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Introduction 

In the early 1960s, Jensen conducted experiments that identified moieties 
in cells and tissues that bound tritiated estrogen with high affinity (62, 63). These 
experiments had a profound impact on the pace and nature of research in the 
area of steroid hormone action. The ensuing three and a half decades have 
witnessed a remarkable explosion in our understanding of how these potent 
hormones act in cells to mediate a wide range of processes. 

In parallel with studies to define the mechanisms of steroid hormone 
action, the pharmaceutical industry has attempted to harness these insights to 
develop agents capable of modulating the activity of specific steroid hormone 
receptors in different tissues and cell types. Although only a limited number of 
these agents are presently in use in clinical practice, a number of additional 
agents that selectively target the activities of the estrogen receptor, the androgen 
receptor, the glucocorticoid receptor, and the progesterone receptor are either in 
or nearing testing the clinical trials in humans. 

The mechanisms by which compounds act to selectively modulate the 
activity of a nuclear receptor has been most clearly defined for the estrogen 
receptor. For this reason, the greatest attention in this review has been to 
describe the reasons that selective estrogen receptor modulators (SERMs) have 
attracted so much interest and the mechanisms that have been identified to 
explain the selective activity of these molecules in different cell types. It is 
anticipated that it will be possible to generalize findings relevant to SERMs and 
estrogen action to other nuclear receptors. 

Estrogens, SERMs, and Women's Health Issues 

Research in two distinct areas of women's health has converged to 
stimulate the profusion of research focusing on the development of the agents 
that modulate the activity of the estrogen receptor. 

First, it has long been recognized that the changes in steroid hormone 
synthesis by the ovary that take place at the time of menopause have a number 
of important biological consequences. These have led to a number of 
observational and controlled trials to attempt to define the benefits that accrue 
from hormone replacement therapy. These studies have focused on the effects 
on CV disease, preservation of cognitive function, tumor growth and progression, 
and maintenance of bone density. Many have engendered considerable 
controversy. Although Table I summarizes the desirable and undesirable effects 
of estrogen, as exemplified in the discussion below on 'Estrogens and the 
Cardiovascular System', even these effects are not uniformly established. 
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Table I Desirable and Undesirable Effects of Estrogen 

•Desirable 
- Suppression of gonadotropin 
regulation 
-Preservation of cognitive 
function 
- Preservation of bone density 
- Maintenance of secondary 
sexual characteristics 
-Reduction of CV mortality 

Estrogens and the Cardiovascular System 

•Undesirable 
-Promotion of breast cancer growth 
- Increased incidence of endometrial 
cancer 
-Increased tendency to thrombosis 

The risk of coronary artery disease is low in premenopausal women and 
increases following menopause. Observational studies, such as those from the 
Framingham Heart study, demonstrated that the risk for cardiovascular events 
increased in women as they became older (73). Such observations have been 
paralleled by studies that have suggested reductions in cardiovascular risk in 
postmenopausal women taking estrogen replacement. The Nurses Health Study 
has provided considerable information in this area. In the analysis of these latter 
databases, Grodstein et. al. demonstrated that hormone replacement therapy 
was associated with a decreased risk of cardiovascular disease in 
postmenopausal women (52). 

Because of the limitations of observational studies, randomized controlled, 
clinical trials were designed to test the effect of estrogen on cardiovascular risk 
factors. The first such controlled trial that was conducted of this type was the 
Postmenopausal Estrogen/Progestin Intervention (PEPI) trial. In this clinical trial, 
the effect of estrogen replacement (either estrogen alone, estrogen in 
combination with different progestin preparations, or placebo) was assessed on 
cardiovascular disease risk factors. The major lessons learned from this trial 
were that estrogens or estrogens plus progestin were associated with increases 
in HDL cholesterol levels and reductions in LDL-cholesterol and fibrinogen levels 
(5). Of note, the magnitude of these changes was somewhat greater in the 
women who had received estrogen alone, compared to women who had received 
both estrogen and progestin. Notably, although positive effects were observed 
on cardiovascular risk factors in this group of individuals, the design and scope of 
the study did not permit an assessment of overt outcomes expected from these 
improvements in cardiovascular risk factors. 

In contrast to the study results derived from the PEPI trial, the Heart and 
Estrogen/progestin Replacement Study (HERS) did not demonstrate the 
improvement in cardiovascular disease outcomes expected on the basis of the 
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improvements in cardiovascular disease risk factors (e.g. as predicted form the 
PEPI trial) (60). Instead, the results indicated that women receiving combined 
hormone replacement therapy did not show a reduction in the risk of myocardial 
function (fatal or non-fatal). This is despite the fact that there appeared to be a 
trend toward the appearance of increased cardiovascular events in the treatment 
group (in year 1) and a reduction in events occurring subsequently (at year 3). 
As a result, at the present time we are confronted with an apparent discrepancy. 
Although estrogen administration appears to be associated with improvements in 
objective cardiovascular risk factors, in a randomized trial examining primary 
prevention of coronary artery disease no clear cut beneficial effects were 
observed. It is hoped that the results of the Women's Health Initiative 
randomized trial (WHI) will serve to answer several of these apparent 
contradictions (7). 

Estrogens and Breast Cancer 

Second, are the observations that have led to the development of agents 
capable of interfering with the action of estrogens in the breast. Although 
Tamoxifen was initially approved for use as an adjuvant chemotherapeutic agent 
in women with breast cancer, more recent applications have extended its use to 
groups of women at high risk for the development of breast cancer. The results of 
trials using this agent have shown remarkable effects on the incidence of clinical 
breast cancer, and have led to a consideration of the use of such agents in 
broader populations. Unfortunately, this agent possesses unfavorable properties, 
including the accentuation of vasomotor symptoms and the tendency, at least in 
some trials to the stimulation of the uterine endometrium. These latter properties 
have led to attempts to develop selective agents that preserve the favorable 
qualities (inhibition of breast stimulation) while ameliorating the unfavorable 
aspects of the profile. 

Conclusions 

Characteristics of the Optimal SERM 

- Suppression of gonadotropin regulation (hot flashes) 
- Maintenance of secondary sexual characteristics 
- Preservation of cognitive function 
- Preservation of bone density 

- Inhibition of breast cancer growth 
- Inhibition (or neutral) of endometrial cancer 
- No increased tendency to thrombosis 

These considerations have led to the formulation of a list of identifiable 
properties the serve as a guide to the development of agents that have the 
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characteristics of the 'optimal' SERM. Such an agent would reduce the 
symptoms of vasomotor instability, reduce the risks of breast and uterine cancer, 
and have beneficial effects on the CNS and CV function. 

Emergence and evolution of the concept of Selective Estrogen Receptor 
Modulators (SERMs) 

Early studies of triphenyletheylene derivatives demonstrated that 
members of this class were capable of serving to antagonize the action of 
estrogen in several target tissues. Subsequent analyses demonstrated that 
depending on the setting, selected molecules could act as agonists. 
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Figure 1 Triphenylethylene ER antagonists exhibit properties of estrogen receptor agonists and 
antagonists, depending on the gonadal status and tissue in which the assays are conducted. 

How are the Effects of Estrogens Mediated? 

The mechanisms by which estrogen controls the responses of responsive 
tissues and cells has been the subject of intense interest for decades. The 
identification of specific estrogen binding substances in cells was quickly followed 
by the identification of a series of 'transformations' that followed the binding of 
estrogen by the estrogen receptor. These insights, while important, were 
principally descriptive in nature. Although considerable information accumulated 
regarding the physical nature of these estrogen binding complexes and the 
global processes (such as RNA and protein synthesis) that these changes 
controlled, the nature of the events leading to these changes were completely 
u ncharacterized. 

The cloning of cDNAs encoding the human estrogen and glucocorticoid 
receptors began a revolution in the understanding of steroid hormone structure 
and function (21 ). These investigations lead to several important innovations. 
First was the capability to manipulate and modify the structure of the products 
encoded by the cDNAs encoding the receptor proteins. This lead to the 
identification of discrete modular domains within the receptor proteins necessary 
and sufficient for the high affinity binding of ligand (ligand or hormone binding 
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domains [LBO or HBD, respectively]) and the recognition of DNA sequences 
(DNA binding domains [DBD]) by the receptor protein. Second, it became 
obvious that within the human genome numerous genes existed which shared 
similarities to members of the steroid receptor family (38, 74). This resemblance 
was particularly striking for the region encoding the DNA binding domains of the 
receptor proteins. This segment is highly conserved among different members of 
the receptor family. Third, was the recognition that these cDNAs could be used 
in combination with "reporter genes" to directly measure the activity of these 
proteins when expressed in target cells. Thus, for the first time, assays could be 
performed in selective cell types to analyze the activities of molecules to regulate 
the activity of members of the nuclear receptor family. This methodology stands 
in stark contrast to decades of research conducted in the pharmaceutical industry 
in which compounds were analyzed only using ligand binding and bioassays to 
measure drug activity. 

Bind ing Domains 

DNA Ligand 

GR 

<15 90 55 MR 

<II 90 55 PR 

<1 5 I 79 I 50 AR 

<: l.S I 12 1 lO ER 

<15 I so I 26 ERRl 

I <~s I '" I 10 ERR2 

Figure 2 The nuclear receptors are a large gene fami ly that share structural features in conserved 
regions of the receptor proteins. This fam ily includes receptors encoding al l of the steroid 
receptors, as well as the receptors for thyroid hormone, vitamin D, and retinoic acid. In addition, 
th is fami ly contains members for which no ligand is known (orphan receptors). 

Clues as to the mechanisms by which nuclear receptors might serve to 
modulate the activity of gene transcription emerged from studies directed in 
understanding the mechanisms by which RNA polymerase was regulated. 
These experiments conducted in broken cell assays demonstrated that the 
confirmation of proteins present at the sites of active genes were critical to the 
recruitment and activity of RNA polymerase 2 which directly controls the rates of 
RNA synthesis. These insights lead to attempts in a number of laboratories to 
identify proteins that interacted with members of the nuclear receptor family. 
Ultimately these experiments lead to the description of two major classes of 
regulatory proteins: the nuclear receptor coactivators and nuclear receptor 
co repressors. 
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Figure 3 Concepts emerging from the study of eukaryotic transcription led to the recognition that 
the recruitment and stabilization of RNA polymerase II (Pol II) containing complexes a central 
determinant of the rate of gene transcription. This recognition led to attempts to identify proteins 
that interact with members of the nuclear receptor family. These efforts led to the cloning of 
proteins capable of augmenting (coactivator) or repressing (corepressor) gene activity. 
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Figure 4 The steroid receptor coactivator, SRC 1, acts to augment the activity of the progesterone 
receptor. The design and results of experiment to demonstrate this is depicted (adapted from 

·reference 93). 
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The first of these types of molecules to be carefully characterized with the 
steroid receptor coactivator 1 described in the laboratory of Dr. Bert O'Malley 
(93). This protein was identified on the basis of its ability to interact with the 
progesterone receptor following the binding of progestin agonist. The 
consequences of the expression of this protein on progesterone receptor function 
and is displayed in Figure 4. The net result of this interaction is to augment and 
potentiate the effect of the liganded progesterone receptor on the activity of a 
model reporter gene (in this case PRE-CAT). A large number of additional 
proteins as now been described that serve as coactivators for different members 
of the nuclear receptor family, including the estrogen receptor. 

In parallel with experiments to define proteins capable of potentiating the 
effect of members of the nuclear receptor family, experiments were conducted to 
identify proteins that inhibit nuclear receptor activity in functional assays. These 
studies have led to the identification of a number of proteins that serve as nuclear 
receptor corepressors . These proteins are responsible for recruiting enzymatic 
activity to the sites of gene transcription that serve to repress gene activity. 
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Figure 5 Ligands displaying varying degrees of agonism and antagonism of ER function. 4-
hydroxytamoxifen and Raloxifene are mixed antagonists of ER function, while ICI 164,384 is a 
pure ER antagonist. 

Studies over a number of years have identified a variety of molecules that 
exhibit varying degrees of antagonism or agonism. Several of these compounds 
are depicted in Figure 5. All of these molecules had been shown to possess 
biological activity either in cell transfection assays or in bile assays. Each is also 
of capable interfering with ligand binding by the estrogen receptor proteins. 



9 

Figure 6 The activity of a compound as an ER agonist or antagonist is dictated by the shape that 
the ER LBO assumes after ligand binding. The position of the terminal helix of the LBO (H12, 
white arrow) assumes distinct conformations when bound to estradiol (left) or Raloxifene (right). 
The position of this helix permits the recruitment of coactivators, such as SRC-1, leading to and 
increase of gene activity. In the antagonist-bound conformation (right), this recruitment site is not 
available (from reference 22). 

How these molecules were capable of modifying the activity of the 
estrogen receptor(s) remained unclear until publications analyzing the crystal 
structures of the estrogen receptor a complexed to an agonist (estradiol) and 
Raloxifene, an ER antagonist (22). These crystal structures revealed for the first 
time the physical nature of the difference in the binding of ligands that led to the 
different biological properties of the receptor molecule. Specifically, these 
studies demonstrated that the shape of the ligand molecule (estradiol versus 
Raloxifene) determined whether or not the terminal segment of the ligand-binding 
domain was able to assume a conformation that was capable of recruiting 
coactivator proteins to augment the activity of estrogen receptor responsive 
genes. Subsequent analyses the crystal structures of a variety of ligand bound 
receptors derived from various segments of the nuclear receptor family are 
consistent with the concept that the position of this terminal helix is largely 
responsible for whether the nuclear receptor protein is capable of recruiting 
coactivator proteins (and increasing gene transcription) or recruiting corepressor 
proteins (and decreasing rates of gene transcription). These ideas are 
summarized in Figure 6. It should be pointed out, however, that the perceptions 
emerging from these crystal structures are of static and unchanging 
conformations. It appears quite likely that the conformations of these proteins 
are in fact quite dynamic. The actual conformation of a steroid receptor (such as 
the ER) complexed to a specific ligand may be an 'average' of several different 
conformations each with a inherent tendency to recruit coactivator or corepressor 
proteins. 
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Figure 7 Models for the mechanisms by which the activity of steroid receptors is modulated 
differentially following the bind ing of agon ists and antagon ists. 

It is clear from the aforementioned discussion that considerable 
opportunities exist to explain diversify effects of estrogen on the regulation of 
gene expression and cellu lar processes. Several additional potential levels at 
which such diversity can emerge revolve around the nature of the receptors that 
bind estrogen and the transformation events leading to the synthesis and 
degradation of estrogen. 

For approximately 30 years, the scientific community perceived that a 
single receptor protein transduced estrogen signals. Despite a large body of 
such information, in 1996 the group of Jan-Ake Gustafsson published a report 
identifying a second distinct receptor protein for estrogen: ER-beta (67). 
Although sharing a large degree of homology, the tissue levels of distributions 
and binding specificities of the two proteins were shown to be distinctive. 

This situation became even more complex when the group of Giguere 
identified three proteins related to the action receptor alpha (ERR alpha, ERR 
beta, ERR gamma) as members of the nuclear receptor family that were capable 
of being regulated by estrogenic compounds, specifically DES and 4 hydroxy 
tamoxifen (123, 128). Although the activities and regulation of these proteins by 
such estrogenic compounds has already been clearly established, it is not yet 
clear what the relevance of estrogenic regulation of the ERR proteins is to the 
regulation of gene expression in the context of SERMs. 
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Figure 8 Regulation of members of the ERR family by the estrogenic molecules diethylstilbestrol 
(DES, left) and 4-hydroxytamoxifen (right) 

How do the Mechanisms of Diversity in Estrogen Signaling Explain the Actions of 
SERMs? 

The above insights into the action of nuclear receptors (in general) and the 
estrogen receptor (in particular) led to a model in which the diversity of the 
effects of an estrogenic ligand in a particular cell or tissue was postulated to 
reflect the balance between the molecule (coactivators and corepressors) 
present in a particular cell that are recruited to a set of estrogen-responsive 
genes. In this model, variations in the responsiveness of a particular gene might 
vary considerably, depending on the complement of proteins present to be 
recruited. In fact, this particular idea had been demonstrated in early 
experiments using transfection assays (1 02) These finding have been elegantly 
confirmed in more native and physiologically relevant contexts by the group of 
Myles Brown (98). 

Selective Androgen Receptor Modulators (SARMS) 

Introduction 

In contrast to the clear-cut indication that exist for the development of the 
agents that selectively modify the activity of the estrogen receptor, indications for 
the development of molecules that selectively modify the activities of androgen 
receptor in specific tissues and cell types is less clear. 

The availability of an agent that can be utilized the treatment of androgen 
replacement in patients with androgen deficiency caused by either primary or 
secondary causes are clear. Beyond this clear-cut indication, a number of 
additional indications are possible. In a subset of men, the decline of 
testosterone production by the testes is believed to contribute to the diminished 
muscle mass, increased adiposity, and increased frailty that can be observed in 
aging men. In addition, androgens had been proposed for use as anabolic 
agents in a number of wasting diseases. 



12 

In contrast to the desired effects of androgen action in individuals with 
wasting disease, substantial concerns center on the potential that such agents 
might have in the stimulation of prostate growth leading potentially to the 
development or progression of prostate cancer or benign prostatic hypertrophy. 
Such concerns may well be accentuated or mitigated by the results of a large­
scale Finasteride trial which is currently under way (20). 

Table Ill Desired Profile of Activity of Potential SARMS 

Tissue/Parameter 

Prostate 

Libido 

Gonadotropin 
Inhibition 

Hair Growth 
Bone Growth 

Muscle 
Fat-free Mass 
Lipids/CV risk 

Blood Pressure 

Erythropoesis 

Liver functions 

Breast 

Adapted from Negro-Vilar, 1999 

Hypogonadism 
Stimulatory, but 
less than DHT 
Stimulatory 

Present 

Stimulatory 
Stimulatory 

Stimulatory 
Increase 
Neutral 

Neutral 

Weak Stimulatory 

Neutral 

Neutral 

Indications that SARMs are feasible 

Indications 
Selected indications 
Weak or neutral 

Stimulatory/Neutral 

Absent/Reduced 

Neutral 
Stimulatory 

Stimulatory 
Increase 
Neutral 

Neutral 

Stimulatory 

Neutral 

Neutral 

7 alpha-methyl-19-nortestosterone (MENT) 

In much the way that the studies of the properties of Tamoxifen led to the 
discovery that molecules could preferentially modulate the activity of the estrogen 
receptor, studies of molecules designed in other areas related to androgen action 
led to the recognition that selective modulation of androgen receptor function was 
possible as well. One such agent is ?a-methyl-19-nortestosterone (MENT). This 
agent was originally developed in testing to identify agents capable of acting as 
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male contraceptives. Subsequent studies demonstrated that this agent exhibited 
differential potency when assayed in different tissues. One example of the 
differential activities observed in monkeys is shown is Figure 9. In these 
experiments, castrate monkeys were placed with varying doses of either 
testosterone or MENT delivered by continuous infusion pumps. Although a 
number of different parameters were assessed in these studies, two 
representative and contrasting results are depicted. As is evident from the left 
side of the panel, MENT infusion exerts an effect that is more potent than that of 
testosterone (compare 0.3 mg/d in the two left panels). By contrast, when 
prostate growth was assessed using MRI measurements of prostate volume, 
MENT can be seen to have an effect that is at least three-fold less effective 
compared to testosterone replacement (compare MENT at 0.1 mg/d to 
testosterone at 0.3mg/d). Parallel assessments of anabolic activity (total body 
weight) and lipid profiles demonstrated that MENT had a potency 10-12 times 
that of testosterone. Taken together, these experiments demonstrate that 
replacement with MENT in castrate monkeys uncover the differential action of 
this compound in different tissues. These findings have provided impetus to the 
studies conducted in the pharmaceutical industry to identify molecules capable of 
modulating the activity of the androgen receptor differentially in different tissues. 
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Figure 9 Castrate monkeys were replaced with varying quantities of MENT or testosterone and the effects 
on LH levels (left) or prostate volume (right) were measured. 
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Designer SARMs 

At present several pharmaceutical companies have attempted to develop 
agents that display selective activities using in vitro or cell-based models of 
androgen action. Most of these results are still derived from animal-based 
studies, but movement into human-based clinical tria ls is likely in the near future. 

The compound Andarine, presently under development, displays activities 
similar to those of testosterone when assessments are made in the action on the 
levator an i muscle, an androgen-responsive muscle in the rat. Despite 
equipotency to testosterone in this anabolic model, the same dosing of this 
compound shows substantially reduced effect in measurements of action in the 
maintenance of prostate growth. The mechanisms by which these selective 
results are achieved have not been defined. Despite this lack of insight at the 
mechanistic level, it is quite clear that in these selected assays a considerable 
separation has been achieved between the activities measuring anabolic activity, 
compared to those measuring the effects of these compounds on prostatic 
growth. 

Taken together, these findings represent a "Proof of Principle" that 
compounds exhibiting the properties of selective androgen receptor modulators 
are in fact possible. 

Future Directions 

A considerable amount of information is now available regarding the 
mechanisms and properties of SERMs. Much of the information relating to the 
effects and activities of the SERMs that are presently available are in only the 
earliest stages. A number of large-scale clinical trials are in progress to study the 
effects of these compounds. The resu lts of the studies will give important 
direction in how they shou ld be applied in pre and postmenopausal women. 

The state of knowledge is even more rudimentary when it comes to 
molecules capable of selectively altering the activities of other members of the 
nuclear receptor family. In vitro and limited in vivo studies suggest that 
compounds capable of selectively altering the activity of the androgen receptor 
are possible. Compounds of this type have been developed using cell-based 
pharmaceutical assays, and several are nearing testing in humans. 

In like fashion, agents have been identified that selectively modify the 
activity of the progesterone and glucocorticoid receptors in specific tissues. Most 
of these compounds have only been described in the most basic fashion and are 
likely to be several years away from testing in humans. Nonetheless, it is useful 
to consider that the nuclear receptor family is one of the largest fam ilies of 
transcriptional activators in the human genome. Its members play critical roles in 
the regulation of a number of important developmental and homeostatic 
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processes. It seems quite likely that the insights that have been gained and the 
progress that has been made in the selective regulation of the estrogen receptor 
will not be unique. As such, the definition of biologically important end points and 
functionally workable assays are likely to be the only impediments in the 
identification of drugs are capable of selectively modifying the activity of any 
member of the nuclear receptor family. 
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