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Ghrelin: an introduction 

Ghrelin is a 28-residue peptide hormone synthesized predominantly by specialized 
endocrine cells of the stomach (1) (Figs. 1-2). It was first identified in 1999 as the 
endogenous ligand of the growth hormone secretagogue receptor (GHSR; ghrelin 
receptor) and was named for its potent growth hormone-secreting properties (1 ). 
Ghrelin is unique among known mammalian peptides in that its bioactive form contains 
an n-octanoyl group post-translational modification (1 ). The enzyme that catalyzes this 
unique n-octanoylation, ghrelin 0-acyl-transferase, was recently identified at UTSW by 
Drs. Brown and Goldstein (2). In addition to its role as a growth hormone 
secretagogue, ghrelin stimulates gastrointestinal motility and gastric acid secretion, 
affects blood pressure, and regulates blood glucose homeostasis (1, 3-1 0). 
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Figure 1. 
Depiction of amino 
acid structure and 
n-octanoyl post­
translational 
modification of 
mature ghrelin 

Figure 2. Distribution of ghrelin-producing cells in the gastric mucosa 
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Ghrelin influences several of the mechanisms that regulate appetite and food intake. 

One of ghrelin's other functions relates to its ability to stimulate food intake and appetite. 
It does so by participating in at least three different, interrelated mechanisms that 
influence appetite. These include roles in homeostatic pathways for maintaining body 
weight, reward pathways responsible for various hedonic, pleasurable aspects of eating, 
and psychological drives that influence eating, such as stress and depression. 

Ghrelin and body weight homeostasis. 

Body weight homeostatic systems are a group of physiological processes and behaviors 
that work together to ensure that we always maintain enough energy stores to survive. 
It is thought that these have developed to their current extent and level of intricacy 
within warm-blooded mammals because of the absolute requirement to maintain a 
stable body temperature for survival. This is especially true in cold environments in 
which maintenance of body temperature involves maintaining a high metabolic rate. 
Such is achieved by burning fuels, which in turn necessitates that we have sufficient 
energy stores or easy access to food that will serve as the source of these fuels. As 
such, the body has developed an integrated, homeostatic control system in which 
various peripheral signals of energy availability and gastrointestinal tract activity interact 
with the central nervous system to modulate food intake and energy expenditure so as 
to maintain a set body weight (11, 12). 

From a 
thermodynamic 
perspective, the 
regulation of body 
weight can be 
described as a 
linear equation 
balancing both 
food intake and 
energy 
expenditure 
(energy balance) 
to derive the 
amount of fat 
stored. Under 
normal 
circumstances, a 
balance in energy 

intake and energy expenditure results in body weight maintenance. Weight loss would 



occur if there is a relative increase in energy expenditure and/or a relative decrease in 
food intake. On the other hand, weight gain would be expected if there is a relative 
increase in food intake and/or a relative decrease in energy expenditure (13). 

Both ghrelin and another hormone, leptin, are examples of hormones made in the 
periphery that play key roles in body weight homeostasis. One of the key sites where 
they act is the arcuate nucleus (Arc), located within the basomedial hypothalamus of the 
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Figures demonstrating the interaction with various peripheral signals of energy availability and 
gastrointestinal tract activity with different brain systems. This includes the hypothalamus, where 
ghrelin, leptin and other molecules interact with orexigenic NPY/AgRP neurons and anorexigenic 
POMC/CART neurons. (14) 



Leptin, which is secreted by white adipose tissue, is established as the prototypical 
hormone released normally in an environment of nutritional plenty. A few years ago, we 
proposed a model in which in response to a relative increase in energy stores, leptin is 
released from fat and travels to the Arc (see Figure below) (15). Within the Arc, two 
distinct ghrelin-responsive cell groups exist. The first is identified by the coexpression 
of proopiomelanocortin (POMC) and cocaine- and amphetamine-regulated transcript 
(CART) and is often referred to as an anorexigenic population. The second distinct 
population of neurons is orexigenic and coexpresses the peptides neuropeptideY(NPY) 
and agouti-related gene product (AgRP). The receptor for leptin (Lepr, ObRb) is 
expressed on both POMC/CART neurons and NPY/AgRP neurons. These two Arc 
subpopulations interact with one another and with similar downstream target neurons to 
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Model for the homeostatic control of body weight by ghrelin and leptin. 



effect changes that ultimately help to regulate body weight. Investigations by a number 
of investigators have demonstrated that leptin directly binds to its receptors on the 
POMC/CART neurons to activate them. This results in the release of alpha­
melanocyte-stimulating hormone (alpha-MSH), which acts via the melanocortin 4 
receptor (MC4R; for which it serves as the endogenous ligand) to engage a coordinated 
reduction in food intake and increase in energy expenditure. Leptin also directly binds 
to its receptors on the NPY/AgRP neurons to inhibit them. Once inhibited, the release 
of the orexigenic NPY neuropeptide is blocked. Also blocked is the release of AgRP, 
which serves as both a competitive antagonist and an inverse agonist to the 
melanocortin 4 receptor (MC4R) and thus normally inhibits downstream melanocortin 
pathways that otherwise decrease food intake and increase energy expenditure. 
Finally, leptin engagement with NPY/AgRP neurons inhibits the release of the inhibitory 
neurotransmitter GABA onto neighboring POMC/CART neurons, thereby disinhibiting 
the anorexigenic POMC/CART neurons. 

As a result of leptin action, there is a relative decrease in energy stores. In response , 
ghrelin is released from the gastrointestinal tract. Ghrelin travels to the Arc, where it 
activates NPY/AgRP neurons, leading to the release of the orexigenic neuropeptide 
NPY. Activation of NPY/AgRP neurons by ghrelin also leads to inhibition of the 
melanocortin pathways via AgRP, which antagonizes MC4Rs, and via GABA, which 
inhibits POMC/CART neurons. NPY, AgRP, and ghrelin influence the release of various 
neuropeptides and neurotransmitters from several downstream regulatory regions, 
which in turn lead to activation of various physiological processes and behaviors that 
increase energy stores. 

Dysregulated stimulation of ghrelin-activated pathways and/or blockade of leptin­
activated pathways would be predicted to cause obesity. Similarly, it would be 
predicted that dysregulated stimulation of leptin-activated pathways and/or blockade of 
ghrelin-activated pathways cause cachexia. In fact, just such examples of these kinds 
of dysregulation have been demonstrated in both animal models and humans. For 
example, ob/ob mice (which are obese, hyperphagic, and have increased adiposity) and 
db/db mice (which are diabetic with obesity, high insulin, and hyperglycemia) were 
found to contain mutations in either the leptin gene (ob) or the db gene (leptin receptor). 
As one might predict from the phenotypes of the ob/ob and db/db mice, interference 
with the functioning of leptin-engaged circuitry at a number of different places may also 
lead to obesity and problems with glucose metabolism in humans. Although not 
common, leptin deficiency does occur in humans and results in hyperphagia, severe 
obesity, and alterations in immune function and delayed puberty, all of which improve 
with leptin administration (16, 17). The human equivalent of the db/db mouse occurs 
much more commonly. In fact, the prevalence of pathogenic leptin receptor mutations 



in a cohort of 300 subjects with severe early onset obesity was found to be 3% (18, 19). 
Even more common is a resistance, or rather impaired responsiveness, to the effects of 
leptin, which is observed in most obese humans. Human MC4R mutation carriers also 
exist and have severe obesity, increased lean mass, increased linear growth, 
hyperphagia, and severe hyperinsulinemia. Mutations in the MC4R appear to be the 
commonest monogenic cause of obesity thus far described in humans (20). 

We now know a lot of information about ghrelin responses and action. Ghrelin levels 
rise prior to meals (see Figure below), following food deprivation and in response to 
weight loss resulting from many different situations, including chronic exercise, eating 
disorders such as anorexia nervosa and bulimia nervosa, and cancer cachexia (21-29). 
Importantly, ghrelin administration potently stimulates feeding and lowers energy 
expenditure (1 0, 30, 31 ). In addition, ghrelin shifts food preference towards diets rich in 
fat and at the same time shifts fuel preference away from metabolic utilization of fat as 
an energy source (1 0, 32). Ghrelin also increases the mRNA expression of many fat 
storage-promoting enzymes in white adipocytes (33). Collectively, these actions of 
ghrelin increase body weight (with a predominant effect of increasing adiposity) in 
normal individuals and result in maintenance of body weight or delayed weight loss 
(with a predominant effect on lean mass) in cachectic individuals (10, 31, 34, 35). 
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Interestingly, in most 
forms of obesity, 
ghrelin is not 
presumed to be 
causative since its 
levels are usually lower 
than those in lean 
individuals (36, 37). 
Rather, in individuals 
with the "common" 
form of diet-induced 
obesity, ghrelin levels 
become elevated only 

after weight loss induced by dieting (Figure above). Notably, this elevation in ghrelin 
has been hypothesized to contribute to the rebound weight gain commonly observed in 
dieters (38). Also of note, the marked and prolonged weight loss observed in obese 
individuals who undergo Roux-en-Y gastric bypass surgery is thought to be due, at least 
in part, to post-bypass reductions in circulating ghrelin levels (38, 39). 

Several studies now support a model that predicts a physiologically important role for 
naturally-occurring ghrelin in coordinated body weight control. However, such a notion 



was challenged in the first published studies using ghrelin- and GHSR-knockout mice, in 
which no or only modest differences in body weights were noted between mice lacking 
ghrelin or the ghrelin receptor and wild-type animals (40-42). Counter to these earlier 
studies, several recent papers do support a required role of intact ghrelin signaling for 
normal body weight homeostasis and the development of diet-induced obesity. For 
example, in our own study using GHSR-null mice, we found that ghrelin receptor 
deficiency was associated with reduced body weight in animals exposed to high-fat diet 
(Fig. 6). This reduced body weight was due to selective decreases in adiposity, and 
was associated with both reduced feed efficiency and reduced food intake (43). In 
parallel, Wortley eta/. demonstrated that ghrelin deficient (knockout) mice were leaner 
than wild-type mice after early exposure to high-fat diet. This was due to an effect on 
adiposity alone and was the result of increased energy expenditure, without any 
changes in food intake when studied over the short-term (44). Similarly, selective 
knockdown of GHSR expression in transgenic rats expressing an antisense GHSR 
transcript (under the control of a tyrosine hydroxylase promoter) also resulted in 
decreased adiposity and reduced food intake (45). Furthermore, reduction of the 
bioavailability of naturally occurring ghrelin by use of either a vaccination strategy or a 
polyethylene glycol-modified L-RNA oligonucleotide capable of specific high-affinity 
binding to acylated ghrelin resulted in decreased body weight gain, adiposity, food 
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intake and feed efficiency 
(46, 47). These studies used 
different methods of 
inactivating normal ghrelin 
signaling pathways. 
However, they all had in 
common decreased body 
weight (with a specific effect 
on fat mass) and increased 
energy expenditure; the 
effects on food intake were 
variable. As such, inhibition 
of ghrelin action has been 
touted as a feasible strategy 
to reduce body weight and 
food intake (15, 48). 

Figure 6. Mice lacking ghrelin 
receptors gain less body weight 
when chronically exposed to a 
high fat diet. 



Ghrelin's role in reward behavior 

Ghrelin's role in body weight and food intake is not limited to its effects on homeostatic 
pathways. Several pieces of evidence now suggest that ghrelin, along with the white 
adipose tissue-derived anorexigenic hormone leptin also affect food intake and body 
weight by interactions with various brain reward circuits such as the midbrain 
dopaminergic pathways originating in the ventral tegmental area (VTA). 

Receptors for both ghrelin and leptin are highly expressed within both the VT A and the 
substantia nigra (SN), and we have also carefully documented a high degree of co­
expression of GHSR specifically within dopaminergic (tyrosine hydroxylase­
immunoreactive) neurons within the VTA and SN (49, 50). This is important because 
studies mainly from the drug addiction field have identified the nucleus accumbens 
(NAc) and its dopaminergic inputs from the VTA as playing a critical role in reward (51). 
Rewards are things that make us feel better and therefore are liked (give us sensory 
pleasure), wanted (desired, pursued and motivated us to work to obtain them) and 
initiate learning processes that help create cues that predict their availability and help 
organize efficient behavioral sequences aimed at obtaining them (51, 52). 
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Virtually all drugs of abuse increase dopaminergic transmission in the NAc, and this is 
thought to contribute to the acute rewarding effects of the drugs (53-55). This VTA-NAc 
pathway is not only one of the most important anatomical substrates for drug reward, 
but also is important for natural rewards, such as food, sex, and social interactions (53, 
55). Studies with leptin have shown that its direct microinjection into the VTA decreases 
food intake while RNAi-mediated knockdown of leptin receptor within the VTA has the 
opposite effect (56). Also, leptin administration decreases conditioned place preference 
for food (57-60), reverses the ability of food deprivation to increase drug reward and 
relapse (61) and increases intracranial self stimulation thresholds (62). Together, these 
findings suggest a negative effect of leptin on motivation, and that leptin deficiency 
increases activation of those centers involved in motivation to obtain food rewards. 

More recently, a handful of publications have reported similar types of interactions of 
ghrelin with these mesolimbic reward circuits. For instance, centrally- and peripherally­
administered ghrelin induces dopamine overflow in the NAc, and ghrelin increases 
action potential frequency in VTA dopamine neurons (63-65). Furthermore, direct 
microinjection of ghrelin into the VTA increases food intake while direct VTA 



microinjection of a GHSR antagonist decreases food intake in response to i.p. ghrelin 
(63, 66). Also, although only reported as abstracts, ghrelin has been shown to 
significantly increase appetitive lever pressing for food rewards by rats and mice (67, 
68). Ghrelin recently has been shown to stimulate conditioned place preference in 
mice, thereby mimicking effects previously shown to be induced by drugs of abuse, 
such as cocaine (69). Importantly, functional magnetic resonance imaging trials in 
healthy human subjects have demonstrated that ghrelin can increase the neural 
response to food pictures in regions of the brain, including the amygdala, orbitofrontal 
cortex, anterior insula, and striatum, implicated in encoding the incentive value of food 
cues (70). Collectively, these studies seem to indicate that metabolic signals such as 
ghrelin likely induce food intake, at least in part, by enhancing the hedonic and incentive 

TABLE 1. Clinical diagnostic criteria for Prader-Willi syndrome 

Major criteria (1 point each) 
Neonatal and infantile hypotonia 
Infantile feeding problems or failure to thrive 
Excessive or rapid weight gain between the ages of 1 and 6 )T 

Characteristic facial features, including narrow face, almond-
shaped eyes, small-appearing mouth with thin upper lip, 
down-turned comers of the mouth (three or more required) 

Hypogonadism (impaired function of the sonads) with 
underdeveloped genitalia and/or impaired pubertal 
development 

Developmental delay, mental retardation, or learning problems 
Hyperphagia, food foraging, or obsession with food 
Deletion 15qll-q13 on high-resolution cytogenetic analysis or 

other abnormality of the Prader-Willi chromosome region 
Minor criteria (0.5 points each) 

Decreased fetal movement or infantile lethargy 
Typical behavioral problems: temper tantrums, violent 

outbursts; obsessive/compulsive behavior, argumentative, 
rigid, possessive, stubborn manipulative, stealing, lying (five 
or more required) 

Sleep disturbances or sleep apnea 
Short stature for family by the age of 15 yr 
Fairer eyes, skin, and hair than expected 
Smaller hands and feet than expected for height and age 
Narrow hands with straight ulnar border 
Esotropia or myopia 
Viscous saliva 
Speech articulation defects 
Skin picking 

Supportive criteria (0 points, but help to confinn diagnosis) 
High pain threshold 
Reduced incidence of vomiting 
Temperature control problems 
Scoliosis or kyphosis 
Early adrenarche 
Osteoporosis 
Unusual skill with jigsaw puzzles 
Normal neuromuscular findings 

responses to food-related cues (70). 

Ghrelin's effects on reward pathways 
perhaps find particular relevance to 
the obesity and accompanying 
excessive eating of Prader-Willi 
Syndrome (PWS) (71 ). The 
hyperphagia of PWS is extreme such 
that PWS individuals often display a 
significant obsession with food, pica 
behavior and nearly constant hunger, 
as well as other disadvantageous 
feeding behaviors such as food 
stealing, stealing money to buy food, 
hoarding, foraging and binge eating 
(71, 72). A significant advance in 
PWS research came with the report 
of marked elevations of circulating 
levels of ghrelin in obese adults with 
PWS (73). This initial finding was 
confirmed in a handful of other 
studies on adult PWS individuals as 
well as in obese children and 
teenagers with PWS (73-77). 
Plasma ghrelin levels in obese PWS 
individuals have been found to exist 
at levels 3 to 4.5-fold higher than 
obese controls (73-77) (Fig. 4). 
Furthermore, ghrelin cell density is 
higher in the stomachs of PWS 



individuals as compared to obese control individuals (78). It has been postulated that 
these high ghrelin levels directly contribute to the voracious appetite, hyperphagia, 
obesity and extreme food-seeking behaviors that characterize this syndrome (73, 75). 

Psychological Drives influencing food intake and body weight. 

There exist many examples in clinical practice of psychiatric illness being associated 
with alterations of body weight and metabolic function. These include affective 
disorders, Post traumatic stress disorder, Schizophrenia, and Anorexia nervosa and 
bulimia nervosa, to name just a few. Despite many recent advances in the 
understanding of feeding and body weight regulation, relatively little is known about the 
molecular basis for the link between psychiatric illness and appetite. Some of this 
metabolic dysregulation is likely influenced by the medications used to treat the 
psychiatric illness. However, it is also likely the case that certain of the psychiatric 
diseases cause the metabolic dysregulation with which they are often associated, or 
vice versa. 

Some examples in the literature of this link between psychiatric illness and extremes of 
body include the following: A cross sectional cross sectional epidemiological study of 
9125 adults in the United States, using data from the National Comorbidity Survey 
Replication (in-person survey of a nationally representative sample of US residents 
conducted between 2/5/01 - 2/12/03), demonstrated a slightly more than 25% higher 
odds ratio for mood and anxiety disorders in obese individuals (79). A cross-sectional 
assessment of a Spanish health management database demonstrated that those 
individuals being treated for bipolar disorder had a significantly higher prevalence of 
metabolic syndrome as compared to the reference group (80). Interestingly, in a review 
of death rates and causes of death after weight loss surgery in Pennsylvania residents 
between 1995-2004, there was an unexpected substantial excess of deaths as a 
result of suicide and drug overdose (81, 82). A longitudinal study of over 1000 children 
in a particular town in New Zealand found that major depression in late adolescent girls 
was associated with a 2.3 fold increased risk of obesity in adulthood, and furthermore 
that prevalence of obesity in adulthood was positively correlated with the number of 
episodes of depression during adolescence (83). As a final example, a retrospective 
study of data obtained from 157 veterans with post-traumatic stress disorder in 
Richmond, VA demonstrated that these individuals had a combined overweight and 
obesity prevalence that exceeded those rates in the general population by - 20% (84 ). 



A potential role for ghrelin in stress-induced eating. 

Thru studies spearheaded by Dr. Michael Lutter in the Department of Psychiatry, we 
recently have found that rises in ghrelin occur not only in response to states of energy 
insufficiency but also following chronic stress (85). For example, we have found that 
ghrelin levels rise in response to chronic social defeat stress (CSDS), a model of 
depression in laboratory mice (Fig. 8). Our findings are supportive of previous work 
describing elevations in either gastric ghrelin mRNA or total plasma ghrelin in response 
to acute stress, including following a tail pinch stress protocol in ddy mice (tail pinch for 
10 min every 4 hr for 24 hr) and following a water avoidance stress protocol of 60 min 
duration in Wistar Kyoto and Sprague-Dawley rats (86, 87). 

Next, we examined the potential effects of these stress-induced ghrelin elevations (85). 
We observed that methods which increase circulating levels of ghrelin, including single 
subcutaneous injections of ghrelin or 10 days of calorie restriction, resulted in anxiolytic­
like and antidepressant-like responses in the elevated plus maze (EPM) and forced 
swim test (FST), respectively. Conversely, genetic blockade of ghrelin signaling by 
deletion of ghrelin receptors, as occurs in our GHSR-null mice, negated these 
anxiolytic-like and antidepressant-like effects when assessed in the EPM and FST. 
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Figure 8. Chronic Social Defeat Stress induces elevations in the active form of ghrelin that 
persists for at least one month. 

Importantly, the majority of wild-type animals that undergo the chronic social defeat 
stress protocol normally exhibit social isolation behaviors that correlate with increased 
depressive-like behavior (88, 89). However, we found that deletion of the ghrelin 
receptor seemed to exacerbate this depressive-like behavior. Furthermore, while those 
wild-type mice undergoing the social defeat protocol were shown to have hyperphagia, 
deletion of the ghrelin receptor resulted in blunted food intake following repeated social 
defeat episodes (85). 

Thus, it appears from our research in laboratory mice that methods that increase 
circulating levels of acylated ghrelin, including subcutaneous injections or caloric 



restriction, produce anxiety-lowering and depression-lowering responses. Chronic 
stress also causes an elevation in ghrelin and furthermore results in increased eating (at 
least briefly). Animals unable to respond to the elevation in ghrelin (because they lack 
the receptor for ghrelin) demonstrate even more depressive-like behaviors in response 
to chronic stress than do wild-type animals, and also do not show hyperphagia. As 
such, we hypothesize that increases in circulating ghrelin, which occur in response to 
stress help us cope by generating anxiety-lowering and depression-lowering behavioral 
adaptations. A side-effect of the stress-induced increased ghrelin is increased food 
intake/appetite. 

The potential significance of these results can perhaps best be illustrated by viewing 
them in the context of post traumatic stress disorder (see above) or the eating disorders 
anorexia nervosa and bulimia nervosa. Anorexia Nervosa is an eating disorder 
characterized by a profound disturbance of body image accompanied by behaviors to 
maintain body weight below the 85% percentile, including restricted food intake, self-

Figure. Distribution of mRNA encoding ghrelin receptor (GHSR) within the rat brain. 



induced vomiting, and excessive exercise (90). Bulimia Nervosa is a related eating 
disorder in which individuals engage in recurrent episodes of excessive calorie intake 
followed by compensatory purging behaviors such as self-induced vomiting and laxative 
abuse (90). Both disorders have high rates of co-morbid depressive and anxiety 
disorders. Major depressive disorder or dysthymic disorder has been reported in up to 
50% of anorexia nervosa individuals and similar rates of depression are found in bulimia 
nervosa (90). In a large clinical sample of 575 patients with anorexia nervosa or bulimia 
nervosa, almost two-thirds of patients had a lifetime axis one diagnosis of an anxiety 
disorder (91 ). It is likely that these co-morbid psychiatric disorders contribute greatly to 
the progression of both of these illnesses and the frequent relapses that occur during 
treatment. Importantly, anorexia nervosa and bulimia nervosa are both associated with 
high levels ghrelin (24, 28, 29). It has been assumed that the primary reason for the 
elevated ghrelin in anorexia nervosa and bulimia nervosa is as a response to a 
cachectic state or the habitual binge/purge behaviors (29, 92). However, given our new 
findings, we hypothesize that the elevated ghrelin levels found in individuals with these 
eating disorders may rise as a coping strategy for the depression and anxiety that are 
usually present. Whatever the cause of the ghrelin elevations in anorexia nervosa and 
bulimia nervosa, our new findings raise the possibility that ghrelin may provide a link 
between the disordered eating behaviors and some aspects of the psychopathology 
associated with these conditions. 

Conclusions 

Ghrelin's actions on body weight involve engagement of various pathways involved in 
the determination of appetite and food intake, including homeostatic pathways, reward 
circuitry and psychological drives. This is likely also the case for many other gut 
hormones and peripheral satiety signals. The challenge ahead will be determining the 
relevance of these pathways to human disease. A further challenge will be in the 
design of therapeutic agents that take into account not only ghrelin's actions on 
homeostatic food intake and food reward seeking behaviors but also its effects on mood 
and anxiety. 
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