in the TBI population. The WTAR will be used to estimate premorbid FSIQ for 

the purposes of this study (Green et al., 2008; Strauss, et al., 2006).  

 

Cognitive Outcomes: Executive Function 

Delis-Kaplan Executive Function System (D-KEFS) Trail Making Test (TMT): Overall, 

the D-KEFS TMT is similar to the classic Trail Making Test, though it includes 

additional tasks (compared to the classic “A” and “B” trials of the classic TMT). 

The D-KEFS TMT consists of five sub-trials. On condition one, subjects are 

asked to perform a visual-scanning task by searching a field of numbers, and 

marking the number three. On condition two, participants are asked connect 

numbers in sequential order. On condition three, participants are asked to connect 

letters in alphabetical order. On condition four, participants are asked to alternate 

between connecting letters and numbers, in sequential order. On condition five, 

participants are asked to trace a series of lines as quickly as possible. The various 

TMT conditions are related to several cognitive domains. Condition one is a 

visual search task, conditions two and three are processing speed tasks, condition 

four is a cognitive flexibility task, while condition five is a motor speed task 

(Delis, et al., 2001; Strauss, et al., 2006). 

 

D-KEFS Color Word Interference: This D-KEFS subtest is a variant on the Stroop 

procedure, and has four conditions. In condition one, participants are presented 
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with a sheet with squares of color organized into rows, and they have to say the 

name of each color as quickly as they can, going across the rows and down the 

page. In condition two, the participants are presented with names of colors printed 

in black ink in lowercase font, and they have to read the words as quickly as they 

can. In condition three, participants are again presented with words of colors, but 

they are printed color. The participant has to say aloud the color of ink while not 

saying the written name of the color. On condition four, the participant is 

provided a set of rules to follow as to when to say the color of ink, and when to 

read the written word, and must follow the rules and read the word/say the ink 

color as quickly as possible. Conditions three and four assess the individual’s 

ability to inhibit an over-learned response (e.g., reading), as well as their cognitive 

flexibility (Delis, et al., 2001; Strauss, et al., 2006). 

 

D-KEFS Card Sorting: This subtest involves two conditions. On condition one, the 

participant is provided with a set of six cards, which they are asked to sort into 

two groups, according to as many rules as they can think of (for example, the 

participant may sort by color, by content, etc). On condition two, the examiner 

sorts the cards into piles, and the participant has to describe the sorting rule that 

the examiner is following. This test, similar in concept to the Wisconsin Card 

Sorting Task, assesses problem solving, verbal and non-verbal concept formation, 

and cognitive flexibility (Delis, et al., 2001; Strauss, et al., 2006). 
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D-KEFS Verbal Fluency: This test is similar to the classic FAS test. In condition one, 

participants are asked to say as many words as they can think of that begin with a 

specific letter in 60 seconds. In condition two, participants name as many words 

as they can think of that belong to a specific category (for example, pets) in 60 

seconds. On the condition three, participants are asked to alternate between 

naming items from two different semantic categories, again in 60 seconds. The 

first two conditions of this test asses verbal fluency, while the third condition 

assesses verbal fluency and cognitive flexibility (Delis, et al., 2001; Strauss, et al., 

2006) 

 

Cognitive Outcomes: Language 

WASI Vocabulary: The Vocabulary subtest of the WASI asks participants to provide 

definition for words, and assess lexical knowledge (Strauss, et al., 2006; 

Wechsler, 1999). 

 

WASI Similarities: In this subtest, the examiner presents the participant with two words 

and asks them to describe how they are alike. This test assess verbal reasoning 

and, to a lesser degree, lexical knowledge (Strauss, et al., 2006; Wechsler, 1999). 

 

Cognitive Outcomes: Nonverbal Reasoning  

WASI Matrix Reasoning: This WASI subtest asks participants to examine incomplete 

matrices of images or designs and to select the image or design that would 
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complete the matrix. The participant is provided six items from which to choose 

the correct answer. This test assesses nonverbal reasoning, and to a lesser degree, 

perceptual organization skills (Strauss, et al., 2006; Wechsler, 1999).  

 

Cognitive Outcomes: Memory 

Wechsler Memory Scale-IV (WMS-IV) Logical Memory: The participant is read two 

paragraphs by the examiner, and asked to recall details of the paragraphs under 

two conditions. In the “immediate” condition, they are asked to recall as many 

details of the paragraph immediately after hearing it. In the “delayed” condition, 

they are asked to recall details of the paragraphs again, after a delay of 20-30 

minutes, during which time other non-verbal tests are administered. This test 

assesses immediate and delayed verbal memory (Strauss, et al., 2006; Wechsler, 

2008). 

 

The Visual Selective Learning Task (VSLT): This test is a visual list-learning task that 

places different values on different stimuli. For example, words in uppercase may 

be assigned a value of one “point”, while lowercase words maybe worth ten 

“points. Participants are provided these point values, and informed that they will 

be presented with a list of words on a screen, one at a time, and at the end of the 

list, they are to earn as many “points” as they can by recalling words. However, 

since different categories are worth different point values, participants need to 

strategize and place priority on higher-value words, while focusing less on lower-
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value words. This task combines executive function and planning skills, as well as 

salience detection and working memory skills (Hanten et al., 2004).  

 

Cognitive Outcomes: Working Memory 

Daneman-Carpenter Reading Span Task: This test requires participants to read aloud a 

series of sentences. As they progress, the sentences increase in length and 

complexity. The sentences are presented in sets, and at the end of each set, 

participants are then asked to recall the last word of each sentence in the set. They 

are scored on the number of words they could remember, and the 

length/complexity of the sentences whose last word they could recall. This test 

purports to examine the interaction working memory, memory storage, and 

reading comprehension. Specifically, it is theorized that increased demands on 

comprehension and processing will affect working memory and short-term 

memory storage, requiring participants to trade-off between processing and 

storage; a deeper reading and understanding of the sentence will likely improve 

the chances that the last word will be recalled, but at theoretical cost to the other 

words that the participant is attempting to hold in their working memory (Barrett, 

Tugade, & Engle, 2004; Daneman & Carpenter, 1980). 

 

Cognitive Outcomes: Attention 

Wechsler Adult Intelligence Scale-III (WAIS-III) Digit Span:  The WAIS-III Digit Span 

consists of a “forward” and a “reverse” condition. In the forward condition, the 
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participant is read a series of numbers, and asked to repeat them back exactly as 

they were read. In the reverse condition, the participants are asked to repeat a 

string of digits in the reverse order than they were read by the examiner. Scores 

are calculated for both conditions individually, as well as a combined total score. 

Digit Span is considered to be a measure of simple attention and working memory 

(Strauss, et al., 2006; Wechsler, 1999). 

Digit Vigilance: The Digit Vigilance test presents participants with a page containing 59 

rows of 35 single-digit numbers, and asks them to mark all instances of a target 

number (for example, 6) as quickly as they can. Norms are provided for number 

of errors, as well as completion time. This test examines simple attention (i.e., 

vigilance), while minimizing demands on other executive functions (such as 

cognitive flexibility) or memory (R. Lewis & Rennick, 1979). 
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