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X-ray crystallographic protein structures often contain disordered regions that are observed 

as missing electron density. We have developed single sequence and profile-based weighted-

window predictors of structural disorder in proteins, as well as a simple method for 

addressing disorder-prone chain termini in disorder prediction. Optimizing the parameters for 

these relatively simple predictors with crystallographic data using a simulated annealing type 

algorithm, we achieve performance similar to that of DISOPRED2. Optimized parameters 

from these disorder predictors provide information relating to physical processes underlying 

crystallographic disorder. Optimized score adjustment values suggest a simple, monotonic 

relationship between disorder and residue distance from termini that is nearly the same for  

amino- and carboxy-terminal positions. Residue disorder parameters are strongly associated 

with scales from certain experimental model systems that primarily reflect hydrophobic 

interactions. Our data do not suggest a strong association between crystallographic disorder 

and secondary structure beyond that explained by hydrophobicity. Our results lend support to 
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the idea that while hydrophobic side chain interactions are primarily involved in determining 

stability of the folded conformation, hydrogen bonding and similar polar interactions are 

primarily involved in conformational and interaction specificity.
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CHAPTER ONE 
Introduction and Review of Literature 

 
1.1 STRUCTURAL DISORDER IN PROTEINS 

 Proteins are a class of molecules that perform essential functions in living organisms. 

Chains of residues of various types of amino acids form the structural basis for proteins. 

Proteins are well known to often adopt specific folds, giving them form and stability for 

proper function. But it is also recognized that proteins are dynamic and some are structurally 

disordered, in part or in whole. 

 Disorder participates in a variety of physiological functions. It is common in regions 

in proteins that participate in protein-protein and protein-nucleic acid interactions (Wright 

and Dyson 1999; Dunker et al. 2001). These regions may undergo a disorder-to-order 

transition upon binding. Such disorder-to-order transitions may serve both to modify function 

(Dunker et al. 2002) and to control thermodynamic properties of binding (Huber and Bennett 

1983). Linkers between protein domains may be disordered (Zdanov et al. 1994; Jacobs et al. 

1999; Dunker et al. 2002). Disordered regions may also serve other functions, such as 

serving as a barrier or gate (Denning et al. 2003), or enabling protein degradation (Hubbard 

et al. 1994; Dominguez-Vidal et al. 2006). Cancer-associated and signaling proteins appear 

to be more likely than eukaryotic proteins in general to contain long disordered regions 

(Iakoucheva et al. 2002). Enzymatic proteins, on the other hand, do not appear to have such a 

propensity for disordered regions. 

 Disorder may also be involved in pathological situations. In hereditary amyloidoses, 

for example, destabilizing mutations may increase the likelihood of aggregation (Hurle et al. 
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1994; Raffen et al. 1999). On the other hand, certain mutations in p53 that cause a 

conditionally disordered DNA-binding region to become persistently ordered also disrupt its 

cancer-protective cell cycle regulatory function (Wei et al. 2003). Understanding 

relationships between sequence and disorder may help in formulating hypotheses regarding 

mechanisms by which point mutations disrupt normal function. 

 Types of experiments that may detect disorder include, but are not limited to, circular 

dichroism spectroscopy, limited proteolysis, NMR spectroscopy, and X-ray crystallography 

(Dunker et al. 2002). Structural disorder may also be predicted through computational 

methods (see below). Our work primarily considers disorder in protein structures derived 

through X-ray crystallographic techniques. In X-ray crystallography, electron density maps 

are derived from diffraction patterns produced by coherent scattering of X-rays by electrons 

within ordered crystals. These electron density maps and other data (particularly protein 

sequences) are used to ‘solve’ protein structures. Even though a structure may be solved for a 

protein, part of the protein may not yield good electron density, due to lack of consistency in 

its conformation (disorder) and the resulting incoherence in its scattering of X-rays. These 

disordered segments are often excluded from published structures, or assigned ‘occupancies’ 

of zero. The similarity between crystallographic disorder and disorder determined through 

other experiments has been called into question. The sample of proteins with deposited 

crystal structures into the Protein Data Bank (PDB) (Berman et al. 2000) obviously excludes 

fully unstructured proteins and disordered portions of proteins that have been removed to 

improve crystallization (Tompa 2002; Linding et al. 2003a). 
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 Ordered protein structure is often depicted with static ribbon diagrams, consisting of 

helices, strands, and ‘loops’. But disordered protein may, by nature, not necessarily present a 

neat picture. Different types of disorder may occur. Disorder may be localized to only a part 

of a protein, or be global, involving the state of the entire protein. Different hypotheses might 

be put forward as to why a particular region is disordered. It may be due to the region’s being 

a loop that is well-solubilized; it may be due to the presence of multiple prolines that have 

significant variation in their isomerization states; it may be that a small, relatively internally 

consistent domain is oriented in different ways with respect to a crystal’s overall packing. 

 Although X-ray diffraction data may suggest the presence of disorder, data from a 

single crystal does not necessarily indicate how a particular disordered protein segment 

physically behaves (Huber and Bennett 1983). Distinction has been made between ‘dynamic’ 

disorder and ‘static’ disorder (Huber 1979; Huber and Bennett 1983) in crystal structures, 

with thermal motion being ‘dynamic’, and positioning in distinct conformations being 

‘static’. Conformational differences or flexibility may occur at different levels—individual 

side chains may be positioned in different ways with respect to the backbone; local 

polypeptide segments may adopt different backbone conformations; or two domains may 

adopt different orientations with respect to each other (Huber 1979; Huber and Bennett 1983; 

Dunker et al. 2001). 

 In trying to understand disorder, researchers have linked it to various physical 

characteristics. Disorder has been associated with low sequence complexity, but 

crystallographically disordered regions often do not have notably low sequence complexity 

(Romero et al. 2001). Different disordered regions have been associated with various patterns 
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(Vucetic et al. 2003; Lise and Jones 2005), but these patterns generally appear to relate best 

to a minor part of disordered regions or do not have a clearly described physical 

interpretation. Disorder has been associated with various side chain characteristics, including 

hydropathy and net charge (Uversky et al. 2000), coil propensity (Linding et al. 2003b), 

coordination number, β-sheet propensity, hydrophobicity (Williams et al. 2001; Dosztányi et 

al. 2005), and others. Such an association can be demonstrated through straightforward 

statistics or through showing that the characteristic is useful in predicting disorder. 

 Simple predictors of disorder, optimized using X-ray crystallographic data, are 

described in this dissertation. Their data-optimized parameters shed light on the physical 

nature of disorder. 

 

1.2 HISTORY OF DISORDER-RELATED PREDICTORS 

 Folds, or shapes, that proteins tend to adopt are primarily determined by their residue 

sequences (Anfinsen 1973). Efforts to predict various ordered structural elements (globular 

α-helices, strands, and transmembrane helices, for example) from their sequences have been 

complemented by efforts to predict where disordered regions occur 

 Several researchers have approached the problem of predicting disordered regions. 

Especially since 2003, disorder predictors from various groups have proliferated. But the 

history of related predictors goes back further. Here are briefly described and discussed 

several prediction methods that are directly targeted toward or related to prediction of 

disorder. Secondary structure prediction methods that predict residues as being within either 
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‘helix’, ‘strand’, or ‘coil’ regions are related, but are not discussed here. The number of 

disorder predictors has grown, and the list below is not necessarily comprehensive. 

 

1.2.1 Rose hydrophobicity plots 

 In 1978, George Rose described how turns in protein structures could be predicted as 

minima on a hydrophobicity plot, where the hydrophobicities are derived from the 

hydrophobicity scale published by Nozaki and Tanford (Nozaki and Tanford 1971), and plots 

are smoothed using Savitzky-Golay polynomial smoothing (Savitzky 1964). For similar 

hydrophobicity plots, peaks were shown to correspond with regions that formed the 

‘hydrophobic core’ of the protein, while ‘dominant valleys’ were shown to correspond with 

‘large solvent-exposed loops’ of lysozyme. 

 

1.2.2 Hopp-Woods antigen prediction program 

 Over twenty years ago, Hopp and Woods (1981) described a window-based method, 

which they indicated was for “predicting the locations of protein antigenic determinants” 

(Hopp and Woods 1983). The method used a 6-position (evenly weighted) sliding window to 

average ‘hydrophilicity values’ assigned to residues by residue type. The hydrophilicity 

values were largely based on the work of others (Nozaki and Tanford 1971; Levitt 1976). A 

basic idea of Hopp and Woods’ work was that the top peaks in the results of their method 

would suggest likely antigenic regions of proteins. 
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1.2.3 Kyte-Doolittle hydropathy plots 

 Kyte and Doolittle (1982) published a window-based method for generating 

‘hydropathy’ plots. They developed a well-known ‘hydropathy’ scale with the intent to 

reflect hydrophobic and hydrophilic properties of residues. For example, in their hydropathy 

scale, the values of tryptophan and tyrosine are shifted significantly with respect to values of 

other hydrophobic residues in comparison with hydrophobicity scales such as that of Nozaki 

and Tanford due to their containing hydrophilic moieties in addition to being hydrophobic. 

Kyte and Doolittle not only pointed out that their plots reflected interior vs. exterior regions 

of proteins, but also highlighted the ability of their method to discern transmembrane-

spanning segments of proteins. 

 

1.2.4 PONDR (or related predictors) 

 Dunker and colleagues performed pioneering work in the field of disorder prediction. 

They developed several disorder predictors (Romero et al. 1997a; Romero et al. 1997b; Li et 

al. 1999; Obradovic et al. 2003; Vucetic et al. 2003), some or all known as Predictors of 

Natural Disordered Regions (PONDR®); see www.pondr.com. Most or all are based on 

various residue ‘attributes’ (see also http://www.pondr.com/background.html). Some of these 

predictors may be relatively limited in availability (see http://www.pondr.com). The majority 

of these predictors are neural network-based. Some of these predictors appear to be lacking 

in performance (Ward et al. 2004), possibly in large part due to inadequate training data 

and/or transformation of residue types using attribute scales not ideally associated with 
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disorder. The recent VSL2 predictors (Peng et al. 2006) are more impressive in their apparent 

performance. 

 

1.2.5 GlobPlot 

 Linding et al. (2003b) describe GlobPlot as a “graphical tool” that may be used to 

attempt to “measure and display the propensity of protein sequences to be ordered or 

disordered.” As of writing, GlobPlot2 is available at http://globplot.embl.de. It plots a 

smoothed running sum of disorder propensities, as defined by the scale one selects. The 

default scale, the Russell/Linding scale is a set of ‘coil propensities’, where coil regions are 

non-α-helical, non-β-strand regions, “based on the hypothesis that the tendency for disorder 

can be expressed as P = RC – SS where RC and SS are the propensity for a given amino acid 

to be in ‘random coil’ and regular ‘secondary structure’, respectively.” Although there is 

evidence that GlobPlot can effectively help to locate domains, its efficacy in predicting 

disordered regions using coil propensities is called into question by results presented here. 

 

1.2.6 DisEMBL 

 DisEMBL (Linding et al. 2003a) includes three different simple sequence-based 

neural network predictors: one for ‘coils’, one for ‘hot loops’, and one for X-ray 

crystallographic missing coordinates, as defined by REMARK 465 entries (informative lines, 

labeled as REMARK’s are found at the beginning of PDB files, and 465 is the code for a 

missing coordinate remark; however, files do not always provide REMARK 465 entries 

when there are missing coordinates.) 
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1.2.7 DISOPRED 

 DISOPRED was produced by Ward and Jones in an initial version (Jones and Ward 

2003) and in a second version (DISOPRED2) (Ward et al. 2004), which is available at 

http://bioinf.cs.ucl.ac.uk/disopred/. DISOPRED is neural-network based. DISOPRED bases 

its prediction on PSI-BLAST generated alignments. DISOPRED2 was trained using a 

support vector machine method to try to balance the influence of different cases on predictor 

training. (Perhaps this could have some detrimental effect on overall performance, depending 

at least partly on how it is measured.) 

 

1.2.8 IUPred 

 IUPred, so named as a predictor of ‘intrinsically unstructured proteins’, is based on 

the hypothesis that disorder is inversely related to the strength of local interactions 

(Dosztányi et al. 2005). IUPred bases its predictions on a matrix of statistically-derived 

‘interaction energies’ between different pairs of residue types. This paper describes the 

decomposition of this matrix into separate eigenvectors, the eigenvector with the largest 

eigenvalue being qualitatively associated with hydrophobicity. They show that the predictor 

is effective at predicting residues within ‘intrinsically unstructured proteins’ as being 

disordered. However, they do not show how the predictor performs in predicting disorder in 

locally disordered segments of otherwise structured domains. They also do not show whether 

the interaction matrix used is optimal for the purpose of predicting disorder. 
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1.2.9 RONN 

 Yet another option for disorder prediction is RONN (regional order neural network; 

Yang et al. 2005). RONN, version 3, is a predictor that uses ‘bio-basis function neural 

networks’. The essential idea of this predictor is that it compares sequence against disorder-

related ‘prototype sequences’, utilizing the BLOSUM62 matrix (Henikoff and Henikoff 

1992). Yang et al. (2005) show that RONN gives the best ‘probability excess measure’ 

among nine different disorder predictors. However, this probability excess measure is 

dependent on the prediction threshold, and does not necessarily reflect the overall 

performance of the predictor very well. In their Fig. 3, comparing performance of different 

predictors at binary classification of residues as ordered or disordered, DISOPRED2 and 

DisEMBL are conservative in prediction of disorder in that they show high specificity with 

moderate sensitivity. It is apparent from the plot that RONN’s better ‘probability excess’ 

measure may just be due to selection of a less conservative prediction threshold, which 

increases sensitivity, but also substantially decreases specificity. 

 

1.2.10 PreLink 

 PreLink (Coeytaux and Poupon 2005) predicts disordered/linker regions using a 

unique algorithm. It uses composition of a window of 21 residues surrounding a position. In 

cases that are less clearly determined by composition, it also may utilize rules involving 

‘cluster distance’—essentially the distance in residues from the nearest ‘hydrophobic 

cluster’. In identifying clusters, residues are reduced to three categories: hydrophobic 
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(‘VILFMYW’), proline, or other. PreLink was developed using a relatively large dataset 

based on PDB structures aligned to corresponding SwissProt sequences. 

 

1.2.11 DRIPPRED 

 DRIPPRED (MacCallum 2004) uses a ‘self organizing map’ that is trained so that 

fifteen-position PSI-BLAST-generated profile windows can be mapped to it. The prediction 

of disorder for a particular residue in the middle of such a window is related to information 

on the position to which it maps on the self organizing map—basically the degree to which 

profile windows from SCOP-based data vs. profile windows from UniProt-based data map to 

that position. In other words, the prediction relates to whether there is a relative absence of 

examples in proteins with experimentally determined structures of regions that are like the 

part of a protein surrounding a particular position whose disorder is being predicted. 

 

1.2.12 FoldIndex 

 FoldIndex (Prilusky et al. 2005) is a web-based tool that makes predictions based on 

the simple prediction scheme that Uversky et al. (Uversky et al. 2000) describe for predicting 

whether proteins are ‘natively unfolded’, in which prediction is based upon a protein’s 

‘hydrophobicity’ (actually, a measure based on the Kyte-Doolittle hydropathy scale) and net 

charge. Rather than making whole-protein predictions as in the original Uversky et al. paper, 

FoldIndex uses a non-weighted sliding window for making position-by-position predictions. 

Prilusky et al. claim in their abstract that FoldIndex has an “error rate comparable to that of 

more sophisticated fold prediction methods.” However, this should be considered in the light 
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of the statistics provided in their Table 1. On a test set of 39 ‘intrinsically unfolded’ and 151 

‘folded’ proteins, FoldIndex is shown to have a sensitivity of 77% and a specificity of 88%. 

DISOPRED2 is shown to have a sensitivity of 56%, but a specificity of 99%. Sensitivity and 

specificity are interdependent values, however. Had DISOPRED2’s prediction cutoff been 

adjusted to yield either a sensitivity or specificity like that of FoldIndex, it is likely that the 

other performance measure (specificity or sensitivity, respectively) would have been higher 

than the corresponding one for FoldIndex. (This provides an example of why it is good to 

show a ROC curve, rather than simply giving measures of performance at one cutoff.) 

 

1.2.13 Weathers et al. SVM predictors 

 Weathers et al. (Weathers et al. 2004) describe a set of support vector machine-based 

predictors of disorder, which make predictions for entire protein segments. These predictors 

use a variety of linear, compositional approaches. Different parameter sets used by the 

predictors include the twenty standard residue types, reduced residue alphabets of various 

sizes, and dimer or trimer permutations. Their paper demonstrates that using reduced 

alphabets leads to some loss of prediction accuracy, although the loss from using reduced 

alphabets is not generally remarkable in their view. They do not show a significant 

improvement using dimers (400 in all), but do show improvement using trimers (8000 in all). 

Their training data included approximately 718 disordered and 1190 ordered segments. 

Weathers et al. were able to graphically display meaningful parameters resulting from the 

SVM training, including disorder parameters for the twenty amino acids. 

 



12 

 

1.2.14 Predictor history conclusion 

 Predictors vary in their approaches to predicting disorder, and may also vary in the 

type of disorder they may most effectively predict. Different predictors may produce widely 

varying results. Important factors in the behavior of a predictor, besides the choice of 

algorithm, may include the choice of data upon which the predictors are trained/based and/or 

the choice of parameters for predictors which are not purely data-optimized. 

One primary problem with several predictors is that the amount/variety of data used for 

training may not be sufficient to yield very near-optimal performance. Some of the neural 

network predictors (which include PONDR predictors, DisEMBL, DISOPRED, RONN, and 

DRIPPRED), in particular, have several parameters and risk overfitting to certain cases when 

adequate variety and balance in data are not present. Another potential source of problems 

for some predictors is that residue types may be translated into values based on certain 

‘attribute’ scales that might not be sufficiently associated with disorder to yield near-optimal 

efficiency, e.g., GlobPlot and FoldIndex. Some predictors incorporate the use of simple 

sliding windows in smoothing, which may be significantly less effective than appropriate 

weighted window averaging or some other smoothing technique. 

 Some disorder predictors show efficacy using rationally selected sets of parameters 

(e.g., Kyte-Doolittle hydropathies) (Li et al. 1999; Uversky et al. 2000; Linding et al. 2003b; 

Dosztányi et al. 2005). Efficacy, however, does not equal optimality, and thus the possibility 

may remain that parameters may be found that are substantially better related to disorder. On 

the other hand, some neural network-based predictors have been developed using ‘machine 

learning’ to optimize predictors without using predetermined parameters (Jones and Ward 
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2003; Linding et al. 2003a; Ward et al. 2004), but understandably, resulting networks of 

parameters have not been well explained in physical terms (Lise and Jones 2005). (With such 

complex predictors, there may also be a possibility that substantially better parameters might 

be obtained, depending upon the process and the data used to ‘train’ them.) 

 

1.3 WHY FURTHER PREDICTORS 

 With so many disorder predictors available, it might be asked what developing further 

predictors could contribute. Many available predictors rely on parameters that are not directly 

obtained from disorder data. Some predictors have data-optimized parameters, but these 

predictors are typically neural network predictors and the optimized parameters are not 

readily interpretable in terms of physical mechanisms behind disorder (Lise and Jones 2005). 

It may not be known how special cases influence their predictions. Only one other set of 

disorder predictors (of which the author is aware) utilizes data-optimized parameters that can 

be readily interpreted—a set of SVM predictors of disorder reported by Weathers et al. 

(2004) However, their predictions are apparently for whole protein segments rather than 

individual residue positions. In the work described herein, simple, data-optimized predictors 

of disorder are developed to make predictions for individual residue positions. The resulting, 

optimized parameters provide additional scientific information not provided by parameters 

from other disorder predictors. 

 The approach of training relatively simple predictors on a large amount of data might 

be expected to be beneficial in a number of ways. It is more likely that such a predictor 

would achieve near-optimal performance than a predictor that used the same algorithm with a 
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rationally selected set of parameters. By approaching the maximum potential performance of 

the simple predictor through data-based optimization, it might then be determined whether 

the complexity of an algorithm such as a neural network is really contributing to the 

prediction or not. If a simple predictor’s performance is nearly as good as a complex one, the 

simple one might be better for use if coding or computational time is an issue. Furthermore, 

because the more complex predictor might be more prone to overfitting to certain types of 

cases, the simple predictor’s performance might be less prone to be based on excellent 

performance on special cases combined with sub-par performance on other, general cases. 

The parameters resulting from direct data-based optimization of a simple predictor might 

actually yield useful information on the subject of the prediction—disorder—rather than just 

creating another prediction tool. In a draft of my qualifying exam proposal related to this 

research, it was stated, “The proposed research involves using advanced parameter 

optimization procedures with different prediction algorithms to find improved predictors of 

disorder and to build a better understanding of the sequence patterns underlying disordered 

regions.” Predictors were developed by taking simple steps, with relatively simple prediction 

algorithms, with an idea that taking such a careful, rational approach might eventually yield 

superior predictors. This approach has yielded the production of predictors with performance 

similar to that of DISOPRED2, a support vector machine-based predictor with neural 

network architecture that utilizes profiles. The discovery of multiple patterns in disordered 

regions was deemphasized, but the data-optimized parameters are indeed informative, and 

have, in particular, reinforced understanding of a major pattern related to crystallographic 
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disorder (and other forms of disorder), with a strong relationship with experimental 

hydrophobicity. 

 



 

16 

CHAPTER TWO 
Methodology 

 
2.1 METHODS INTRODUCTION 

 Development of a predictor includes establishing an algorithm (prediction method), 

obtaining an effective set of parameters, and testing the predictor. Disorder predictors 

described here use a weighted window summation method to assign positional disorder 

scores, a higher score for a residue suggesting a greater likelihood that it is disordered. 

Predictions are based upon either a simple sequence or a profile derived from a PSI-BLAST 

generated alignment of sequences related to the query sequence (the sequence for which the 

prediction is being obtained). Due to the tendency for chain termini to be disordered, 

calculation of disorder scores for residues near the ends of sequences optionally includes the 

addition of ‘tail adjustments’ that increase the disorder scores for these residues. 

Predictors’ parameters (such as window weights and disorder values for different residue 

types) are optimized using X-ray crystallographic data. Data includes domains from five 

major SCOP classes of globular domains, representing nearly 2000 SCOP families. To aid in 

assessing the quality of results, a five-way cross validation scheme is used in developing and 

testing the predictors. Different computational tools have been developed that have facilitated 

the development and analysisof different predictors. 
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2.2 PREDICTOR DETAILS 

 Predictors use a simple, sliding window-based algorithm. An initial value is assigned 

to each position in a sequence. A weighted window sum of initial disorder values is used to 

calculate a disorder score for a residue position: 

 

∑
−=

+=
t

tj
jiji swS  [2.2-1] 

 

where Si is the score at position i; wj is the window weight at window position j, which 

ranges from –t to t, where t is the tail length of the window; and si+j is the initial disorder 

value at position i+j. For the simple sequence predictors, this value is assigned according to 

the residue type: 

 

ris σ=  [2.2-2] 
 

where si is the starting value at position i and σr is the disorder propensity parameter for 

residue type, r. For profile-based predictors, this starting value is determined using a 

weighted sum of the disorder values for the different residue types, weighted according to the 

profile at that position (see below for more on profiles): 

 

r
r

ri vs σ∑=  [2.2-3] 

 

where vr is the position profile’s weight for the residue type r. 
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Because windows ‘hang off’ the end of the sequence for some positions near sequence ends, 

‘ghost’ residues may be placed on either end of the sequence, having initial disorder values 

of 0. Due to how disorder parameters are normalized, this essentially represents the typical, 

ordered residue. If the sequence represents a full polypeptide chain rather than some internal 

fragment thereof, the termini, which are less constrained due to lack of backbone 

continuation, are generally more likely to be disordered—in this case, the addition of tail 

adjustments improves predictions. If tail adjustments are included, a positive value is added 

to the scores of residues near the termini, based on the residues’ positions in relation to the 

amino- or carboxy-terminus. In the amino-terminal case, 

iN

t
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and in the carboxy-terminal case, 

1, −−
−=
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t

tj
jiji swS τ  [2.2-5] 

where τN,k or τC,k is the tail adjustment parameter, for the amino- or carboxy-termini, 

respectively, at distance, k, from terminal residue. 

 In summary, the predictors described in this work use weighted sliding windows and 

base their scoring on either the query sequence alone or a PSI-BLAST generated profile. The 

standard sliding window length is 35. Tail adjustments, if included, are added to each of the 

30 positions at either end of the sequence. Adjustable parameters include disorder values 

based on residue type, window position weights, and N- and C-terminal tail adjustment 

values. 
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2.3 CROSS VALIDATION 

 Cross validation allows predictors to be trained and tested on independent data, while 

still (in this work) taking all data into account in generating final predictor parameters. Cross 

validation provides a sense of data-dependent variance of optimized parameters and test 

performance measures, as well as a means of judging whether substantial overfitting is 

occurring. The data are separated into five different groups. For each predictor, five 

optimizations are performed, each time excluding one of five data subsets from the ‘training’ 

data, resulting in five different parameter sets (see Fig. 2.3-1). Parameter sets may be 

normalized and adjusted. The performance of each parameter set is tested on the data subset 

not used in its optimization. Five parameter sets from individual optimization runs are 

averaged to give a final parameter set for the predictor. Results from five individual tests may 

also be averaged to give summary test results for the predictor. Tests of ‘outside’ predictors 

and statistics may also be obtained on the five individual test sets and then averaged. 

 

2.4 DATASET 

 Both quality and variety of data used for training and testing predictors are important 

factors that have been taken into account in development and testing of predictors described 

here. Predictors were optimized on X-ray crystallographic data from the Protein Data Bank 

(PDB) (Berman et al. 2000) to discriminate between ‘missing’ and ‘non-missing’ residues. A 

‘missing’ residue’s C-α carbon is either missing coordinates or is assigned an occupancy of 0 

(see below on ‘counted’ residues). Structures dated before 2000 or with a resolution ‘worse’ 
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than 3.0 angstroms are not in the dataset. Data include 1912 families from the first five 

classes (alpha and/or beta domain) of SCOP (Murzin et al. 1995), version 1.67, thus 

excluding potentially problematic domains, including membrane-spanning domains, ‘small 

proteins’, and coiled-coil domains. If a protein chain contained any SCOP domains, regions 

of the chain not assigned to any domains were assigned to a nearest domain. Multi-chain 

domains were not included in the data set. To enhance variety, rather than selecting a single 

representative from each family, any proteins that were not excluded for some reason were 

kept in the dataset. 

 Some structures were excluded due to PDB file-related issues. For example, gaps 

were found by aligning the sequence given in SEQRES lines with the sequence of residues 

found in a chain’s coordinates; if a mismatch occurred between the sequence found in the 

SEQRES entries and the sequence found in the coordinates, then the structure was not used. 

Non-standard residues included selenomethionine and all other non-standard residue types. 

These were uncommon, in general, and selenomethionine was more frequent than all other 

nonstandard types combined. Selenomethionine and other nonstandard residue types were 

considered two distinct residue types in terms of disorder predictors. Any positions with 

nonstandard residue types except for selenomethionine were not counted in performance 

analyses but were counted in calculating log odds ratios (equation 2.6-1). 

 Profiles were generated on alignments extracted from results of PSI-BLAST searches 

on chain sequences, with the PSI-BLAST option of showing alignments for up to 1000 

database sequences in the output file. This large number of sequences in the output 

apparently triggered memory problems for some queries, for which profiles were not 
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therefore obtained. Thus, the size of the dataset for profiles was reduced; see Table 2.4-1. Up 

to three PSI-BLAST passes were performed, and the e-value cutoffs for generating profiles 

for subsequent iterations and for displaying resulting aligned sequences were both 0.001. 

DISOPRED2 and PSIPRED results were obtained. A sequence identity limit of 97% was 

used in generating alignments from PSI-BLAST output (i.e., if multiple sequences were more 

similar than the threshold allowed, only one was used). Code for a version of COMPASS 

(Sadreyev and Grishin 2003) was modified to generate profiles. Use of position-specific 

independent counts reduced overrepresentation of closely related sequences (Sunyaev et al. 

1999). Pseudocounts (Tatusov et al. 1994) were generated using the BLOSUM62 (Henikoff 

and Henikoff 1992) matrix. Profiles were normalized at each alignment position to yield 

fractional weights with a sum of 1. 

 The full dataset (‘simple’) was used to train simple-sequence based predictors. The 

subset of the data for which profiles were successfully generated (‘profile’) was used to train 

profile predictors and make comparisons of performance shown here. Table 2.4-1 provides 

summary statistics for residues included in analyses of performance, and Table 2.4-2 

provides such statistics for individual cross validation data subsets. To my knowledge, this 

dataset represents more data than that used in developing and testing any previously 

published predictor of disorder. 

 To prevent spurious parameter results or overlap between training and testing sets, 

certain residues were included in sequences when making predictions, but were excluded in 

various training and testing situations from analyses of performance (including ROC score 

calculations).  Residues belonging to stretches of missing residues less than four residues 



22 

 

long were excluded. SCOP domains were expanded to include unassigned regions of chains, 

but nine residues on either side of a domain division were excluded from performance 

analysis, to prevent training/testing data overlap. Exclusion of terminal residues from ROC 

score calculations during training of certain predictors removed bias for methionine and for 

histidine (due to polyhistidine tags), and based window and residue disorder parameters 

primarily upon internal disordered stretches. When training or testing included all terminal 

residues, thirty residues were excluded on sequence ends containing polyhistidine tags, due 

to observed influence on tail adjustment values of residues internal in sequence to 

polyhistidine tags (see section 4.4). 

 

Table 2.4-1. Dataset statistics. The simple dataset was used to train the simple sequence-
based predictors. The profile dataset was used to train the profile-based predictors. See text 
for descriptions of how residues are counted as missing or non-missing. (*) When zero 
residues are excluded at the termini, sequence ends with detected polyhistidine stretches are 
excluded, at least the first thirty residues from the end, consistent with training and testing. 
 

Dataset 
No. of 
SCOP 
families 

No. of 
domains 

No. of 
terminal 
residues 
excluded

No. of 
missing 
residues

No. of 
non-missing 

residues 

0* 183902 5563922 
18 85490 4957018 Simple 1912 28128 
30 66460 4473062 
0* 157195 4496369 
18 71792 3958638 Profile 1773 23386 
30 55243 3531262 
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Table 2.4-2. Statistics on cross validation subsets. The sequence dataset was used for training 
the simple sequence-based predictors. The profile dataset was used in training the profile-
based predictors and in testing/comparison of various predictors. (Refer to main Table 2.4-1 
caption regarding residue statistics). 
 

Dataset 

No. of 
terminal 
residues 
excluded 

Test 
set 
no. 

No. 
SCOP 

families 

No. of 
domains 

No. of 
missing 
residues

No. of 
non-

missing 
residues 

1 382 5629 35306 1067876 
2 382 6034 38590 1069879 
3 382 5191 37320 1075863 
4 383 5709 39818 1152927 

0* 

5 383 5565 32868 1197377 
1   15625 955137 
2   17089 936184 
3   18136 960262 
4   19492 1025865 

18 

5   15148 1079570 
1   12105 863519 
2   13368 829356 
3   13768 869406 
4   15472 924087 

Sequence 

30 

5   11747 986694 
1 359 4645 31248 856247 
2 354 5129 34961 908560 
3 357 4275 30491 851557 
4 347 4615 32485 881081 

0* 

5 356 4722 28010 998924 
1   13648 753994 
2   14991 786695 
3   14946 749576 
4   15652 774341 

18 

5   12555 894032 
1   10471 670977 
2   11498 689772 
3   11435 670049 
4   12312 689077 

Profile 

30 

5   9527 811387 
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 When making comparisons of one’s own predictor with others, one is generally 

‘playing on home field’. One of the ‘home’ advantages is that the training and testing data 

were obtained in the same fashion. Also, the ROC score (which appears to be a good 

evaluation of performance for optimization, given success in obtaining parameters) is directly 

related to sensitivity/specificity curves. On the other hand, a favorable aspect of testing in 

this work is that the testing data as a whole comprise a large part of the PDB. DISOPRED2 

also has an advantage in that no efforts were made to exclude examples used in its training or 

similar to those used in its training, from testing. Thus, actual differences in potential 

performance between simple predictors such as ours and neural network predictors might 

better be quantified if developed with consistent training. Although the window size selected 

for standard predictors (35) is longer than that of DISOPRED, it is not expected that this 

difference has a significant effect on overall performance (note in Fig. 3.2-4b that the 

window weights at the three positions on either end are relatively small). 

 
2.4.1 Test set 3 

 In several instances it has been observed that test set 3 seems to be an outlier in terms 

of its behavior. This appears to be related to the presence in test set 3 of a group derived from 

one particular SCOP family, ‘RNA-polymerase beta-prime’ (ID = 64490), which contains 

four representatives in the ‘simple’ dataset : PDB entry 1I50, chain A; PDB entry 1IW7, 

chains D and N; and PDB entry 1K83, chain A. Each of these contains missing regions of 

substantial size. Two of the chains, PDB 1I50, chain A, and PDB 1K83, chain A, contain 

large stretches of sequence that imperfectly repeat the sequence, ‘PSTPSYS’ (only these two 

representatives of the family are present in the ‘profile’ dataset). 
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2.5 PREDICTOR OPTIMIZATION 

2.5.1 Overview 

 A simulated annealing variant optimization scheme, depicted in Fig. 2.5-1, was used 

to obtain predictor parameters. Predictor performance was measured using a receiver 

operating characteristic score (Gribskov and Robinson 1996), calculated by: 

nA

a
ROC

n

i
i

n

∑
== 1  [2.5-1] 

where ai is the number of true positives that sort by score above the ith false positive; A is the 

total number of true positives; and n is the limiting number of false positives. Instead of 

using a fixed value for n, n was calculated as the greatest integer less than or equal to a 

certain fraction of the number of false positives in the data subset, the fraction typically being 

0.5 (this is denoted as a ‘ROC0.5’ score). Throughout training runs, different random subsets 

of the entire training dataset were used. In a five-way cross validation, the data were divided 

evenly by SCOP family into five sets for the cross-validation. For the sake of balance, each 

SCOP family was represented with approximately equal frequency, except for families with 

less than five sequences. 

2.5.2 Details 

 Parameter optimizations were performed using a simulated annealing variant 

algorithm, diagrammed in Fig. 2.5-1. In optimizations, 700 annealing temperature steps were 

typically performed. A typical annealing step consisted of 250 cycles, each cycle involving a 

newly selected subset of the data. A subset of data was obtained by selecting approximately 

one half of SCOP families from a training data set, and from these families generally 
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selecting a sequence at random, except for families containing less than five examples, for 

which selections were less frequent. A cycle would run until two perturbations had been 

successfully retained or twenty had been tried, whichever came first. Analysis of 

performance was based on the ROC score for the performance of the predictor with a given 

set of parameters on the cycle’s given data subset, calculated over all ‘counted’ residues in 

the data subset, based on each residue’s score and status as ‘gap’ or ‘nongap’. Perturbations 

for each mutable parameter were generated according to the ‘very fast annealing’ (VFA) 

distribution, generated by the function: 
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[presumably this may be attributed to Ingber (1989), cited by Cai and Shao (2002)] 

where f is the fractional value (-1 ≤ r < 1; ideally, the range would include the value 1, but 

the exclusion of this single value in the set of random numbers is presumed to have had 

minimal impact due to the large number of discrete random numbers possible in the random 

number function used—function MyMath::real_rand() found in my header my_math.hpp) by 

which the maximum perturbation increment is multiplied to obtain a perturbation; r is a 

random number between 0 and 1; and T is the perturbation ‘temperature’ (which is on a 

different scale than the temperature used for the Metropolis decision—see Fig. 2.5-1). A set 

of C++ classes was developed for flexible optimization of parameters, with XML-style 

input/output formatting. This allowed individual parameters to be optionally fixed, bounded, 

perturbed along a logarithmic scale, and/or normalized within a certain group of parameters 
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(normalization enabling comparison across various optimizations). Details of optimizations 

and code also may be publicly available at http://prodata.swmed.edu. 
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Read full dataset

Last temp step? No

Last cycle?No

Yes

Cycle done?

Yes

Get starting parameters

Keep new parametersKeep old parameters

Retrieve new data subset

No

Decrease 
temperatures 

(Smaller 
perturbations, more 

stringent MC 
decisions)

Yes

No Yes

Cycle complete when 2 
perturbed parameter sets 
accepted or 20 perturbed 

parameter sets tested.

MC = Metropolis criterion 
(basically):

if ΔE <= 0 accept
else if ‘random’ # <

exp(-ΔE/T) accept
else reject
In this case, 
ΔE = –ΔROC 0.5 score

For long window 
predictor optimization, 

cycles/temp. step = 250.

# Temp. steps = 700, 
with temperature halving 

every 50 steps.

Perturbations generated by:

f = sgn(r – 0.5) T [(1 + 1/T)|2r – 1| - 1]
sgn = sign of (+/-); r = ‘random’ #
f = fraction of maximum perturbation

Perturb parameters

MC satisfied?

 

Figure 2.5-1. Optimization scheme. The Metropolis criterion (Metropolis et al. 1953) 
basically indicates how decisions were made to accept or reject perturbed values. 
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 Although the Metropolis criterion (Metropolis et al. 1953) (see Fig. 2.5-1) was 

basically used in deciding whether to reject or retain parameters (with a coarse random 

function, rand()), it is likely that simply retaining parameter sets that performed better than or 

equal to previous parameter sets would have worked just as well, with the simple, linear 

nature of the predictors; the use of VFA perturbations; and the rotation of data sets. 

For the simple and profile basic window predictors, the residue type and window position 

weight parameters were optimized in a five-way cross validation (see Table 2.4 2 for 

statistics on subsets), using each combination of four out of five test sets for training. In 

optimizing these parameters, the performance on 18 terminal residues on each end (in the 

case of a polyhistidine tag—detected as at least four histidines in a row near a sequence 

end—the terminus up through the polyhistidine stretch and then 18 residues further in) was 

excluded from analysis of performance. These values were then normalized to yield (on 

respective training sets) score distributions with mean value of 0 and standard deviation of 1. 

Values for the general nonstandard residue type were optimized with other residue types, but 

when normalization was performed, this parameter was assigned a value of 0. The ‘ghost 

extension’ and N terminal methionine (for the predictor without tail adjustments) residue 

types were also given the value of 0. In optimizing tail adjustments for the simple and profile 

predictors, the final, normalized parameters from the basic predictor optimizations were held 

fixed while tail adjustment values were optimized. The special disorder value for N terminal 

methionine was optimized for the simple sequence predictor along with its tail adjustments. 

Terminal (sequence end) residues were not excluded by default, but thirty residues at a 

sequence end were automatically excluded if a polyhistidine stretch was detected at the 
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sequence end. For the final predictors, parameters from different cross validation training 

runs have been averaged together. 

 

2.6 TESTING/STATISTICAL ANALYSIS 

 In testing predictors (e.g., generating ROC curves) and in other statistical analyses 

(e.g., calculating disorder vs. order log odds ratios for each residue type), standard datasets 

were used to provide consistency. These datasets were balanced in a manner similar to the 

way data were balanced during optimization. Generally, for each family in a particular 

training or testing set, 100 representatives were chosen from among available members of the 

family unless the family contained less than five available members, in which case, the 

number of representatives chosen is roughly equal to n / 5 * 100, where n is the number of 

available members in the family. Of course, with this scheme a particular member of a family 

could be represented more than once. Average ROC curves are generated by averaging 

corresponding points from five separate ROC curves generated on five different testing data 

subsets. 

2.6.1 Log odds ratios 

 Disorder vs. order log odds ratios may be calculated as follows: 
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where the log odds ratio is calculated for residue type, i. P(i|miss) denotes the probability of 

the occurrence of residue, i, given that residue is in the missing state. P(i|pres) can be read 

the same way, where pres refers to the present, or non-missing, residue state. 

In calculating log odds ratios for residues based on sequences, probabilities were calculated 

from discrete values obtained from counts of occurrences of different residue types among 

‘missing’ vs. ‘non-missing’ residues. In the cases of profiles, ‘log odds ratios’ were 

calculated in essentially the same way as for simple sequences—instead of using discrete 

counts, however, the frequency of a residue type in the set of ‘missing’ or ‘non-missing’ 

positions was obtained from summing fractional weights for the particular residue type over 

all counted residues within that category (‘missing’ or ‘non-missing’ residues). 

 Penultimate residue statistics were obtained to obtain evidence that methionine is 

sometimes entirely missing from the chains, with methionine aminopeptidases being 

selective according to the type of the residue adjacent to the methionine (the penultimate 

residue). Statistics were calculated using only sequences for which the first residue in the 

sequence was methionine and for which the adjacent (penultimate) residue was ordered. Log 

odds ratios were calculated for N terminal methionines that were missing vs. present in these 

cases. 

2.6.2 Paired t-test 

 To assign some statistical measure to differences in performance between predictors, 

the two-tailed, pairwise t test was used. There is evidence that there would be marked skew 

in distributions of differences between performance for predictors, especially considering 

multiple instances in which ROC score differences for test set 3 (see section 2.4.1) often are 



32 

 

substantially different from ROC score differences for test sets 1, 2, 4, 5, which are all closer 

to each other (see, for example, Fig’s 3.2 2, 5.1 3). Because of this, t test-derived 

probabilities might be expected to underestimate the significance of differences between 

predictors. (Thus, if the t test probability is less than 0.05, there should not be a problem with 

concluding that a particular difference is significant.) 

2.7 SUMMARIES OF OPTIMIZATION RUNS 

 Several optimization runs have been run, with a variety of prediction algorithms. 

Optimization runs were assigned ‘run base names’ that serve as identifiers, and predictors 

may be identified by the optimization run (set) from which the predictor’s parameters were 

derived. The names typically indicate the general algorithm being used (e.g., sw35_? stands 

for simple window, length 35) and then have a number associated (e.g., sw35_1, sw35_2, ...) 

for different optimizations of parameters for the same algorithm. Examples of differences in 

optimization include differences in the general dataset being used, differences in the 

‘annealing’ details (e.g., how many cycles per temperature step), or differences in the which 

residues were excluded from the measures of predictor performance (e.g., how many 

residues, if any, at domain boundaries were excluded). Table 2.7 1 gives information on 

different runs. Code for various optimizations is provided in appendix. The ‘standard 

predictors’ include sw35_8 (simple sequence), sw35_st30_8 (simple sequence with tails), 

p2w35_4 (profile), p2w35_st30_6 (profile with tails). 
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Table 2.7-1. Information on optimization runs. 

Run base 
name 

Sequence 
or Profile 

Tail 
Adjustments

Window 
length 

Optimization 
performance 

measure 

Cycles 
per 

temp. 
step 

Term. 
resd's 
excl. 

Parameter 
starting 
temp’s 

sw35_7 Sequence  35 ROC 0.05 250 18 0.4 
sw35_8 Sequence  35 ROC 0.5 250 18 0.4 
p2w35_4 Profile  35 ROC 0.5 250 18 0.4 
sw35_st30_8 Sequence Tails (30) 35 ROC 0.5 250 0 0.4 
p2w35_st30_6 Profile Tails (30) 35 ROC 0.5 250 0 0.4 
sw9_1 Sequence  9 ROC 0.5 150 18 0.4 
sw9_2 Sequence  9 ROC 1.0 150 18 0.4 

 
 

2.8 COMPUTATIONAL METHODS 

 The work described required significant coding time and CPU time. A variety of 

techniques/tools/strategies were implemented. A few significant developments are here 

described that might be regarded as novel and may have contributed significantly in 

accomplishing work efficiently. A set of classes was developed that allowed facile control of 

parameters in optimization. Software architecture was designed to allow interchangeability of 

software components. 

 

2.8.1 Parameter organization classes 

 As in other work (Wehrens and Buydens 1998), our optimization scheme took 

advantage of a biological analogy. Names of classes used in storing parameters reflected 

genetic organization (see Fig. 2.8 1). A genome is an entire parameter set. An element 

describes an individual parameter with its associated attributes/settings. Chromosomes and 

genes provide two levels of subgrouping. This way of organizing parameters provides 

multiple convenient features. It allows logical grouping of parameters. This is convenient 
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both in terms of conceptualizing and working with parameters directly from a human 

standpoint. It also facilitates a modular approach to programming, in which each component 

of a predictor may, in turn, read in externally controlled parameters that it uses, if any. For 

example, in a weighted window-based predictor that also uses tail adjustments, the predictor 

could utilize a chromosome containing four genes—one that contains residue disorder value 

parameters; one that contains window position weights; one that contains amino-terminal tail 

adjustment values and one that contains carboxy-terminal tail adjustment values. If such a 

predictor actually used two sub-predictors, with two different parameter sets organized in the 

same fashion, depending upon conditions, the identically-organized parameter sets for each 

sub-predictor could be placed into two chromosomes. The genes also allow the potential use 

of parameters with different types of values, including Boolean, discrete, and ‘continuous’ 

values. All of the parameters within a gene must be of the same basic value type, but 

different genes in a chromosome may contain sets of parameters with different base data 

types, from one gene to another. Furthermore, a gene may be specialized to allow 

interactions between parameters. In practice, some genes were set to normalize their 

parameter sets—for example, genes containing window position weights were often set so 

that their parameters would be normalized to yield an average parameter value of 0.5. 
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Figure 2.8-1. Organization of parameter classes. 
 

 A further feature of this system of organizing parameters is that it provides XML-

style input and output. With the ability to organize parameters and set individual parameter 

attribute values and to describe organization and settings in an XML format, direct human 

manipulation of parameters was facilitated in some ways. 

2.8.2 Software engineering 

 In the process of predictor optimization and testing, it was recognized that good 

organization of code could contribute to more efficient development. A modular approach in 

engineering software facilitated modification of code and implementation of different related 

tasks. A software component could be reused a number of times in combination with various 

other components. Tasks included optimizing, analyzing, and implementing predictors. 

 Some general component types are clients (which organize and use other 

components), datasets, predictors, and analyzers. The fundamental data type is the residue 

record, which varies based on the needs of the tasks at hand. Data are organized in sequences 

and are loaded and stored in a ‘central’ location that basically remains fixed. Various 

operations may be performed in succession on the data, often passing pointers to the 
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applicable sequences, rather than copying the data from one memory location to another. 

Different fields of the basic residue data structure that are required are detected automatically 

at compile-time using a template meta-programming technique, so that the basic residue 

record structure of the central data contains all the necessary components for various 

processing/analysis steps. By thus using templates, different sets of components may be 

integrated without reprogramming for different data structures that may be required for 

different combinations of components. This facilitates the introduction of new/modified 

components, such as new types of predictors and new types of analyzers of predictions. 
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Figure 2.8-2. Software architectures. a) Generic organization of different components. b) 
Instance of optimization. c) Instance of analysis, in which sensitivity/specificity curves are 
generated (which may be transformed into ROC curves). d) In a prediction program. 
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CHAPTER THREE 
Predictor parameter and performance results

 
 

3.1 INTRODUCTION 

 We developed linear predictors of crystallographic disorder that use a weighted 

sliding window-based, compositional prediction strategy. Predictions are based upon either 

the query sequences alone or profiles derived from PSI-BLAST (Altschul et al. 1997)-

generated alignments. An option is available to enhance scoring of disorder-prone amino- 

and carboxy-terminal regions (Li et al. 1999) by adding simple values to disorder scores of 

terminal residues, based on their positions at the termini (‘tail adjustments’). From a 

bioinformatics standpoint, it is shown below that these predictors are effective. From a 

structural science standpoint, the simple, linear algorithms allow informative interpretation of 

optimized parameters. The simple sequence predictor’s data-optimized residue disorder 

values are largely reducible to a single physical property, hydrophobicity, providing evidence 

that crystallographic disorder is closely linked to a side chain’s tendency to interact with 

aqueous surroundings as opposed to retaining hydrophobic interactions. 

 

3.2 RESULTS 

3.2.1 Predictor performance 

 Comparing the performance of predictors may assist in determining how well various 

algorithms and their parameters model disorder. Figure 3.2-1 compares performance of 

standard predictors (see section 2.7)—including simple sequence and profile-based 

predictors, with and without tail adjustments—among themselves and with DISOPRED2 
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(Ward et al. 2004). DISOPRED2 is a support vector machine/neural network-based predictor 

of disorder that uses PSI-BLAST-generated sequence alignment profiles in its prediction. As 

shown with DISOPRED (Jones and Ward 2003; Ward et al. 2004), using profiles enhances 

overall prediction performance for weighted window-based predictors, but this improvement 

should be considered in the context of performance results as described here. 
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Figure 3.2-1. Test performance comparison for standard predictors and DISOPRED2 (Ward 
et al. 2004). a) ‘Average’ ROC curves excluding 30 terminal residues in performance 
analysis. b) Average ROC curves including terminal residues. c) Same as b, with change in 
scale. See Methods (Chapter 2) for details on average ROC curves and terminal residue 
exclusion. 



41 

 

 Disorder in polypeptide chain terminal regions makes up more than half of the 

disorder in datasets (Table 2.4 1). For non-terminal protein regions, the simple sequence-

based predictor performance is similar to that of the profile-based predictor and DISOPRED2 

(Fig. 3.2-1a). The profile predictor shows modest improvement in performance over the 

simple sequence predictor primarily in the lower specificity range of the ROC curve—i.e., 

for lower-scoring residues. Figure 3.2-1b shows performance measures with termini 

included. Performance differences between DISOPRED2, the profile predictor, and the 

simple predictor primarily occur at the sequence termini (compare Figs. 3.2-1b and 3.2-1a). 

Including terminal regions in measures of performance yields substantial performance 

improvement in DISOPRED2, some improvement in the profile predictor (without tail 

adjustments), and the least improvement in the simple sequence predictor (without tail 

adjustments). Adding tail adjustments to the simple sequence and profile predictors 

substantially narrows the performance gap between the simple sequence and profile 

predictors and DISOPRED2.  Although the predictors with tail adjustments show, on 

average, performance similar to that of DISOPRED2, comparing performance on individual 

cross validation data subsets (see Table 2.4 2), reveals substantial difference in behavior (Fig. 

3.2 2; see section 2.4.1 for discussion of test set 3). 
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Figure 3.2-2. Differences between performance of profile with tail adjustments predictor and 
DISOPRED2 on individual testing data subsets. ROC scores at different cutoffs obtained by 
subtracting DISOPRED2’s ROC score from the profile with tail adjustments predictor’s 
ROC score. 
 

 A single prediction by a profile-based predictor may take minutes due to the time 

required for PSI-BLAST to generate sequence alignments, while the simple sequence-based 

predictor may take less than a second. The quality of profiles may vary widely from case to 

case, and neural networks introduce the increased possibility of unknown sources of bias in 

predictions. Because the profile predictor with tail adjustments and DISOPRED2 do not 

perform substantially better than the simple sequence predictor with tail adjustments, using 

the simple sequence-based predictors may be advantageous in certain instances, such as 

comparing proteins that have similar sequences, utilizing such a prediction as a step in 

another bioinformatic method, or other instances in which speed is an important factor or 

there is a good reason to avoid bias toward special cases. It is acknowledged that other 

predictors are now available that may perform significantly better than DISOPRED2 (Peng et 

al. 2006), and our predictor has not been compared directly with these predictors. 
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3.2.2 Optimized parameters 

 Due to the transparency of the predictor algorithms, the data-optimized parameters 

yield insight into what is contributing to prediction—including whether unwanted bias is 

present (see section 4.4 regarding polyhistidine tag treatment)—and provide scientific insight 

on disorder. These parameters include residue disorder values, window weights, and tail 

adjustment values. Optimized parameters generally agree well between cross-validated 

parameter sets (Fig. 3.2 3), and, because of their consistency, they may be averaged to give 

final parameters (Fig. 3.2 4, see Appendix A for tables of parameter values, particularly 

Table A-1 for final parameter values for the standard predictors). 
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Figure 3.2-3. Optimized parameters from individual cross-validation runs. Numbers in 
individual panel legends indicate cross-validation run number. a) Normalized optimized 
residue parameters, simple sequence predictor (nonstandard/unknown residue type also 
optimized but then set to 0 at normalization, before testing—not included; ghost extension 
residue type also set to 0, not included). Striped bars for nM (N-terminal methionine) 
represent that these values are obtained for the simple sequence predictor with tail 
adjustments—this value is 0 for the simple sequence predictor without tail adjustments. b) 
Profile predictor residue disorder values. c) Simple sequence predictor window weights. d) 
Profile predictor window weights. e) Simple predictor N- and C-terminal tail adjustment 
values. f) Profile predictor N- and C-terminal tail adjustment values. 
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Figure 3.2-4. Final predictor parameters. a) Disorder parameters for standard residues, after 
optimization, normalization, and averaging. (Special residue types not shown; see also Table 
2.2-1.) b) Average optimized window position weights. c) Average optimized N- and C-
terminal tail adjustments. 
 



46 

 

 Disorder score distributions, particularly for ordered residues, are approximately 

normal, with higher scores indicating greater disorder tendency. Residue disorder parameters 

for the profile and sequence predictors were normalized to yield final score distributions for 

ordered residues that approximate the standard normal distribution (see Fig. 3.2-5). Thus, 

scores represent an approximate Z-score, the number of standard deviations from the average 

ordered residue. 
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Figure 3.2-5. Simple predictor score distributions for missing (‘disordered’) and non-missing 
(‘ordered’) residues. Residues within 18 positions from the termini were excluded in this 
analysis (see Methods). Score bin values are bin centers, with score bin widths of 0.2. a) 
Scale allows full view of ‘non-missing’ (basically, ordered) residue distribution of scores. 
Relative frequency of missing vs. non-missing residues can be seen (solid blue and pink 
lines). b) Scale allows clear view of distribution of ‘missing’ residues. 
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Table 3.2-1. Standard disorder values (average normalized optimized disorder parameters for 
simple sequence predictor) for common residue types and selenomethionine. (See also Fig. 
3.2-4). 

Residue 
type 

Optimized 
disorder 

value 
W -1.00739 
C -0.540732 
F -0.540414 
I -0.514274 
Y -0.513589 
L -0.418184 

sM -0.373603 
V -0.358167 
M -0.216377 
T 0.0333232 
A 0.0642762 
R 0.176914 
H 0.18568 
N 0.221683 
G 0.241088 
K 0.300523 
D 0.313504 
P 0.32731 
Q 0.336406 
E 0.33729 
S 0.400289 
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 ‘Optimized disorder values’, ‘disorder parameters’, or similar phrases refer to 

averaged normalized optimized residue disorder parameters for the standard simple sequence 

predictor (sw35_8) unless otherwise specified. Table 3.2-1 displays these disorder 

propensities. Residue disorder parameters for the sequence and profile based predictors’ 

follow different patterns (Fig. 3.2 4a, Fig. 3.2 6), but for both the profile and simple sequence 

predictors, tryptophan is clearly the most order-associated residue type and serine is the most 

disorder-associated residue type. The simple sequence optimized disorder values are well 

correlated with their statistical disorder propensities (log odds ratios; see equation 2.6-1) for 

the simple sequence predictor, but not the profile predictor (Fig. 3.2-7), showing that optimal 

prediction parameters may or may not show a close correlation with values obtained through 

a more conventional statistical approach, and giving evidence that a linear algorithm is more 

appropriate for a simple sequence-based predictor than a profile-based predictor, which takes 

more advantage of special clues. Threonine and alanine, with disorder values close to 0, have 

approximately average ordering propensity. 

 Other groups have found sets of disorder propensities similar to our optimized 

disorder propensities, including sets of disorder propensities independently derived from X-

ray crystallographic, NMR, and CD data by Williams et al. (Williams et al. 2001), and 

especially propensities obtained for a support vector machine-based predictor of disorder 

(Weathers et al. 2004). The missing coordinates propensities shown by Linding et al. 

(Linding et al. 2003a) also demonstrate some similarity to ours. The values shown by Peng et 

al. (Peng et al. 2005), fig. 2, show substantial differences from our optimized disorder 

propensities, but this appears to be because their values are calculated as differences in the 
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absolute fraction of residues found in disordered vs. ordered data sets (e.g., tryptophan has a 

smaller negative value because the overall number of tryptophans is smaller than other 

residue types, making the fractions of tryptophan among disordered and ordered residues 

smaller). 
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Figure 3.2-6. Optimized disorder values for profile predictor vs. simple sequence predictor. 
(Open diamonds represent C, P, and ionic residues). 
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Figure 3.2-7. Correlation plots of optimized disorder propensities and log odds ratios. a) Log 
odds ratios vs. simple sequence predictor optimized values. b) Profile ‘log odds ratios’ vs. 
profile optimized values. (Open diamonds represent C, P, and ionic residues). 
 

 Profile and simple sequence predictors optimized window weights are similar (Fig. 

3.2-4b). Both sets of window weights show a small skew, with weights in the C-terminal 

direction (positive positions) greater than their N-terminal counterparts (negative positions). 

 Amino- and carboxy-termini show similar propensities for becoming disordered (Fig. 

3.2-4c), implying that N- and C-termini have similar physical propensities for disorder due to 

decreased constraint, exclusive of the effects of sequence on disorder in these regions. Tail 

adjustments for the profile and simple sequence predictors are consistent in magnitude close 

to the termini, suggesting that the residue composition-based scores for the profile and simple 

sequence predictors are equivalent (recall that the residue disorder propensities were 

normalized to produce Z-score-like disorder scores prior to the optimization of tail 

adjustment values). The profile predictor shows a consistent relative drop in both the amino 

and the carboxy-terminal adjustment values, with respect to those of the simple predictor. 
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(One possible explanation for this is that there is some variation in the composition of 

alignments in both amino- and carboxy-terminal positions that enhances prediction of 

disorder in these regions.) 

 The relatively high value for methionine in the profile disorder parameters is 

presumably due to N-terminal methionines in aligned sequences. The high special disorder 

value for N-terminal methionine (see Table A-1; Fig. 3.2 3) provides evidence that 

disordered termini are often erroneously excluded from chain sequences in PDB files (see 

section 5.3.5). Tail adjustments thus may underestimate actual propensities for terminal 

positions to be disordered. 

3.2.3 Correlation of disorder and hydrophobicity 

 The most notable information from optimized parameters comes from optimized 

disorder values. Optimized disorder values (see Table 3.2-1) for the standard side chains 

were compared against various residue scales that reflect different 

physical/experimental/statistical properties of residues. 

 Secondary structure is sometimes divided into three categories: helix, strand, or coil. 

Optimized disorder values and various coil propensity scales are not well correlated (see, for 

example, Fig. 3.2-8a), confirming the finding of Linding et al. (Linding et al. 2003a) that 

crystallographically disordered regions and coil regions in general have substantially 

different compositions. The association between coil propensity and values optimized for the 

profile predictor is even weaker (not shown; R2 = 0.276 for residues excluding C, P, and 

ionic residues). 
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Figure 3.2-8. Correlation plots of various residue scales. R2 values are given for residue 
types marked by closed diamonds (excluding D, E, R, K, H, C, and P, which are marked by 
open diamonds). a) Russell-Linding coil propensities (Linding et al. 2003b) vs. disorder 
value; R2 = 0.427. b) Kyte and Doolittle (1982) hydropathy vs. disorder value; R2 = 0.225. 
(*) E and Q overlap in this plot. c) Nozaki and Tanford (1971) side chain transfer energies 
vs. disorder value; glycine, as the reference amino acid, is given a value of 0; R2 = 0.982. d) 
‘Octanol/water’ transfer energies, which include influence from organic solute(s) other than 
octanol (Guy 1985; Radzicka and Wolfenden 1988) vs. disorder value; R2 = 0.941; note that 
the Radzicka/Wolfenden version was plotted, which is the inverse of the Guy scale, and 
excludes proline. e) Cyclohexane/water transfer energies (Radzicka and Wolfenden 1988) vs. 
disorder value; R2 = 0.491. f) Kyte-Doolittle hydropathy vs. cyclohexane to water transfer 
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energies; R2 = 0.818. For the entire Nozaki-Tanford subset of residues, R2 values are 
respectively a) 0.463, b) 0.089, c) 0.977, d) 0.881, e) 0.390, f) 0.730. 
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 Strengths of association with different ‘hydropathy’ scales vary greatly. The 

association between optimized disorder values and Kyte and Doolittle (1982) hydropathies is 

weak (Fig. 3.2-8b). The Hopp and Woods scale (1981) is associated with disorder 

propensities with an unimpressive R2 of 0.649 for all residues, but has a clearly visible linear 

relationship with disorder values for the majority of non-ionic residues (see Fig. 5.1-2b). The 

Hopp-Woods scale traces back (Levitt 1976) to the Nozaki and Tanford (1971) 

hydrophobicity scale, an incomplete scale based on various experiments measuring amino 

acid solubilities in organic solvent (primarily ethanol), water, and combinations thereof (see 

section 5.2.1). Figure 3.2-8c clearly shows a strong inverse correlation between the Nozaki-

Tanford hydrophobicities and optimized disorder values. Disorder values have a similar 

relationship with ‘octanol/water’ partitioning energies (Guy 1985; Radzicka and Wolfenden 

1988) (see Fig. 3.2-8d), which are derived not only from octanol/water transfer experiments, 

but also from experiments utilizing other organic solutes including methanol and ethanol, 

while cyclohexane/water partitioning energies (Radzicka and Wolfenden 1988) show more 

similarity to the Kyte-Doolittle scale (see Fig. 3.2-8e, f). 

 Substituting various scales that might be used a priori in disorder prediction, as in 

GlobPlot (Linding et al. 2003b), in place of optimized disorder values, can cause the simple 

sequence predictor performance to drop significantly (see Fig. 3.2-9), showing the 

importance of the pattern of disorder propensities. A scale, such as the Hopp-Woods scale, 

may show a strong association with disorder propensities for the majority of residues, but 

because of residues with special behavior, the strength of such relationships may not be 

reflected in predictor performance or in routine statistical measures of association. This may 
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help to explain why the strength and significance of the relationship between hydrophobicity 

and disorder have not been fully appreciated (see section 5.2), and illustrates how the rational 

selection of parameters can be problematic. 
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Figure 3.2-9. ROC curves for simple window predictor substituting various residue scales 
(same window position weights used for all). Abbreviations: opt – optimized disorder values; 
LOR – log odds ratios; K-D – Kyte-Doolittle scale (Kyte and Doolittle 1982); H-W – Hopp-
Woods scale (Hopp and Woods 1981); R-L – Russell-Linding coil propensity scale (Linding 
et al. 2003b); C-F – Chou-Fasman coil propensity scale (Chou and Fasman 1974). 
 

3.3 DISCUSSION 

3.3.1 A hydropathic spectrum 

 General phenomena that significantly affect the physical behavior of proteins include 

dispersion forces, ionic and hydrogen bonding interactions, other electrostatic interactions, 

and the hydrophobic effect. These forces have different degrees of influence in various 

‘hydropathy’ scales that attempt to describe how amino acids or side chains partition between 

different environments. Without considering this, differences between hydropathy scales may 
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not be well explained. Understanding such differences is important in interpreting results. 

The terms ‘hydrophobicity’ and ‘hydrophilicity’ are sometimes used as simple opposites, 

referring only the directionality of some hydropathic property. In usage here, the 

hydrophobic effect is basically the tendency of a ‘less polar’ part of a molecule to interact 

with other less polar entities instead of water, for which such an interaction is unfavorable. 

As counterpart to the hydrophobic effect, the ‘hydrophilic effect’ is essentially the tendency 

of polar and ionic groups to interact preferably with water (or aqueous solution), over other 

environments. The terms ‘hydrophobicity’ and ‘hydrophilicity’ are used accordingly. 

 Radzicka and Wolfenden (1988) compared results from different partitioning 

experiments that serve as model systems where hydrophobic and hydrophilic effects are 

dominant, respectively. Octanol/water (or equivalent polar organic/aqueous) partitioning 

(Guy 1985; Radzicka and Wolfenden 1988) may primarily reflect hydrophobicity for non-

ionic residues, because hydrogen bonding potential is satisfied to a similar degree in both 

polar aqueous solvent and water. On the other hand, interaction potentials for polar groups 

are not well-satisfied in cyclohexane (‘wet’ cyclohexane does not contain much water). 

Subtracting the ‘octanol/water’ scale from the cyclohexane/water scale to produce 

‘cyclohexane/octanol transfer energies’ (Radzicka and Wolfenden 1988) thus provides a 

hydrophilicity scale. Comparing the magnitudes of the ‘octanol/water’ and 

‘cyclohexane/octanol’ scales (Radzicka and Wolfenden 1988) suggests that the strength of 

the ‘hydrophilic effect’, in full force, is greater than that of the hydrophobic effect, in terms 

of potential influence on side chain partitioning energies. Various hydropathy-related scales 

may be deconvolved into approximate hydrophobic and hydrophilic components by finding a 
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linear combination of the ‘octanol/water’ and cyclohexane/octanol scales that is optimally 

associated with that scale (see Fig. 3.3-1). 
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Figure 3.3-1. Approximate deconvolution of various scales into hydrophobic and hydrophilic 
components using ‘octanol/water’ (Guy 1985; Radzicka and Wolfenden 1988) and 
‘cyclohexane/octanol’ (Radzicka and Wolfenden 1988) partitioning energies. a) R2 values for 
various scales against the ‘octanol/water’ and ‘cyclohexane/octanol’ transfer free energies, 
always excluding C, P, H, R, K, D, E; obtained by subtracting the ‘octanol/water’ scale from 
the cyclohexane/water scale (Radzicka and Wolfenden 1988). The curved line represents 
correlations for exact combinations of the two scales. b) Approximate locations of different 
scales along a hydropathy ‘spectrum’; locations on spectrum are given by linear 
combinations of the ‘octanol/water’ scale (M) and ‘cyclohexane/octanol’ scale (N) that 
approximate the relative degrees to which the hydrophilic and hydrophobic effects are 
present (the general magnitude of the hydrophilic effect is greater than that of the 
hydrophobic effect). Below names of scales, in italics, are strengths of associations (R2) of 
those scales with the respective linear combination of M and N noted above it. 
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Abbreviations: oct→wat: ‘octanol/water’ transfer energies (Guy 1985; Radzicka and 
Wolfenden 1988); chx→oct: ‘cyclohexane/octanol’ transfer energies (Radzicka and 
Wolfenden 1988); chx→wat: cyclohexane/water transfer energies (Radzicka and Wolfenden 
1988); opt dis: standard optimized disorder scale; opt dis: optimized disorder scale 
(standard); 14 Å cont: 14 Å contact number (Nishikawa and Ooi 1986); MPS(3D): Punta-
Maritan X-ray diffraction/NMR-based transmembrane scale (Punta and Maritan 2003); 
MPS(1D_r): Punta-Maritan non-X-ray diffraction/NMR experiment transmembrane scale 
(Punta and Maritan 2003); Ky/Do: Kyte/Doolittle scale (Kyte and Doolittle 1982); Ru/Li: 
Russell/Linding coil propensity scale (Linding et al. 2003b); Ch/Fa: Chou/Fasman coil 
propensity scale (Chou and Fasman 1974). 
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 Statistics discriminating between almost fully buried residues and residues that are 

more exposed on the surface have been shown to be better associated with the 

‘cyclohexane/octanol’ (hydrophilicity) scale than the ‘octanol/water’ scale (Radzicka and 

Wolfenden 1988). Scales related to transmembrane helix prediction are also associated with 

hydrophilicity. The data-derived Punta-Maritan transmembrane scales (Punta and Maritan 

2003) reflect roughly equal influence from hydrophobicity and hydrophilicity, and they are 

better correlated with linear combinations of ‘octanol/water’ and ‘cyclohexane/octanol’ 

partitioning scales than with either alone (see Fig. 3.3-1b). No combination of these two 

scales is strongly correlated with coil propensity. Disorder propensities are well explained by 

hydrophobicity alone. In summary, there is a hydropathic spectrum, ranging from 

hydrophobic to hydrophilic effect dominance, determined by the strength of the hydrophilic 

effect relative to the hydrophobic effect (see Fig. 3.3-1b). 

 

3.3.2 Modeling disorder 

 Global disorder falls into different structural categories (Dunker et al. 2001; Uversky 

2002). There are also many possible ways local disorder may occur. It is not just the good 

association between optimized disorder values and hydrophobicity, but their lack of separate 

association with hydrophilicity that support some models or explanations of disorder above 

others. 

 The good association between hydrophilicity and 95% residue burial statistics 

(Radzicka and Wolfenden 1988) (Fig. 3.3-1) reflects that polar and ionic groups on side 
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chains are not easily buried within a protein, as ionic/hydrogen bonding potential must be 

satisfied to prevent a large energetic penalty. With the strength (Radzicka and Wolfenden 

1988) of the ‘hydrophilic effect’ (compare ‘octanol/water’ and cyclohexane/water scales, Fig. 

3.2-8d, e), buried hydrophilic residues without good hydrogen-bonding partners would be 

expected to disrupt otherwise good potential crystal contacts. This is consistent with evidence 

that mutating hydrophilic surface residues to alanines can improve crystallization 

(Derewenda 2004). It is concluded that the optimized disorder values do not simply reflect 

propensities for residues to participate in crystal contacts, since a hydrophilic component 

should then likewise be reflected in disorder propensities (see, for example, 14 Å contact 

number, fig. 3.3-1). 

 Our scale associations suggest that in model systems that are well-associated with 

disorder propensities, both the aqueous and organic phases provide hydrogen bonding and 

van der Waals interactions for side chains; a primary difference between phases appears to be 

in the ability of one phase to offer hydrophobic protection to hydrophobic portions of side 

chains. The strong inverse relationship between hydrophobicity scales (from such systems) 

and disorder propensities suggests that, like the organic phase, the close environments of 

ordered residues tend to reduce unfavorable side chain/water interactions (Rose et al. 1985) 

(through interactions with other hydrophobic parts of the same protein or possibly 

neighboring proteins), while still allowing favorable ionic and hydrogen-bonding interactions 

with aqueous surroundings. The environment for disordered residues is more like the 

aqueous phase, with side chains being more indiscriminately exposed to aqueous 

surroundings than ordered surface residues. 
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 Disordered backbone is presumably flexible. Pappu and Rose (2002) calculated 

energies of different alanine dipeptide conformations using soft atomic repulsion potentials, 

approximating a chain in ‘good solvent’. Their calculations show a broad, relatively flat 

energy basin (within the –φ, +ψ quadrant) that includes polyproline II helix (as their global 

energy minimum) and β-strand backbone conformations. The flatness of the basin indicates 

that this region of conformational space is not highly constrained when a chain is interacting 

largely with solvent, as is suggested here to be often the case. Disordered backbone likely 

often adopts conformations within this relatively flexible region of conformational space as 

the backbone and residues interact with aqueous surroundings. 

 If a disorder-related category (e.g., linkers, proline-rich regions, molten globules, etc.) 

has consistent statistical propensities that cannot be reasonably well associated with 

hydrophobicity, then other models of disorder should be considered. Crystallographic 

disorder has been subdivided into static disorder and dynamic disorder (Huber 1979; Huber 

and Bennett 1983). It would appear that among the missing residues used in predictor 

development, static disorder resulting from small domain rotations is less abundant than 

dynamic disorder, given that disorder propensities might then be expected to reflect 

localization to the surface vs. deep burial (i.e., with a hydrophilic component) and/or coil 

propensity. For similar reasons, variable conformations of surface-bound loop/coil regions do 

not appear to significantly influence disorder values. Physical differences in disorder may 

translate into functional differences—for example, a highly soluble disordered region may be 

more easily degraded. Because of exclusion of residues in the terminal and domain junction 

regions in optimizing residue disorder parameters (see section 2.5), disorder values may be 
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less applicable for terminal or domain-linking disordered regions than for intra-domain 

regions. 

 The accompanying supplementary workbook (Excel spreadsheet file) contains a 

parameter-energy calculations worksheet that shows how optimized disorder values may be 

tentatively converted into estimated average energies of transfer from ordered to disordered 

states using log odds ratios and information on score distributions (Fig. 3.2 5). The majority 

of side chains are order-promoting. With the linear relationship between these energies 

obtained from disorder values and experimental hydrophobicities, the intercept and slope 

may be interpreted respectively as the average contribution of the backbone to order/disorder 

transfer energies and relative degree of hydrophobic protection. The backbone appears to 

favor disorder by a relatively small energy. Slopes of hydrophobicity vs. disorder trends 

suggest that the average difference of protection of hydrophobic groups in the ordered state 

(for surface/coil residues) vs. the disordered state is significantly less than difference between 

the protection afforded in organic vs. aqueous phases. Section 5.4 contains further discussion 

on transforming parameters into estimated energies. 

 The idea of normally inefficient hydrophobic protection may help to explain 

seemingly paradoxical associations between disorder and aggregation. For example, 

polyglutamine stretches are associated with various diseases including Huntington’s disease 

and are known to aggregate. Given glutamine’s relatively low hydrophobicity/high disorder 

propensity, polyglutamine sequences would not tend to form good strand-strand interactions 

with most protein sequences. Perhaps lining polyglutamine strands together (Khare 2005; 
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Sambashivan 2005) results in unusually efficient hydrophobic protection of side chains with 

their consistent length, without significantly hampering amide hydrogen bonding.
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CHAPTER FOUR 
Further predictor details and comparison

 
 

4.1 INTRODUCTION 

 In the previous chapter, a few standard predictors were highlighted. This chapter 

provides more information on those and other predictors. 

4.2 STANDARD SIMPLE SEQUENCE-BASED PREDICTOR 

 The basic predictor is the simple sequence predictor, which consists of assigning each 

residue an initial disorder value based on its residue type and then obtaining a final value 

through weighted window summation. The standard simple sequence predictor (sw35_8) has 

a window length of thirty-five, and was optimized using ROC0.5 performance measures. 

Figure 4.2-3 shows training ROC0.5 scores throughout the course of optimization (panel a), as 

well as testing scores for parameter sets saved through the course of optimization (panel b). 

Figure 4.2-3c suggests the degree of overfitting, which, as would be expected given the 

similarity in parameters resulting from different runs (Fig. 3.2-3a, b), is fairly small. Cross-

validation performance for the standard predictor is fairly consistent across the various cross 

validation runs (see Fig. 4.2-1). 
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Figure 4.2-1. Different test performance curves for sw35_8 (on the simple sequence dataset, 
with 18 terminal residues excluded in testing). 
 

 When comparing the performance of this simple predictor with DISOPRED2 on non-

terminal residues, the performance of the simple predictor approaches that of DISOPRED2 

fairly well (Fig. 3.2-1). At certain false positive cutoff fractions, on some test sets, it even 

shows better performance, but, as might be expected, on test set 3, DISOPRED2 is markedly 

better (Fig. 4.2-2; see section 2.4-1). 
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Figure 4.2-2. ROC score differences for individual test sets, for the simple predictor 
(sw35_8) vs. DISOPRED2 (sw35_8 – DISOPRED2). 
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Figure 4.2-3. Score progressions over sw35_8 (simple sequence) and p2w35_4 (profile) 
predictor optimizations. Panels a, c, e are for simple sequence predictor, and b, d, and f are 
for profile predictor. a, b) Training score progressions for individual optimization runs. 
Scores are average begin-of-cycle scores at each temperature step. (When parameter sets, 
used for testing—see b—are recorded, a parameter set is recorded prior to ‘annealing’—set 
0—and then parameters are saved at the end of each temperature step—set 1 and the end of 
temperature step 1, etc. Thus, to keep consistent with testing scores—see b,c—since the 
score represents an average of begin-of-cycle scores through all cycles in a temperature step, 
the graph locates the score at a temperature step value of 0.5 less than the actual temperature 
step number.) c, d) Testing score progressions for individual test sets—ROC0.5 scores on test 
sets using parameter sets 0 (the beginning of optimization, ‘randomized’ parameter set) 
through 700 (the end-of-optimization parameter set), which are not ‘normalized’ as done for 
the final parameter set (see section 2.5.2). c) Average training and testing score progressions. 
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4.3 PROFILE VS. SIMPLE WINDOW 

4.3.1 Residue type 

 When excluding sequence ends from evaluation of predictor performance, 

performance of the profile predictor (p2w35_4) appears to be modestly better than that of the 

simple sequence-based predictor at low specificity cutoffs (Fig. 3.2-1a). However, the 

statistical significance of this difference is questionable (Fig. 4.3-1a). On the other hand, the 

profile predictor performs substantially better than the simple sequence-based predictor when 

sequence ends are included in performance analysis (Fig. 3.2-1b), and this difference is 

statistically significant (Fig. 4.3-1b; see discussion of paired t-test, section 2.6.2). 
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Figure 4.3-1. ROC score differences for individual test sets, for the profile predictor 
(p2w35_4) vs. the simple sequence-based predictor (sw35_8) (p2w35_4 – sw35_8). Numbers 
in plot area represent p-values calculated from a two-tailed, paired t-test for sets of ROC 
scores from both predictors at some false positive cutoff. a) With exclusion of thirty residues 
at the sequence ends. b) With the inclusion of sequence ends (except for ends containing 
polyhistidine tags). 
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 Profile window predictor (p2w35_4) optimized residue disorder parameters differ 

significantly from residue disorder parameters optimized for the simple sequence predictor 

(see fig 4.3-2, 4.3-5). The source of these differences is not immediately obvious, but a close 

look at this problem yields some insight into how an alignment-based profile may contribute 

to understanding of a given sequence region. 

 The profile log odds ratio’s correlate better with the simple sequence predictor 

optimized values (Fig. 4.3-3) than with the profile predictor optimized values (Fig. 3.2-7b), 

and even better yet with simple sequence log odds ratio’s (fig. 4.3-4). There are likely some 

unique aspects of prediction when using profiles—ways that the predictor uses profiles 

(beyond simply looking at residue frequencies that more accurately reflect the environment 

of a particular region of sequences) that somehow enhances prediction enough to justify a 

significant deviation of optimized residue values from log odds ratios. Presumably, the 

profile takes special cases into more account, and this improves performance overall but also 

makes performance more disparate from case to case. This appears to be reflected in that 

there is more variation in training and testing scores from data subset to data subset than for 

the simple sequence predictor (see Fig. 4.2-3). Interestingly, the profile predictor does not 

appear to have much greater overfitting than the simple sequence predictor (see Fig. 4.2-3, 

panels e, f). 
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Figure 4.3-2. Average optimized residue disorder values for profile predictor vs. those for 
simple sequence predictor. A least-squares fitted trend line is provided to give an idea of the 
direction and size of significant deviations. 
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Figure 4.3-3. Correlation of log odds ratios (disordered vs. ordered) of frequencies for 
different residues in profiles with average optimized simple sequence predictor disorder 
values. 
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Figure 4.3-4. Correlation of log odds ratios (disordered vs. ordered) of frequencies for 
different residues in profiles with average with log odds ratios of residue frequencies in 
simple sequences (note that two different datasets were used—these reflect the frequencies in 
the actual training sets used for the profile and simple window predictors.) Note that cysteine 
is close to the trend line here as opposed to when comparing log odds ratios and optimized 
disorder values (Fig. 4.3-2). 



74 

 

 

-2.5

-2

-1.5

-1

-0.5

0

0.5

1

1.5

2

2.5

W F Y L I V M C P G A T S Q N H R K E D

Residue type

A
ve

ra
ge

 o
pt

im
iz

ed
 d

is
or

de
r v

al
ue

Simple
Profile

 
Figure 4.3-5. Comparison of optimized disorder residue type parameters (averaged over the 
five optimized parameter sets) for simple sequence and profile window predictors, 
normalized to yield residue score distributions that approximate the standard normal 
distribution (mean = 0, standard deviation = 1). 
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Figure 4.3-6. Comparison of average disorder vs. order ‘log odds ratios’ for different residue 
types, calculated from simple sequences and profiles. 
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Figure 4.3-7. Log odds ratio values of different residue types’ frequencies in disordered vs. 
ordered regions, calculated for the five standard profile test sets. Note that in test set 3, values 
for residue types including proline and serine stick out (see section 2.4 1). 
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Figure 4.3-8. Average disorder vs. order log odds ratios and average optimized values for 
profiles and simple sequences, all normalized so that each set of values has a mean of 0 and a 
standard deviation of 1, to allow for comparison. 
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 In a sequence alignment, some positions are, of course, better conserved than others. 

Highly variable positions in the alignment will not yield much information, but well-aligned 

positions, in which a certain subset of residues is more frequent than others, will yield more 

signal. If a residue’s disorder value deviates significantly from what would be expected from 

frequencies, it may not have as strong an effect in positions where it is simply making some 

background contribution to the disorder score (particularly when the disorder values of other 

residues that tend to co-occur with it balance it out), as when it occurs more strongly in a 

position where it is more conserved. The predictor is likely taking advantage of more 

conserved positions. Some residues that appear to be significant outliers, with some 

reasonable explanation, are discussed below: 

4.3.1.1 Serine 

 Serine shows a dramatic increase in value relative to other parameters, in the profile-

optimized parameters, as opposed to those optimized using simple sequences. However, 

when simply comparing the disorder vs. order log odds ratio for serine in profiles with that 

for serine in simple sequence, it actually appears to drop (see Fig. 4.3 4). The values of 

threonine and alanine (the two most substituted residues for serine according to the 

BLOSUM matrices, threonine being the most), on the other hand, appear to drop 

significantly. 

 Consider a position where serine is conserved. There also may be a number of 

threonines in that position. If the threonine to serine ratio is higher, the position might be 

expected to be more likely to be ordered, and vice versa. Thus, if the disorder value for serine 

is increased and the disorder value for threonine is decreased, then threonines at a 
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serine/threonine position would counterbalance serine in an ordered region, but in a 

disordered region, with a lower ratio of threonine to serine, the effect of serine’s high 

disorder score would be significant. Such a counterbalancing effect appears to be indeed 

taking place. If one starts with the original, optimized parameters for a profile predictor and 

perturbs the serine value, then one would expect that a counterbalancing residue’s disorder 

value, if re-optimized, would change in the direction opposite to the serine. If there is no 

strong coupling between the two residue types, on the other hand, the average change in the 

value of the residue being re-optimized would be expected to be near zero. This indeed 

appears to be the case for threonine (see fig. 4.3-9). It was expected to occur for alanine also, 

but the effect, although statistically significant, was not strong like the one for threonine. 
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Figure 4.3-9. Shifts in disorder parameters for different residue types when serine is 
perturbed by a value of -1 (bringing it close to the value it might be expected to have 
according to optimized simple window values – see fig. 4.3-1 – or from logs odds ratios of 
residue type frequencies in ordered or disordered regions). Two experiments were done. In 
one, the disorder parameters for Ala and Thr were freed to change; and in the other, the 
values for Phe and Tyr were allowed to change. It was expected that Thr and Ala would show 
significant shifts, while Phe and Tyr were included as controls. The p-values for differences, 
calculated from two-tailed, paired t-tests are as follows: Phe: 0.75; Tyr: 0.33; Ala: 0.021; 
Thr: 0.000063. 
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 One might propose that the dramatic increase in serine’s optimized disorder value for 

the profile predictor vs. the simple sequence predictor is largely due to the existence of 

polyserine stretches in disordered regions, allowing easier alignment of serines. The number 

of instances of three or more consecutive serines was counted in the filtered, nonredundant 

sequence set that was used in obtaining the profiles. (Note that, since it was filtered for low 

complexity sequence, very long polyserine stretches would not be included in the dataset.) 

The number of such occurrences was 548,122, and the total number of serines in such 

stretches was 1,767,602. The results for serine could be compared with those for glycine, 

which experienced a shift in the opposite direction from serine in its optimized disorder 

value. The number of occurrences of three or more glycines in a row was 411,817, and the 

total number of glycines within such stretches is 1,317,297. One would expect that 

polyglycines, like polyserines, would occur often in disordered regions. 

 

4.3.1.2 Methionine 

 When window-only predictors were trained, residues were excluded from 

performance evaluation if they were within 18 residues of the termini. This effectively 

removed any influence of the N-terminal methionines on the prediction, and therefore, the 

prediction parameter value for methionine reflected the effects of non-N-terminal 

methionines. When profiles were optimized, however, this did not exclude the effects of the 

N-terminal methionines in sequences related to the query sequence, whose N-terminal 

methionines aligned to a position on the query sequence close to, but not at, the start of the 
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query sequence. The fact that the profile parameter for methionine was relatively much 

higher than that of the simple window parameter thus makes sense. 

 

4.3.1.3 Glycine 

 Glycine may be significantly concentrated above its background frequency in 

positions where it serves to act as, say, a helix-breaker, or otherwise facilitate some kink in a 

structure. In this way, glycine would be promoting a consistent structural feature. One might 

expect, then, that well-conserved glycines, not as easily substitutable as random glycines, 

would have a higher order to disorder log (odds ratio) than random glycines. 

 

4.3.1.4 Phenylalanine/Isoleucine 

 The dramatic increase in the residue value of phenylalanine, but not tyrosine, might 

be explained by the predominant existence of phenylalanine, in comparison to other 

hydrophobic residue types, in some loops. That the same may also be true for isoleucine is 

suggested by increases in isoleucine’s residue value, as well as some similarity in shape 

between phenylalanine and isoleucine. As with serine, the ratios of phenylalanine and 

isoleucine to other hydrophobic residue types in loops can be compared with those in helices 

and strands. 
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4.4 PREDICTORS WITH TAIL ADJUSTMENTS 

 For both the simple sequence-based and profile-based predictors, addition of tail 

adjustments produces dramatic change in predictor performance when considering the 

sequence ends in the predictor performance (see Fig’s 3.2-1, 4.4-1). 

 The tail adjustments serve as an example of how the optimized parameters of a simple 

predictor might help to detect biases in the data/optimization. It was noted in a plot of tail 

adjustment parameters from an older run, sw35_st30_5 (see Fig. 4.4-2; code may be made 

available on the web at http://prodata.swmed.edu) that there was a marked leveling off of 

parameters among the middle positions before continuing to fall off as position from 

terminus increased. It was hypothesized that this was due to the how it was being determined 

whether or not residues were counted in performance analysis, in that when a polyhistidine 

tag was detected, the residues terminal to and through the polyhistidine stretch were not 

counted, but the first residue internal to the polyhistidine stretch could be counted in analysis 

of performance. Due to apparent enhancement of terminal disorder by polyhistidine tags, a 

residue immediately internal to a polyhistidine stretch might then be expected to have a 

higher likelihood of being disordered/missing than another residue equally distant from the 

sequence end, but without a polyhistidine stretch in proximity. Thus, two different curves 

might be obtained for tail adjustments, depending on whether sequence ends with 

polyhistidine tags were counted in optimizations or not, with the curve being shifted upward 

if polyhistidine tag-containing ends were included. Thus, it was hypothesized that the 

leveling off in the tail adjustments was due to a combination of exclusion of histidine 

stretches and residues external to these stretches and inclusion of residues internal to the 
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polyhistidine stretches. An adjustment to the treatment of the data was made so that at 

sequence ends where polyhistidine stretches were detected, at least the first thirty residues on 

that end of the sequence were excluded from analyses of performance. This appeared to 

reduce the leveling off effect (see Fig. 4.4-2). 
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Figure 4.4-1. ROC score differences for predictors with tail adjustments vs. respective 
predictors without tail adjustments. Numbers in plot area represent p values calculated from a 
two-tailed, paired t test for sets of ROC scores from both predictors at some false positive 
cutoff (t-test is not a perfect statistical measure in estimating p-values for ROC score 
differences: see section 2.6.2). a) With exclusion of thirty residues at the sequence ends. b) 
With the inclusion of sequence ends (except for ends containing polyhistidine tags). 
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Figure 4.4-2. Tail adjustment parameters from different predictors. Allows comparison 
between parameters optimized with different treatment of sequence ends that contain 
polyhistidine stretches. a) From predictors that were optimized with ‘old’ method, in which 
residues external to and including polyhistidine stretches were excluded from analyses of 
performance, but residues immediately internal to such polyhistidine stretches could be 
included. From sequence-based predictor, sw35_st30_5 and from profile-based predictor, 
p2w35_st30_4. b) From predictors that were optimized with ‘new’ method, in which, in the 
case of a sequence end where a polyhistidine stretch was detected, the first thirty residues 
from the end were automatically excluded from analyses of performance. From sequence-
based predictor, sw35_st30_8 and from profile-based predictor, p2w35_st30_6. (See Table 
2.7-1 for a list of optimization runs.) 
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4.5 HIGH SPECIFICITY PREDICTOR 

 The performance measure used to optimize the predictors is the ROCf score, where f 

is the fraction used to determine the false positive cutoff in calculating the score. The 

standard predictor (sw35_8) was optimized using a ROC0.5 score. Essentially, this means that 

optimization considered the ability of the predictor to sort disordered from ordered residues 

for residues that had higher-than-average scores. Disordered regions in the low-specificity 

range (with low scores) were not considered, a rationale for this being that low-scoring 

disordered regions might be expected to represent ‘noise’ or regions that tend to be different 

from typical normal disordered regions in their cause of disorder. Some justification for this 

might be found in differences in tryptophan disorder residue parameters for the 9-position 

window predictors optimized with ROC0.5 (Fig. 5.3-3b) and ROC1.0 (Fig. 5.3-3c) scores. 

 On the other hand differences might also be expected between a predictor optimized 

using the ROC0.5 score and a ‘high specificity’ predictor, like one optimized using a ROC0.05 

score (sw35_7). The optimization of the high specificity predictor considers only the sorting 

of disordered vs. ordered residues among those residues with the highest scores. Differences 

between optimized parameters for the high specificity predictor and the standard predictor 

are briefly discussed here. 

4.5.1 Performance 

 The high specificity predictor (sw35_7) modestly better than the standard predictor 

(sw35_8) in the high specificity region (see Fig. 4.5-1), and modestly worse in the low 

specificity region. Even though the differences appear to be small, it may be better to use 
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such a predictor if looking for longer disordered regions. As in other cases, test set three (see 

section 2.4.1) appears to have special behavior (see Fig’s 4.5-1c, 4.5-2). 
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Figure 4.5-1. ROC curves and differences for high specificity (sw35_7), standard (sw35_8) 
predictors. a) Average ROC curves, full scale. b) Average ROC curves, different scale. c) 
ROC score differences at different false positive cutoff fractions (sw35_7 – sw35_8). 
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Figure 4.5-2. High specificity curve individual test ROC curves. 
 

4.5.2 Residue disorder values 

 Residue disorder values for the high specificity and standard predictors are generally 

similar (see Fig’s 4.5-3, 4.5-4). The primary exception is tryptophan, and the next strongest 

outlier is histidine. Even though performance measurements appear to be significantly 

affected by test set 3, differences in parameters from those of the standard predictor do not 

appear to be largely attributable to the special behavior of test set 3, as the disorder values 

resulting from the optimization of training set 3 (which excludes test set 3; see section 2.3 on 

cross validation) do not appear to be significant outliers (see Fig. 4.5-5). That tryptophan is 

an outlier makes sense, given that tryptophan is the most hydrophobic (and thus, the most 

order-promoting and ‘stickiest’) residue. Tryptophan might thus disrupt the normal behavior 

of a long disordered loop, and therefore, sequences of long disordered regions might 

reasonably tend to exclude it. It is not very clear why histidine is such an outlier. 
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Figure 4.5-3. High specificity (ROC0.05-optimized) and standard (ROC0.5-optimized) residue 
disorder values. 
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Figure 4.5-4. Correlation plot of high specificity (ROC0.05-optimized) vs. standard (ROC0.5-
optimized) disorder values. Dotted line: y = x; solid line: fit to residues marked by dark blue 
diamonds (all except W and H)—equation shown on plot (intercept constrained to 0). 
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Figure 4.5-5. High specificity predictor (sw35_7) normalized optimized disorder values for 
standard residue types and selenomethionine (sM). 
 

4.5.3 Window position weights 

 A primary difference between the high specificity predictor and the standard predictor 

is in the window position weights (Fig. 4.5-6). The window weight pattern for the high 

specificity predictor is broader, as would be expected, since long low-hydrophobicity 

stretches of residues would generally be more likely to be disordered than short ones. Thus, 

the high specificity predictor might be considered more of a predictor of long disordered 

regions (see Peng et al. 2006 regarding separation of prediction of long and short disordered 

regions). 
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Figure 4.5-6. Comparison of standard predictor and high specificity predictor window 
position weights. The standard predictor was optimized using ROC0.5 scores, and the high 
specificity predictor was optimized using ROC 0.05 scores. 
 

4.6 OTHER PREDICTION METHOD ATTEMPTS 

 Although they will not be covered in detail, other less successful measures were tried 

in attempting to augment or improve prediction. Previous to the work described, attempts 

were made to use a double sliding window method, in which a short window was run over 

initial (simple sequence-based) disorder values and then a ‘cooperativity adjustment’ was 

made, essentially with the intent to enhance the effect of strongly disorder-promoting 

regions, and a second, larger window was then passed over the adjusted values. Any 

improvement gained from this ‘double window’ method was quite modest. Also, there were 

attempts with the simple sliding window and double window methods, to simultaneously 

optimize low- and high-specificity scorers, where the high specificity score was counted for 

high-scoring positions, and the low-specificity score was otherwise used. This did not yield 
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notable improvement—indeed, for the single window method, performance dropped, 

suggesting poor optimization. 

 Also, inclusion of residue-residue statistics was tested using full and reduced 

‘alphabets’. This was tested for ‘dimers’ (R-R permutations) without any substantial 

improvement in performance with the variants tried, in general agreement with the results of 

Weathers et al (2004). Perhaps consideration of R-x-x-R or R-x-x-x-R statistics might have 

yielded more improvement in performance, given the potential for interaction between 

residues spaced thus in helices, but this was not tried.
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CHAPTER FIVE 
Disorder/hydrophobicity association and other residue type-related issues

 
 

 The tight linear association between disorder and hydrophobicity has significant 

implications not strongly supported by previous associations of disorder with 

‘hydrophobicity’ (Uversky et al. 2000; Williams et al. 2001; Dostanyi et al. 2005; Linding et 

al. 2003a). Relationships were discovered initially through visual inspection of correlation 

plots of various scales with the optimized disorder values, including the Nozaki-Tanford 

scale, Wimley-White scales, and Radzicka-Wolfenden scales. No single hydrophobicity scale 

is perfect. Careful study of these scales, however, and a subsequent search of AAIndex1 

(Kawashima et al. 1999), using knowledge gained from visual inspection of other scales, 

helped to confirm the idea that hydrophobicity is indeed strongly associated with disorder, 

better than any other property. 

 Such a tight relationship begs explanation. This relationship suggests that a model of 

general crystallographic disorder can and should be linked directly to the concept of 

hydrophobicity. Significant deviations from the relationship may signify some special, 

residue type-specific effect on disorder. Disorder is qualitatively related to other properties, 

presumably generally through their associations with hydrophobicity, but these properties 

should not necessarily be used as a direct basis for inferring the nature of crystallographically 

disordered regions. 

 Before optimizing parameters for a predictor, it might be argued why certain 

parameters should work well, but intuition may not always provide parameters that perform 

near-optimally. The standard optimized residue disorder values (averaged,  
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normalized/adjusted results from sw35_8) are compared with various other possible sets of 

residue disorder values that might have been used, including values obtained from relative 

frequencies of residues in random coil vs. other secondary structures (coil propensity scales), 

values estimating hydrophobicity (hydropathy scales), and decreases in performance are 

discussed.  

 Here, I also further discuss evidence that the tight disorder/hydrophobicity association 

is real and is not just specific to the Nozaki-Tanford scale. I discuss why certain deviations 

may appear in certain scales and specific things that have been done that help to disclose the 

tight association. Discussion is added on issues specific to certain residue types and on 

interpreting the linear relationship (quantified) between disorder and hydrophobicity. 

 

5.1 DIFFERENCES IN SCALES FROM OPTIMIZED DISORDER VALUES 

 In this section differences in coil propensity and other scales from optimized disorder 

values are presented. These scales might be expected to be well associated with disorder, but 

are not. In this section will also be shown in more detail the effects on predictor performance 

of various types of differences in scales from optimized disorder values. 

5.1.1 ‘Coil propensity’ scales 

 Various coil propensity scales have been constructed, calculated from a residue’s 

propensity for being in ‘random coil’ segments of structure vs. segments identified as having 

some other specific secondary structure—typically helix or strand. None of the coil 

propensity scales discussed in this section show good correlation with average optimized 

disorder values (Fig. 5.1-1), highlighting that there is a significant difference between just 
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being in a coil region and being in a region that is disordered. Linding et al. (Linding et al. 

2003a) also demonstrate a difference between residue composition in coils (by their 

definition, any structure other than α-helix, β-strand, and 310-helix as defined by DSSP 

(Kabsch and Sander 1983)) and remark 465 regions in X-ray crystallographic structures, but 

do not give a strength of correlation. Thus this provides a unique look at the issue of the 

difference between disordered and coil regions. 

 Perhaps the most well-known coil propensity values are those calculated by Chou and 

Fasman (1974). Chou and Fasman calculated propensities of various residues being within 

different types of secondary structural elements, including helices, β sheets, and ‘coil’ 

conformations. Propensities, P, were calculated by 

cicic ffP /,, =  

where c is the secondary structural conformation and i is the residue type;  fc,i is the 

frequency with which a given residue occurs in one conformation vs. the other 

conformations; and ‹fc› is the average frequency of residues a given conformation. 

 Deléage and Roux (1987) developed a secondary structure prediction algorithm that 

used parameters similar to those of Chou and Fasman, with β-turns in their own category (see 

Fig. 5.1-1b). 

 The recommended residue coil propensity values for the globularity/disorder 

program, GlobPlot (Linding et al. 2003b), are the Russell Linding propensities, which were 

calculated from a SCOP superfamily representative set of proteins by subtracting the 

‘secondary structure propensity’ of a residue from its ‘random coil’ propensity. Perhaps 

partly due to improved statistical power of the dataset, the (all residue) R2 value of the 
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Russell-Linding coil propensity values of 0.326 is better than the Chou Fasman or Deléage 

Roux R2 values (0.208 and 0.162, respectively), but it is still worse than any of the 

hydrophobicity-scale R2 values, and its overall performance in disorder prediction is only 

slightly better than that of the Chou-Fasman values (see Fig. 3.2-9, Fig. 5.1-3). 
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Figure 5.1-1. Correlation plots of coil propensity scales vs. optimized disorder values. a) 
Chou-Fasman coil propensities vs. optimized disorder values. b) Deléage-Roux coil 
propensities vs. optimized disorder values. c) Russell-Linding coil propensities vs. optimized 
disorder values (see Fig. 3.2-8a for labeled version). 
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5.1.2 Kyte-Doolittle and Hopp-Woods 

 A number of hydropathy/hydrophobicity-related scales have been constructed. 

Perhaps the best-known scale in this category is the Kyte-Doolittle hydropathy scale (Kyte 

and Doolittle 1982) (see section 1.2.3). Optimized disorder values are remarkably different 

from the Kyte-Doolittle hydrophobicity parameters (Fig. 5.1-2a). One striking contrast is 

that, whereas tryptophan and serine represent the negative and positive extremes, 

respectively in the optimized disorder parameters, their Kyte-Doolittle values are almost the 

same, lying near the median of the Kyte-Doolittle scale. Serine actually has a slightly higher 

value than tryptophan on the Kyte-Doolittle scale (whose original values have a general 

positive correlation with hydrophobicity, as opposed to the disorder parameters). 

 Another hydrophobicity-related scale that was based partly on experiment and partly 

on human judgment was that of Hopp and Woods (1981) (see section 1.2.2). Hopp and 

Woods took their scale primarily from one published by Levitt (1976), with minor 

adjustments. Levitt, in turn, took his “hydrophobic parameters” from values obtained by 

Nozaki and Tanford (1971) using experimental data, where available, and “When 

experimental values were not available they were roughly estimated from the relationship 

between accessible surface area (Lee & Richards 1971) and hydrophobicity (Chothia, 

1974)”. The association between optimized disorder values and the Hopp-Woods scale is 

generally quite good, except for strong ionic residues. Strong ionic residues are clearly 

outliers (see fig. 5.1-2b), where the remaining residues have a decent linear correlation with 

optimized disorder parameters. Among the non-strong ionic residues, cysteine appears to be 

the most distant outlier, in the direction that would be expected (its disorder value is lower 
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than what one would anticipate simply from its estimated hydrophilicity—a change in this 

direction would be expected due to the stabilizing effect of disulfide bridges.) 
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Figure 5.1-2. Correlation of hydropathy/hydrophobicity-related scales with optimized 
disorder values (sw35_8). a) Kyte-Doolittle. b) Hopp-Woods; red triangles are strongly ionic 
residues; blue diamonds represent remaining residue types; upper R2 value (purple) is for all 
residues, and the lower R2 value (blue) excludes the strongly ionic values. 
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5.1.3 Performance of different scales in predicting disorder 

 When substituting various coil propensity and hydropathy-related scales for the 

optimized residue disorder parameters in the standard simple sequence predictor (sw35_8), 

the previously published scales do not perform nearly as well as the optimized predictor (Fig. 

3.2 9, Fig. 5.1-3). Although, overall, the hydrophobicity/hydropathy scales appear to perform 

better than the coil propensity scales in making predictions, one exception is in test set 3 (see 

section 2.4.1), on which the hydrophobicity scales perform significantly worse than the coil 

propensity scales (Fig. 5.1-3). This seems to make some sense, given stretches of sequence 

that imperfectly repeat the sequence, ‘PSTPSYS’. As proline and tyrosine both have higher 

scores relative to other residues in general in the coil propensity scales, in comparison with 

the hydrophobicity or optimized disorder scales, this is not unexpected. It is also of note that 

the overall performance of the Kyte-Doolittle values is quite similar to that of the Hopp-

Woods values and is markedly better that of the coil propensity values (Fig. 3.2-9, Fig. 5.1-

3), which might not be guessed alone from respective R2 association values. Perhaps this has 

to do in part with the fact that tryptophan and tyrosine, which are the main outliers, are not 

the most common residue types. It could be taken as suggesting some possibility of direct 

association between hydrophilicity and disorder although there does not seem to be such an 

association (Fig. 3.3-1). 
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Figure 5.1-3. Differences in performance for simple window predictor using various scales 
for residue disorder parameters, vs. using optimized disorder values (sw35_8).  Number 
below each set of bars (at each ROC score false positive cutoff fraction) are paired t-test 
p-values. a) Chou-Fasman – sw35_8. b) Russell-Linding – sw35_8. d) Kyte-Doolittle – 
sw35_8. d) Hopp-Woods – sw35_8. 
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5.2 ASSOCIATIONS WITH HYDROPHOBICITY SCALES 

5.2.1 Nozaki-Tanford scale 

 Experimentally-derived values in the Hopp-Woods scale were those of Nozaki and 

Tanford (1971). The Nozaki-Tanford values were based on individual amino acid solubilities 

in water, ethanol, dioxane, or combinations of water and one of the organic solvents. The 

values shown here are calculated side chain free energies of transfer from water to 100% 

organic solvent—in some cases, water to ethanol only, and in some cases an average for 

water to ethanol and water to dioxane, which, according to Nozaki and Tanford “are 

essentially identical” for hydrophobic side chains. Calculations were based on measurements 

performed at different water-ethanol or water-dioxane concentrations,  and values for 

solubility in 100% solvent were usually determined through extrapolation. Calculations also 

included attempts to correct for activity of amino acids at saturation. 

 Interestingly, Nozaki and Tanford exclude asparagine and glutamine from their scale, 

observing that: “Asparagine consistently shows more negative ΔFt values than those of 

glutamine, while one expects the opposite trend, since glutamine has an additional CH2 group 

which in our solvent systems should show a negative contribution to ΔFt.” (emphasis added). 

The same is true of the optimized disorder values—asparagine somewhat unexpectedly 

(given the hypothesis that disorder is mostly a function of hydrophobic residues for non-

charged, non-cysteine, non-proline residues) has a lower optimized disorder value than 

glutamine. 

 When only the experimentally derived hydrophobicity values from Nozaki and 

Tanford are compared with their respective optimized disorder values, the correlation is 
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excellent, with an R2 value of 0.977 (see fig. 3.2-8c). Regarding reliability of the data, 

Nozaki and Tanford write, “we believe the reliability of the extrapolated data to be about ±50 

cal per mole.” They indicate that histidine and leucine are exceptions, and estimate 

uncertainty for these at ±100 cal/mol. Histidine also represents a special case, because it is 

the only charged residue type for which they give a value. 

 The tight correlation of the optimized disorder values with Nozaki and Tanford’s 

calculated values suggests some superiority in Nozaki and Tanford’s methods for 

experimental methods for measuring hydrophobicity and/or methods for calculating 

hydrophobicity from experimental results over those of others (Radzicka and Wolfenden 

1988; Wimley et al. 1996; Wimley and White 1996). Interestingly plots of the Wimley-White 

scales and ‘octanol/water’ values (Guy 1985) against optimized disorder values (Fig’s 5.2-1 

and 3.2-8b, respectively) members of the Nozaki-Tanford subset of residues appear to each 

agree with the optimized disorder values in different ways. This idea, when added to the 

strong correlation between the Nozaki-Tanford and optimized values, suggests that the 

Nozaki-Tanford values may be the most accurate of these different experimental 

hydrophobicity scales, although not all evidence points toward the superiority of the Nozaki-

Tanford scale over the Radzicka-Wolfenden scale (not discussed further here). 

5.2.2 Radzicka-Wolfenden/Guy ‘Octanol’ to water scale 

 The ‘octanol’/water scale displayed by Radzicka and Wolfenden (1988) was an 

inverted version (that excluded proline) of the Guy (1985) ‘octanol’/water scale, which was 

actually derived from partitioning experiments involving octanol, ethanol, and methanol. 

Energies from methanol and ethanol were ‘normalized’ to approximately fit with those of 
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octanol. Wimley et al. (1996) cite Franks et al. (Franks et al. 1993) as providing X-ray 

diffraction-based evidence that octanol forms clusters that surround cores where hydroxyl 

groups and water interact—thus, wet octanol allows both hydrophobic and ‘hydrophilic’ 

interactions. The ‘octanol’ to water transfer energies shows a strong association with 

disorder, with an R2 of 0.941, excluding ionic residues (and proline). 

5.2.3 Wimley-White scales 

 The Wimley-White scales use the AcWL-X-LL construct, which complicates matters 

and appears to yield experimental biases. But taking this into consideration, they lend support 

to the disorder/hydrophobicity association. Considering the Wimley-White scales in 

combination can suggest some possible sources of deviation. The slope of the fit for the 

membrane to water experiment is approximately half that of the octanol to water experiment 

(Fig. 5.2-1c). The slope presumably relates to the efficiency of hydrophobic protection in the 

amphipathic phase. A favorable self-interaction in water would be expected to be reflected by 

negative deviations of approximately the same absolute magnitude in both experiments. 

Consistent differences in behavior in the organic phase might be expected to have 

approximately half the effect in the membrane experiment as in the octanol experiment, but 

this type of effect may be more erratic, due to the complexity in and difference between the 

organic phases. With a bias in a side chain type’s optimized disorder value, rather than its 

experimental value, the deviation would have approximately half the magnitude in the 

membrane partitioning plot as in the octanol partitioning plot. Thus, considering deviations in 

both plots together may support certain plausible explanations for those deviations. 
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Figure 5.2-1. Correlations of Wimley-White scales with optimized disorder values. Open 
diamonds mark the residues, H, R, K, D, E, C, and P. Fits are drawn to residues marked by 
dark blue diamonds. Red diamonds are included for adjusted values for isoleucine and valine, 
and x’s mark unadjusted values in these cases. a) Wimley-White AcWL-X-LL octanol to 
water transfer energy (Wimley et al. 1996), pH 9, vs. optimized disorder value. b) Wimley-
White AcWL-X-LL membrane to water transfer energy (Wimley and White 1996), pH 8, vs. 
optimized disorder value. c) Slopes of fits. d) Residuals to fits. (*) Asterisks mark missing 
residuals (due to missing values). 
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 In both Wimley-White scales, the β-branched side chains (isoleucine and valine) have 

transfer energies that deviate downward from trends (x’s in Fig. 5.2-1a, b). The four 

deviations have roughly similar absolute values (Fig. 5.2-1, c, d), consistent to some degree 

with a self-interaction that improves solubility in water, as described above. Simple modeling 

suggests that a β-branched side chain can simultaneously interact with the two adjacent 

leucines, one leucine with each γ carbon of the β-branched chain, a state where there may be 

significantly more hydrophobic protection in the aqueous phase than for usual side chain 

types. With rough corrections for this, several points fall close to straight line trends with 

relation to optimized disorder values in each scale (Fig. 5.2-1a, b). 

 The other (non-C, P, ionic) residues that primarily appear to deviate from disorder 

value in both are W, Y, G, and S. The deviations of tryptophan and tyrosine are not 

consistent between the two scales, while the deviations of glycine and serine are consistent. 

Possible explanations are here suggested for these observations. The negative deviations of 

the polar aromatic residues in the Wimley-White octanol to water scale, with respect to the 

optimized disorder values suggests that the hydrophilic effect is operating specifically in wet 

octanol. In wet octanol interfaces (with hydroxyl groups, acyl chains, and water in 

proximity), the molecules with protruding tyrosine or tryptophan in the middle position may 

less able to locate in positions where all hydrophilic groups on the backbone and certain side 

chains of the construct are simultaneously satisfied by polar interactions while still protecting 

hydrophobic groups well. Glycine and serine may create gaps or regions in the vicinity of the 

variable side chains that are more conducive to water, also affecting behavior in the organic 

phase. 
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 Cysteine deviates approximately half as much, in the negative direction, for the 

membrane experiment as for the octanol experiment. This is consistent with an expected bias 

in the disorder value for cysteine. An estimated disorder value of –0.08 for non-disulfide 

bond forming cysteine may be calculated from the Wimley-White experimental values (see 

section 5.4), although the possibility of special behavior of the construct is likely and makes 

this value unreliable. 

 The Wimley-White experiments appear to support the existence of a tight association 

between hydrophobicity and disorder when special consideration is given to the AcWL-X-LL 

construct used in these experiments. 

 

5.2.4 Considering other scales 

 Strengths of associations have been quantified using R2 values, for which ionic 

residues, cysteine, and proline are generally reasonably excluded, reasons for which are 

discussed below. The R2 value for a qualitative association with disorder may be estimated 

by assigning each of the more hydrophobic/order-associated residues a value of 1 and each of 

the less hydrophobic/order-associated residues a value of 0 (like Venanzi (1984) did in 

associating hydrophobicity with bitterness) and calculating the R2 value for these values 

against the optimized disorder values. This method yields an R2 value of 0.783, or, if placing 

tryptophan in its own ‘super-ordering’ category, 0.915 (see Fig. 5.2-2). On the other hand, a 

perfect quantitative, linear relationship would, of course, have an R2 value of 1. The Nozaki-

Tanford relationship (reflected by R2 of 0.982) is close to a perfect linear relationship. No 

good standard statistical test may be applied to distinguish between the strengths of different 
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associations (Press 1999). But relatively strong associations with hydrophobicity are 

abundant, and other strong associations are generally lacking. 
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Figure 5.2-2. Ordering quality (discrete values of 0, 1, 2) vs. optimized disorder values. (The 
residue with the assigned value of two is tryptophan). Compare with Venanzi (1984) 
bitterness scale. 
 

 Williams et al. (2001) demonstrate qualitative relationships between disorder 

propensities and contact scales, hydrophobicity, flexibility index, and beta-strand propensity. 

Their best-associated characteristic, 14 Å contact number (Nishikawa and Ooi 1986) (they do 

not provide R2 values; R2 = 0.830 with disorder values presented here), is related through its 

association with hydrophobicity, but also has an association with hydrophilicity (see Fig’s 

3.3-1, 5.2-3a). (Without going into a full discussion, among other things, the hydrophilicity 

relationship suggests association between contact number and surface exposure, as would 

reasonably be expected.) With a clear difference between contact number and disorder, 

evidenced by difference in deconvolution into hydrophobicity and hydrophilicity, contact 
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number cannot be used to explain disorder. Williams et al. certainly contributed, but the 

distinctive relationship between disorder and hydrophobicity was not demonstrated in their 

work. 
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Figure 5.2-3. Certain top scales found by Williams et al. (2001) a) 14 Å contact number 
(Nishikawa and Ooi 1986). b) Sweet and Eisenberg (1983) ‘hydrophobicities’. 
 

 The scale that is second-best related to disorder, according to Williams et al. (2001), 

is the Sweet and Eisenberg (1983) ‘hydrophobicity’ scale, which was derived using residue 

substitution data. Dosztányi et al. (2005) found the same scale to be associated with a 

primary component of a residue-residue interaction matrix, which is used in IUPred, a 

predictor of ‘intrinsically unstructured’ protein described in the same paper. 

 With imperfections in scales, the nature of the hydrophobicity/disorder relationship is 

not revealed by simple automated searches of scales, either by testing in their ability to make 

predictions (Williams et al. 2001) (note the Hopp-Woods scale in Fig’s 3.2-9 and 5.1-3) or in 

statistically calculating strengths of associations for all residues. Searches were performed of 

AAIndex1 (Kawashima et al. 1999), a residue scale database (the version to which local 
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access was available includes entries with dates no later than 2002), for scales yielding the 

highest associations of various scales with optimized disorder values as measured by R2 

values—one excluding C, P, and ionic residues in calculation of R2 values and one including 

all residues in calculating R2, the results of which are shown in Tables B-1 and B-2, 

respectively. When searching by R2 calculated from all residues, 14 Å contact number 

(Nishikawa and Ooi 1986), found by Williams et al. to be the characteristic best predictive of 

disorder, is the second best-associated characteristic, with an R2 value of 0.840. When 

excluding the ionic residues, cysteine, and proline, however, the number of scales associated 

with R2 better than 0.7 is larger, and significantly stronger associations are observed. All of 

the thirteen scales with R2 values greater than 0.9 are apparently hydrophobicity or disorder-

related. Four of the top five scales, as measured by R2, are related to the work of Nozaki and 

Tanford (1971) and the other is the Guy (1985) ‘octanol’ to water scale, which also includes 

influence from ethanol/water partitioning. 

 

5.2.5 Other contributions of methods described here to finding association 

 Besides the exclusion of C, P, and ionic residues, other aspects of methods used in 

this work appear to have contributed to discovery and/or allowed improved demonstration of 

the strength of the disorder/hydrophobicity association, including 1) the size and variety of 

the data set; 2) the use of predictor optimization rather than simple statistics; and 3) the 

exclusion in analyses/performance measures of certain cases that would have introduced bias. 

 Compared with the standard secondary structure categories (helix, strand, coil), 

disordered residues make up a relatively small fraction of all residues (Table 2.4-1 shows 
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frequencies of counted residues, ‘missing’ and ‘non-missing’) in crystallographic structures. 

Even with the large amount of data that were used, there is still some variance in the 

parameters and other evidence of differences from subset to subset of data (see, for examples, 

Fig’s 3.2-2, 3.2-3, 4.2-1). Had less data been used, it might be expected that random 

deviations would be greater. Rather than selecting a single representative from each related 

group of structures, often several structures were used as representatives from a group, and 

some evidence (not shown) was observed that this reduced noise in the parameters. 

 The optimized disorder values for the standard residue types are clearly associated 

with disorder vs. order log odds ratios, and they thus offer evidence of what might be 

expected—that log odds ratios (or similar statistics) may function for a linear disorder 

predictor as near-optimal disorder propensities. However, although they of course showed 

good correlation with hydrophobicity, log odds ratios (essentially calculated using the same 

data, balanced in the same fashion) do not correlate as well with the Nozaki-Tanford 

hydrophobicities as do the optimized disorder values. The optimization process appears to 

have excluded to some degree some disordering property in the aromatic residues, thus 

allowing more clear demonstration of the hydrophobicity relationship (see the section 5.3.4 

on aromatic residues for more discussion). 

 Although it cannot be claimed that every source of bias has been removed from the 

data, significant sources of bias have been removed. When the effects of ‘special cases’ are 

substantially removed from training, predictions on standard cases may be considered more 

valid, and optimized values may be better related to characteristics of standard cases. Care 

was taken to exclude effects of N-terminal methionine and polyhistidine tags. Williams et al. 
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(2001) show an apparently high value for methionine. Linding et al. (2003a) also provide 

statistical disorder values where histidine and especially methionine, as they note, appear 

higher relative to other residue types. Among optimized disorder values shown herein, 

methionine clearly falls in line with the disorder/hydrophobicity trend, and histidine is close 

to it (Fig. 3.2-8c). 

 

5.3 RESIDUE-SPECIFIC ISSUES 

 On the order of simple residue composition, not many factors other than 

hydrophobicity appear to play a large role in disorder. Nevertheless, with hydrophobicity 

established as a baseline property, the deviation (or non-deviation) of certain residues from 

the trend may be informative. Cysteine and proline appear to have disorder propensities that 

appear to deviate from their hydrophobicities. On the other hand, the discrepancy between 

disorder propensities and ‘octanol/water’ (Guy 1985) transfer energies for charged residues 

may be primarily due to the deviation of experimental values from their true 

hydrophobicities. These and other residue types are discussed in more detail below. 

 

5.3.1 Cysteine 

 Cysteine has an obvious special property—that of disulfide bond formation. The 

disorder propensity for cysteine is lower than that of methionine and yet methionine (which 

is the other sulfur-containing amino acid) has two more carbon atoms than cysteine, which 

would suggest that it is more hydrophobic than cysteine (Levitt 1976) and should have a 

lower disorder propensity than cysteine. Methionine falls in well with the 
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disorder/hydrophobicity trend. This would suggest that cysteine deviates from the 

disorder/hydrophobicity trend—having lower disorder propensity than would be expected 

from hydrophobicity. This is consistent with that idea that disulfide bonds constrain a 

protein, thus promoting order—an effect opposite to that of the decreased contraint that 

occurs at protein termini—which are recognized to be more likely to be disordered (Ward et 

al. 2004) (see Table 2.4-1). The Meek (1980) scale also gives some evidence that cysteine 

does not follow the hydrophobicity/disorder relationship, although this is not corroborated by 

Meek and Rossetti (1981). 

 

5.3.2 Glycine 

  Glycine has decreased steric hindrance of backbone torsion. Though glycine may 

have a strong influence in producing disorder (Esnouf et al. 2006), glycine follows 

disorder/hydrophobicity trends (see Fig. 3.2 8a, d), likely reflecting a balance between 

ordering and disordering properties. 

 

5.3.3 Proline 

 Proline is not given a value in the Radzicka-Wolfenden ‘octanol/water’ scale (of 

course, given their use of side chain analogs), nor in the Nozaki-Tanford scale. Proline might 

significantly alter the behavior of the AcWL-X-LL construct, so the Wimley-White values 

are not too informative. Some evidence suggesting that proline deviates from the 

disorder/hydrophobicity relationship may be found in the Meek (1980; fig. 5.3-1) and Meek 

and Rosetti (1981; not shown) scales, as well as the original Guy (1985) ‘octanol’/water scale 
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(not shown). Proline may promote disorder not just because it simply disrupts helices and 

strands (recall that coil propensity is not well-correlated with disorder propensity) but also 

because it forces an extended backbone conformation. A similar point is that, given its 

requirement of an extended conformation, proline might be better substituted into regions 

that tend to be disordered in a given family of proteins. Variation in prolyl isomerization 

could reasonably play a role in crystallographic disorder. 

5.3.4 Charged residues 

 Some of the biggest scatter in plots of various experimental scales vs. disorder values 

comes from the ionic residues (Fig’s 5.2-1a,b, 3.2-8d). Radzicka-Wolfenden ionic residue 

values had been adjusted on the assumption that only the uncharged molecules partitioned 

into the organic phase (Radzicka and Wolfenden 1988). For the Wimley-White octanol to 

water experimental values given, such adjustments were not made. Measurements were 

performed under basic conditions, and arginine and lysine reasonably deviate toward greater 

hydrophobicity and aspartate and glutamate deviate in the opposite direction. With the Meek 

(1980) HPLC retention coefficients plotted against disorder values in Fig. 5.3-1, the strong 

ionic residue experimental values do not deviate from optimized values very strongly, and 

this may be because the hydrophobic phase is related to a surface so that residues interacting 

with the hydrophobic phase are still interacting with the aqueous phase, with which ionic 

residues more favorably interact. 
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Figure 5.3-1. Retention coefficients, calculated from HPLC retention times of various 
‘peptides’ (Meek 1980). Conditions included a pH of 2.1, 0.1 M NaClO4, and an acetonitrile 
gradient. It is noted that cysteine does not similarly stand out in a similar set of values (Meek 
and Rossetti 1981). 
 
 Uversky et al. (2000) show that mean net charge can be used in combination with 

Kyte-Doolittle hydropathies in predicting global disorder. Disorder predictors developed in 

this work do not utilize net charge. It might be expected that if intermediate-range 

electrostatic interactions had a substantial net effect in disorder prediction, there would be 

marked shift in ionic residues’ disorder values in short window predictor (sw9_1) optimized 

disorder values, in contrast to standard optimized values. Considering all charged residues, 

however, a shift toward disorder, if any, is quite small (see Fig. 5.3-2), although there 

appears to be less consistency between standard disorder values and log odds ratios (Fig. 3.2-

7a). Among the standard disorder values, glutamate and aspartate are similar to asparagine 

and glutamine (see discussion below on the amide residues). Overall, the evidence suggests 

that, although charge may play some role in crystallographic disorder, the average effect of 
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charge is relatively small, and hydrophobicity is the main determinant of the average disorder 

contributions of charged residues. The charged residue disorder values may reflect their 

hydrophobicities, but there is not firm evidence for this. 
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Figure 5.3-2. Short window predictor (sw9_1) residue disorder values vs. standard (sw35_8) 
optimized disorder values (C, P, and ionic residues are open diamonds). 
 

5.3.5 Amide residues (asparagine and glutamine) 

 Glutamine has one more CH2 than asparagine and might be expected to be the more 

hydrophobic of the two, but asparagine’s disorder value is markedly less than glutamine’s. 

This might be partly explained by asparagine’s ability to form a six membered ring-like 

shape, with an interaction between the side chain amide NH2 and its backbone 

carboxyl/carboxylic acid group. This may have an ordering effect, if the hydrophilic 

tendency of the backbone carboxyl oxygen to interact with water is reduced. Nozaki and 

Tanford (1971) mention the troublesome result that the hydrophobicity calculated for 

asparagine was consistently more than that of glutamine, and this seems to have been why 
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they excluded these residues from their scale. For other experimental scales, asparagine also 

unexpectedly has a hydrophobicity less than or equal to that of glutamine (see Fig’s 3.2-8d, 

5.2-1a, b)—even the Radzicka-Wolfenden scale, derived from experiments with side chain 

analogs, which have no ‘backbone’ with which to interact.. Thus, asparagine’s self-

interaction perhaps only partly explains the unusual relationship between glutamine’s and 

asparagine’s disorder values. Glutamine has almost exactly the same disorder value as 

glutamate (Fig. 3.2-4a). Aspartate has a slightly lower value, and the difference between 

asparagine and aspartate might roughly represent the degree of asparagine’s special behavior. 

The fact that glutamine and glutamate have almost exactly the same disorder values supports 

the assertion that hydrophobicity, not hydrophilicity, is tightly connected to disorder, given 

that glutamate’s carboxylic acid group should be more hydrophilic, on average, than the 

glutamine’s amide group. 

 

5.3.6 Aromatic residues (phenylalanine, tyrosine, and tryptophan) 

 The aromatic residues may demonstrate how, given a tight hydrophobicity/disorder 

association, deviations from the trend might be informative. Tyrosine, phenylalanine, and 

tryptophan may deviate toward disorder by a small amount (Fig. 5.3-3). Optimized disorder 

values for a predictor with a window length of nine, rather than thirty-five (Fig. 5.3-3b) seem 

to show more apparent deviation toward disorder for phenylalanine and tyrosine, although 

this is at least in part due to a shift in the relative value for leucine. This shift in aromatic 

residue disorder values (if real) suggests that they have some disordering quality, apart from 

their hydrophobicity-related ordering propensity. One might explain this by saying that 
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tyrosine and phenylalanine are ‘disorder-seeding’ residues. When a ROC1.0 score is used to 

optimize the short window predictor, then there is a right shift in the value for tryptophan 

also (Fig. 5.3-3c), and the correlation plot against Nozaki-Tanford hydrophobicities looks 

quite similar to that for log odds ratios. Tryptophan thus perhaps deviates toward disorder 

when considering regions with low overall disorder propensity (and toward order in regions 

with overall disorder propensity; not further discussed here). 
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Figure 5.3-3. Correlations with Nozaki-Tanford scale showing possible aromatic residue 
deviation. a) Nozaki and Tanford (1971) amino acid hydrophobicities vs. optimized disorder 
values, with fit. b) Nozaki-Tanford hydrophobicities vs. short window optimized disorder 
values, with fit (using standard ROC0.5 score optimization). c) Nozaki-Tanford 
hydrophobicities vs. short window disorder values optimized using ROC1.0 scores (instead of 
ROC0.5 scores), with fit. d) Nozaki-Tanford hydrophobicities vs. average log odds ratio, with 
fit. (All fits exclude W, F, Y – light blue diamonds). Note that the apparent shift in the light 
blue residues, however, may be somewhat deceptive, being partly due to a shift in the left-
most dark blue residue (Leu). 
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5.3.7 Methionine 

 A special disorder value for N-terminal methionine was optimized along with the tail 

adjustment values for the simple sequence predictor (see Fig. 3.2-3a). The N-terminal 

methionine disorder propensity is much higher than that of normal methionine and even 

higher than that for serine (see Table A-1). This is probably primarily explained by two 

factors: 1) many crystallographers may neglect to include the full chain sequence in a PDB 

file when termini are disordered; and 2) N-terminal methionine is sometimes cleaved during 

posttranslational processing (Huang et al. 1987; Boissel et al. 1988). Based on conversation 

with crystallographers, unobserved terminal regions may often be entirely excluded from 

their published structure files, notwithstanding PDB instructions to publish the full chain 

sequence in SEQRES records even if terminal disorder is present (see PDB Format 

Description Version 2.2, Section 3 – Primary Structure Section, subsection SEQRES, 

currently available at the PDB website—go to http://www.pdb.org).  In structures where no 

proteolytic cleavage was performed, when N-terminal methionine is present its presence is an 

indication that the crystallographer has deposited the entire sequence, rather than excluding 

disordered termini. For this reason, termini would expectedly appear to be disordered more 

frequently when an N-terminal methionine is present. 

 In some disorder propensity scales, methionine has a substantially higher relative 

disorder propensity than in our scale (Williams et al. 2001; Linding et al. 2003a; Weathers et 

al. 2004). Because of our exclusion of terminal residues during optimization, however, 

methionine falls in with disorder/hydrophobicity trends (see Fig. 3.2-8c,d), giving evidence 

that it has no significant special disorder-related properties that are unrelated to its 
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occurrence at amino termini, which of course tend to be disordered, and supporting the 

conclusion that disorder is quantitatively related to hydrophobicity. Selenomethionine, which 

replaces sulfur with the larger selenium atom, also appears to follow the 

disorder/hydrophobicity relationship, as it is modestly more order-promoting than 

methionine. Amino-termini are sometimes post- or cotranslationally processed, sometimes 

with specific removal of methionine by methionine aminopeptidases. Statistics show N-

terminal methionine to be missing markedly more frequently when certain ordered residues 

are in the second position, including S, A, G, P, T, and V (also C with small sample size; see 

Table 5.3-1) in good agreement with other results (Huang et al. 1987; Boissel et al. 1988) on 

methionine aminopeptidase processing. Thus, in some cases, the absence of methionine from 

the coordinates is due to its being altogether absent from polypeptide chains rather than just 

being disordered. 
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Table 5.3-1. Statistics on whether or not N-terminal methionine is missing, in cases where 
second (penultimate) residue is present in the structure. A high relative frequency of missing 
methionines for a particular penultimate residue type suggests that methionine is often 
cleaved by an aminopeptidase when that residue type is present in the penultimate position, 
and thus the N-terminal methionine is entirely missing from the chain rather than simply 
being disordered. 

Subset log odds ratios Whole dataset 
Data subset Relative frequency 

Penultimate 
Residue 

type 1 2 3 4 5 Missing Present All 
log odds 

ratio 
W N/A N/A N/A N/A -Inf 0.0000 0.0004 0.0004 -Inf 
F -Inf -Inf -Inf -Inf -Inf 0.0000 0.0199 0.0199 -Inf 
Y -Inf -Inf 0.91 -2.50 -Inf 0.0012 0.0149 0.0161 -1.95 
L -1.38 -4.23 -Inf -2.99 -4.22 0.0015 0.0654 0.0668 -3.28 
I -0.86 -0.17 -1.31 -0.92 -2.24 0.0101 0.0484 0.0584 -0.99 
V 1.82 0.33 0.18 1.17 0.32 0.0257 0.0281 0.0538 0.57 
M -Inf -0.07 Inf -1.02 -Inf 0.0034 0.0062 0.0096 0.02 
C Inf N/A Inf N/A N/A 0.0002 0.0000 0.0002 Inf 
P 0.86 1.30 1.98 3.83 1.29 0.0369 0.0171 0.0540 1.49 
G 1.93 1.89 Inf 3.81 1.37 0.0222 0.0053 0.0275 2.12 
A 1.77 2.90 1.97 2.70 2.51 0.0667 0.0141 0.0807 2.37 
T 1.56 -0.68 1.46 0.73 1.62 0.0265 0.0207 0.0472 0.92 
S 1.43 1.97 2.00 2.00 2.98 0.0698 0.0196 0.0894 2.09 
Q -0.90 -Inf -1.05 -0.20 0.30 0.0081 0.0345 0.0426 -0.85 
N -0.06 -3.11 0.19 -0.70 0.15 0.0231 0.0599 0.0830 -0.35 
H -2.75 -Inf -Inf -Inf -Inf 0.0000 0.0107 0.0107 -5.29 
R -2.29 -0.77 -Inf -1.10 -3.14 0.0055 0.0548 0.0603 -1.75 
K -0.97 -1.64 -0.69 -1.04 -1.97 0.0201 0.1159 0.1360 -1.26 
E -0.97 -1.51 -1.46 -1.93 -0.08 0.0129 0.0753 0.0883 -1.22 
D -1.28 -0.89 0.58 -0.33 -0.71 0.0135 0.0409 0.0545 -0.50 

Nonstd N/A N/A N/A Inf N/A 0.0006 0.0000 0.0006 Inf 
(Sum)        0.3480 0.6520 1.0000  
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5.4 INTERPRETING THE LINEAR DISORDER/HYDROPHOBICITY 

RELATIONSHIP 

 The linear relationship between optimized disorder values and experimental 

hydrophobicity scales may be at least qualitatively informative, but it should be approached 

with caution. Using the three sets of linearly related values: log odds ratios, optimized 

disorder values, and the Nozaki-Tanford hydrophobicities, and considering the score profiles 

of disordered and ordered residues (see Fig. 3.2-5), values for may be obtained for the 

following relationship (see Parameter-Energy Workbook): 

b
d

KRT
RT isc

idiso +
−

=− ,
,

ln
lnκ   [5.4.1] 

Ksc,i is an equilibrium constant for some side chain type, i, calculated from its free energy of 

transfer between some organic environment and water. κdiso,i is a disorder/order partitioning 

constant calculated using disorder statistics, adjusted using the scoring behavior of the 

predictor. d is a dampening factor whose value depends upon the hydrophobicity experiments 

against which disorder is being compared. b is essentially the average per residue energy of 

the backbone contribution to local disorder. Given possible sources of substantial error, 

parameter-derived energies should not be taken to be highly accurate. Thus, there is also little 

need for debate over what statistical measure (e.g., log odds ratio vs. log probability ratio) is 

exactly equivalent to an ln K derived from experimental free energy of transfer. 

 Values for d and b are meaningful. When comparing against the Nozaki-Tanford or 

Guy octanol to water scales, d is roughly 4 in either case, essentially indicating a 4-fold 

reduced difference (hydrophobicity-wise) between the disordered and ordered states, on 
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average, in comparison differences between organic and aqueous states indicated by 

experiments. This value depends upon the ‘temperature’ used in the process of converting 

disorder values to energies. This could reflect a combination of factors. It may primarily 

reflect less of a difference between average disordered and ordered states than between 

organic and aqueous environments in model systems—worse protection, on average, of 

hydrophobic groups in ordered states than in ethanol or dioxane, and less exposure in 

disordered states than in water. It may reflect that, although on average hydrophobicity is 

order promoting, it can be disorder-promoting in some circumstances, as mentioned. It 

presumably reflects the presence of non-hydrophobicity related contributions toward 

disorder. 

 The value of b depends on determination of where disorder and order have equal 

‘energy’. This is estimated using the absolute score distributions for ordered and disordered 

residues. It appears that they should cross over (if a ‘bump’ in the disorder distribution were 

smoothed out) not too far from a score of 3.3. Using 3.3 as a score where disordered and 

ordered regions should occur with equal frequency, the value for b is roughly –0.04 kcal/mol 

(the Nozaki-Tanford values are only precise the 0.1 kcal/mol, and their estimated error range 

for glycine is ±0.05 kcal/mol—see section 5.2.1), but even with significant deviation in the 

score at which disordered and ordered conformations should be equally probable, the value 

for b does not change much relative to the energies of other residue types. 

 There is a possibility that estimated energies corresponding to tail adjustments may 

also be calculated, but this has not been done in a manner in which I am confident of the 

result(s).
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CHAPTER SIX 
Secondary structure and disorder

 
 

6.1 RELATIONSHIPS WITH PSIPRED HELIX, COIL, AND STRAND SCORES 

6.1.1 Introduction and Methods 

 Residue-specific disorder predictors consider only two general states of residues in a 

protein: disordered and ordered. Traditional secondary structure prediction programs 

consider three states: ‘helix’, ‘strand’, and ‘coil’. 

 Jones and Ward (2003) noted improvement in disorder prediction from utilizing 

secondary structures in the first version of DISOPRED. In reporting the second version of 

DISOPRED (DISOPRED2; Ward et al. 2004), however, it was shown that secondary 

structure prediction information helped disorder prediction somewhat when augmenting 

simple sequence-based prediction, but not when augmenting profile-based prediction. 

 To investigate relationships between secondary structure prediction and disorder 

prediction, PSIPRED predictions were successfully performed for all chains included in the 

general profile dataset (see section 2.4). (PSIPRED prediction results include coil, helix, and 

strand state scores for each residue, as well as an overall prediction as to which state the 

residue adopts.) Previous description of the use of data in testing/analysis applies here, 

including the exclusion of certain residues from analysis (see sections 2.4, 2.5.2). At least 

eighteen residues were excluded from analysis at each terminus (see section 2.5.2). Disorder 

scores were calculated using the standard simple sequence predictor (sw35_8). 

 Interesting relationships were observed between output from PSIPRED, a traditional 

secondary structure prediction program, and from the simple window predictor. Comparing 
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PSIPRED results and the simple sequence disorder predictor’s results show that the 

relationships between helix, coil, and strand scores and disorder scores are not monotonic. 

The relationship between disorder and coil scores may be of particular interest, since some 

researchers may attempt to use a secondary structure predictor as an ad hoc disorder predictor 

by looking at coil scores. 
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6.1.2 PSIPRED study Results 

6.1.2.1 Disorder score vs. PSIPRED coil score 

 Relatively simple, but not monotonic, relationships appear to exist between disorder 

scores and coil, helix, and strand scores. As expected, disorder scores appear to generally 

show a positive correlation with coil scores (see fig. 6.1 1). At the high end of coil scores, 

however, the associated average disorder scores begin to show an inverse correlation. 

Perhaps this is largely due to high coil scores being associated with easily identifiable 

features in structures, with more flexible loops being more often associated with scores in the 

moderately high range. 
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Figure. 6.1-1. Average (standard simple sequence predictor) disorder score vs. PSIPRED 
coil score. 
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6.1.2.2 Disorder score vs. PSIPRED helix score 

 PSIPRED helix scores appear to generally have a mild, inverse relationship with 

disorder scores (Fig. 6.1-2), as might be expected. Very low helix scores also tend to have 

lower disorder scores—likely in large part because these tend to correspond with strongly 

predicted strand (or coil). 
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Figure. 6.1-2. Average disorder score vs. PSIPRED helix score. 
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6.1.2.3 Disorder score vs. PSIPRED strand score 

  The relationship between PSIPRED strand scores and disorder scores (Fig. 6.1-3) 

appears to be similar to the relationship between helix scores and disorder scores. One 

difference is that the curve appears to be more peaked at strand scores close to 0.040. The 

primary differences appear to be in a generally steeper ‘curve’, and in generally more 

negative disorder scores at any given non-extreme secondary structure scores when 

compared with the helix curve. An association between disorder and β-sheet propensity has 

previously been noted (Williams et al. 2001). 
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Figure. 6.1-3. Average disorder score vs. PSIPRED strand score. 
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6.1.2.4 Disorder score vs. sum of PSIPRED coil, helix, and strand scores 

 The relationship between disorder scores and the sum of the PSIPRED coil, helix, and 

strand scores (Fig. 6.1-4) appears to be more complex. From a coarse perspective, it appears 

to have a ‘W’ shape, and at a finer level, there is a brief dip close to the value of 1, which 

may reflect certain residues strongly predicted to adopt either helix or strand conformation, to 

the exclusion of the other. The increase in scatter as scores move farther from 1 in either 

direction reflects a relative paucity of residues whose sum of scores is very much different 

from 1. It appears that residues with a very low summed score (in this case, nothing would be 

very strongly predicted) tend to have higher than average disorder scores, while residues on 

the higher end, have lower disorder scores. 
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Figure. 6.1-4. Average disorder score vs. sum PSIPRED coil, helix, and strand scores. 
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6.1.2.5 Disorder in data and various combinations of PSIPRED coil, helix, and strand scores 

 A different analysis was also done, in which PSIPRED secondary structure 

predictions were collected into bins for residues that fall within the following moderate range 

of simple window prediction scores: (0, 1.5). The bins were made according to three 

variables—PSIPRED helix, strand, and coil scores. Each of these categories was split into 

five ranges: 0.000 – 0.199, 0.200 – 0.399, 0.400 – 0.599, 0.600 – 0.799, and 0.800 – 1.000. 

Bins included each combination of ranges for the three secondary characteristic scores (125 

in all). For each of the five standard cross-validation profile test sets, the number of residues 

that fell into each of these bins was tallied for ordered and disordered residues. The ordered 

and disordered bins were compared, and p values for differences were calculated using a two 

tailed, pairwise t test. Disordered residues that fall within this score range tend to have higher 

helix scores and lower strand scores (see Table C-1). 

 These results may be confounded in relation to the range of scores. Even though the 

residues were limited to a disorder score range of 0 – 1.5, those residues strongly predicted as 

strands would likely still have a lower average disorder score than those strongly predicted as 

helices (see Fig’s 6.1-2 and 6.1-3). Narrowing the disorder score range of these residues 

might reduce this effect but also reduce the statistical power of the sample. 

6.1.3 Discussion of PSIPRED/disorder results 

 No disorder predictor perfectly discriminates between ordered and disordered 

residues. Of potential interest are disordered residues that do not receive high disorder scores. 

Combining disorder score and secondary structure prediction may be useful. The results 

described here suggest a logic that might underlie any contribution that secondary structure 
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prediction may add to prediction of disorder—for example, a residue with a moderate 

disorder score, a high helix, and low strand score (and that may be closer to the edge of a 

helix) may be more likely to be disordered. Whether strands are actually more ordered than 

helices is another question—distributions of scores for all-alpha and all-beta SCOP classes 

are quite similar, as discussed below. Nevertheless, it is possible that helices undergo more 

order-disorder transitions than helices. 

 

6.2 PREDICTION BY SCOP CLASS 

 The disorder predictors’ parameters were developed using the first five classes of 

protein domains in SCOP—“globular” domains with alpha and/or beta core structure. One 

might expect that a disorder predictor performs notably well on, say, all-alpha proteins, but 

poorly on all-beta proteins, or that the expected score distributions for different classes of 

proteins might be significantly different (as results from the previous section seem to suggest 

would be the case for all-alpha vs. all-beta proteins). However, there appears to be little 

noticeable difference between classes for the simple predictor. 

 

Table 6.2-1. Number of families in each SCOP class in SCOP, version 1.67, that were 
included in the SCOP class data sets and subsets. 
  Number of families in test set: 
SCOP class 1 2 3 4 5 

Total families 
in class 

Alpha only 79 79 79 78 79 394 
Beta only 88 89 89 88 89 443 

Alpha/Beta 105 104 104 105 105 523 
Alpha+Beta 101 101 101 100 101 504 
Multi-domain 9 9 10 10 10 48 
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 The first five SCOP classes (alpha and/or beta domains) all have approximately the 

same overall distribution of disorder scores for non-missing (‘ordered’) residues (Fig. 6.2-1). 

However, some differences appear to be present. With respect to disorder score distributions, 

one class that sets itself apart somewhat is the alpha only class. Its ordered score distribution 

is noticeably different from the others in its somewhat skewed shape, where it drops off more 

steeply in the positive direction than in the negative direction (Fig. 6.2-1). Furthermore, the 

distribution of scores for disordered residues is skewed in the same general way, but more 

markedly so (Fig’s 6.2-2, 6.2-3). In particular, there appears to be a precipitous drop-off 

between score bin 3.1 and score bin 3.3. If one looks at the shapes of distributions of scores 

of disordered residues for the five individual alpha-only test sets (Fig. 6.2-4), sets 1, 2, and 5 

all show large, steep drops at this location; set 3 shows somewhat of a drop-off there, with a 

larger one from bin 2.5 to bin 2.9; and set 4, which is odd in its broad, flat shape, seems to 

have a more subtle drop-off in its average level at this point. But it is still notable that 3 out 

of 5 sets all have significant drop-offs at the same location, and it suggests, along with the 

corresponding average histogram shape (Fig’s 6.2 2, 6.2-3), that there is a something limiting 

at a disorder score of around 3.2, beyond which it may be more difficult for alpha-only 

proteins to maintain stability, or perhaps undergo disorder–order transitions. It is interesting 

that it appears that the absolute distributions for ordered and disordered residues should cross 

in the vicinity of score bin 3.3 (see Fig. 3.2-5, section 5.4). 
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Figure. 6.2-1. Histogram of average frequencies of ordered residues over different scores, for 
the first five SCOP classes (alpha, beta classes: those used in predictor development). Bin 
size is 0.2. The x-axis value for a bin is its center value. (e.g., bin 0 – 0.2’s value is  0.1). 
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Figure. 6.2-2. Histogram of average frequencies of disordered residues over different scores, 
for the first five SCOP classes. See explanation of bins in Fig. 6.2-1. 
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Figure. 6.2-3. Histogram of average frequencies of ordered and disordered residues over 
different scores, for only the first two SCOP classes. 
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Figure. 6.2-4. Histogram showing frequencies of missing residues for alpha-only proteins. 
The five individual test sets are shown. Note the precipitous drop, particularly for sets 1, 2, 
and 5, from score bin 3.1 to score bin 3.3.
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CHAPTER SEVEN 
Conclusion

 
 

 Some disorder predictors use parameters that are selected because they seem logical. 

Other predictors have been data-optimized, but with their complexity, understandably do not 

have clear explanations for their resulting parameters. We demonstrate a simple, optimized, 

sequence-based predictor that shows performance similar to a support vector machine, neural 

network, and profile-based predictor (DISOPRED2). Furthermore, the optimized parameters 

reveal what is contributing to the prediction. Simple side chain composition may play a 

stronger role in predicting disorder than in predicting (Rost and Sander 2000) secondary 

structure. Findings presented here could provide basis for a good ‘prior’ model that could 

help to establish whether higher order sequence patterns are significantly related to disorder 

through establishing whether certain patterns yield a statistically significant increase in 

predictive power over what would be expected from composition alone. Identifying sequence 

regions where the predictions provided by our simple sequence-based predictors differ from 

those of neural network predictors may help to elucidate what additional sequence patterns or 

factors those predictors are utilizing. 

 This work demonstrates how data-optimized predictor parameters may be 

scientifically informative. Although statistics (i.e., log odds ratios) might have been used to 

demonstrate some of the things demonstrated using optimized parameters, use of the 

predictor-based approach may be useful in various ways. A predictor, of course, inherently 

provides means for assessing and utilizing the predictive value of its parameters. Relatively 

simple predictors provided, overall, predictive performance similar to that of DISOPRED2 
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(see Fig. 3.2-1). A predictor may provide a simple means of looking at multiple factors in 

combination. Nonlinear terms may easily be introduced, and compared with linear ones. And 

even for linear predictors, predictor parameters may in some instances differ substantially 

from potentially related statistics, as with our profile-based predictor (see Fig. 3.2-7). 

Optimization may be based on a performance measure that yields more appropriate results 

than simple statistics. In our case, use of a fractional ROC score reduced the influence of 

‘low-specificity cases’ of disorder (i.e., low-scoring disordered segments) on optimized 

parameters (see Fig. 5.3-3). Such an approach might be useful if low specificity cases 

included more artifactual or atypical types of disordered regions. 

 From a practical standpoint, prediction of disorder may be useful to crystallographers. 

Detection of disordered regions by NMR and subsequent removal can improve protein 

crystallizability (personal communication from J. Rizo-Rey). Using predictors such as ours 

might augment efforts to remove disordered regions that are preventing crystallization 

(Esnouf et al. 2006). In contrast, selective modification of hydrophilic side chains 

(Derewenda 2004) may improve crystallization not through eliminating local disorder but 

through removing a hydrophilic penalty for the formation of crystal contacts.  

 This work enhances understanding of relationships between disorder and the primary 

traditional secondary structure classifications (helix, strand, and coil). Although strand 

propensity for a position appears to show a better inverse relationship with disorder tendency 

than helix propensity, there does not appear to be strong difference between score 

distributions for domains in the all-alpha and all-beta classes (Fig. 6.2-3). There is a lack of 

strong correlation between disorder propensities and coil propensities (Fig. 3.2-8a), 
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confirming previous observation of such a difference (Linding et al. 2003a). Simple 

sequence-based predictors that use coil propensities in place of optimized disorder 

propensities show substantially worse performance in predicting disorder (Fig. 3.2-9). There 

is substantial non-monotonicity of the relationship between disorder scores and PSIPRED 

coil scores, with the highest coil scores being associated with lower disorder scores, on 

average, than moderately high coil scores (Fig. 6.1-1). These lines of evidence with respect to 

the relationship between ‘disordered’ and ‘coil’ regions give reason to view the ‘average’ 

coil and disordered states as different and to use a disorder predictor, rather than a secondary 

structure predictor’s coil scores, to predict disorder. 

 Many factors may affect whether residues will be missing from deposited structures 

or not, including the presence or absence of ligands, other experimental conditions, and 

personal interpretation of data. Nevertheless, large quantities of crystallographic data have 

yielded a clear trend in disorder parameters. Near-optimal parameters for an effective 

disorder predictor may be largely reduced to relatively few simple components: side chain 

hydrophobicity, special parameters for cysteine, proline, (and perhaps asparagine), and 

general window weight and tail adjustment curve descriptions. This work demonstrates, 

however, how simply using an experimental hydrophobicity scale for disorder scores could 

be problematic. An experimental model may work relatively well for aliphatic and polar 

residues, but not for ionic residues. Experimental values may not be obtained for all twenty 

residues, and certain values may be inaccurately estimated. An example of this lies in the 

Hopp-Woods scale, which is generally quite well correlated with optimized disorder values 

but contains substantial outliers—particularly the strong ionic residues, for which values 
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were not directly based on experiments. There is a substantial difference in performance of 

the simple sequence method using the Hopp-Woods scale, in comparison to optimized 

disorder values (see Fig 3.2-9). 

 Evidence has been previously provided for an association between ‘hydrophobicity’ 

and disorder (Williams et al. 2001; Dosztányi et al. 2005). However, in these cited instances, 

a specific model under which hydrophobicity is best related to disorder is not clearly defined, 

and the strengths of disorder/hydrophobicity relationships are not directly determined—i.e., 

the tight nature of the disorder/hydrophobicity relationship is not clearly demonstrated. The 

tight linear association between disorder and hydrophobicity has significant implications not 

strongly supported by previous associations of disorder with ‘hydrophobicity’, among other 

properties. It may simplify and clarify understanding of what differentiates residues in their 

tendencies to be disordered. It gives specific evidence for what might be expected—that 

crystallographically disordered loops tend to adopt states that involve more indiscriminate 

interaction between side chain and solvent than solvent-exposed ordered regions, which may 

maintain more significant hydrophobic interactions while still also entertaining hydrophilic 

interactions if polar moieties are present (an idea that may have been discussed by Wertz and 

Scheraga 1978—see Radzicka and Wolfenden 1988). 

 The relationship between order vs. disorder and hydrophobicity contrasts with the 

relationship between residue exposure vs. burial and hydrophilicity (Fig. 3.3-1; Radzicka and 

Wolfenden 1988; Wertz and Scheraga 1978). The overall hydrophobicity of residues on the 

surface and the strength of hydrophobic interactions appears to play a role in stabilizing a 

protein’s surface, while hydrophilicity is likely quite important in determining how a protein 
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folds (with relation to which residues may be fully buried), and polar/ionic residues on the 

surface may play important roles in preventing aggregation and conferring specificity upon 

binding due to the cost of burying a polar moiety without providing compensating 

interactions. Perhaps more care should be taken when referring to ‘hydrophobic’ residues. 

For example, if a position in a large, diverse sequence alignment is observed where all or the 

great majority of residues are non-polar (for example, I, L, V, and F), then this suggests that 

this position is sometimes or always completely buried from solvent—this might be best 

referred to as an ‘apolar’ or ‘non-polar’ pattern rather than a ‘hydrophobic’ pattern. 

Tryptophan is the most hydrophobic residue, and generally confers stability through 

hydrophobic interactions, even though it is likely to typically be partially exposed to solvent 

rather than being buried in a protein or in the middle of a lipid bilayer, due to its also being a 

polar residue. Tyrosine is similar to tryptophan. 

 Different types of interactions (hydropathic and otherwise) can be of various 

importance in different situations. The simple observation that a structural property is 

hydropathy-related is not as informative as separating that property into components 

representing more specific types of interactions. Application of fundamental physical 

concepts might still be improved in efforts to understand structural issues related to globular 

protein folding, structure, and stability; membrane protein folding and structure; ligand 

binding; and, of course, disorder. 

 Care should be taken not to simply equate disorder, solvated regions, flexible regions, 

linkers, coil regions, etc. The optimized parameters and the disorder/hydrophobicity 

relationship were derived from X-ray crystallographic structure data. Thus, conclusions about 
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the physical nature of disordered regions drawn from this work may be most strongly applied 

to crystallographic disorder. However, there appears to be similarity in disorder propensities 

in crystallographic disorder and disorder as measured by other means (Williams et al. 2001). 

Crystallographically disordered regions are typically local and short, but the similarity in 

residue disorder values for the standard sequence-based predictor and the high specificity 

predictor suggests that the hydrophobicity relationship also applies to longer disordered 

regions. Nevertheless, there are likely significant types of disordered regions other than 

highly solvated loops. What tends to contribute to the disorder in various types (Uversky 

2002) of ‘intrinsically unstructured proteins’ (i.e., globally disordered proteins) is not entirely 

clear. Kyte-Doolittle hydropathies have been used, along with net charge, in predicting these 

proteins with some success (Prilusky et al. 2005) (see section 1.2.12) but not necessarily 

optimally. 

 As has been noted, ‘stability and conformation are not synonymous’ (Rose et al. 

2006). In contrast to hydrophobic groups, hydrogen bonding groups do not play a significant 

role in stability but instead in conformational and interaction specificity, due to their 

requirement to form specific interactions with other hydrogen bonding groups or to be 

exposed to an aqueous environment (Wertz and Scheraga 1978). Some residues possess both 

hydrophobic and hydrophilic character (e.g., tryptophan), and may contribute both to stability 

and to fold or interaction specificity. 

 In summary, data-based optimization of simple predictors of disorder yields 

predictors that are substantially better than if disorder propensities are based on available 

scales that might be presumably related to disorder. Optimized simple predictors are shown 
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to be similar in performance to DISOPRED2, but also have the benefit of yielding relatively 

interpretable data-optimized parameters. Furthermore, a tight relationship has been 

established between disorder and experimental hydrophobicity. Considering this 

relationship—and contrasting it with the relationship between hydrophilicity and residue 

exposure or burial—enhances understanding of how hydrophilic and hydrophobic 

interactions play different fundamental roles in structurally related behavior of proteins. 
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APPENDIX A 
Additional parameter data 

 
Table A-1. Average standard parameter values. Abbreviations: sM: selenomethionine; Unk: 
unknown/nonstandard residue type; nM: N-terminal methionine; Xtn: ‘ghost’ extension 
residue type. (*) N-terminal methionine value is 0 without tail adjustments; non-zero value 
optimized for predictor with tail adjustments. (See also Supplemental Workbook). 

Residue disorder parameters Window position weights Tail adjustment parameters 

      Simple Profile 
Residue 

type Simple Profile Position Simple Profile Position N C N C 

W -1.00739 -2.23636 -17 0.0810959 0.0799477 1 2.92236 2.87292 3.01219 2.75639 

F -0.540414 -0.253414 -16 0.0945469 0.0555576 2 2.73524 2.74768 2.76413 2.5723 

Y -0.513589 -1.02542 -15 0.120127 0.0646663 3 2.67317 2.65749 2.6004 2.45406 

L -0.418184 -0.972307 -14 0.120692 0.0719768 4 2.63611 2.60081 2.46224 2.36556 

I -0.514274 -0.639313 -13 0.164119 0.0955245 5 2.38821 2.35462 2.09909 1.99874 

V -0.358167 -0.814371 -12 0.139548 0.13562 6 2.24921 2.16798 1.86401 1.67034 

M -0.216377 0.512026 -11 0.207438 0.203993 7 2.04159 1.98436 1.61635 1.46931 

C -0.540732 -1.43576 -10 0.243471 0.240458 8 1.94916 1.77682 1.46399 1.29269 

P 0.32731 0.930165 -9 0.286714 0.271349 9 1.83816 1.62037 1.30031 1.07822 

G 0.241088 0.20741 -8 0.380712 0.362605 10 1.6573 1.46352 1.03936 0.924174

A 0.0642762 -0.558905 -7 0.447297 0.449501 11 1.49829 1.34756 0.848874 0.820892

T 0.0333232 -0.597119 -6 0.547931 0.579961 12 1.36491 1.13033 0.703339 0.691018

S 0.400289 2.03082 -5 0.66937 0.740327 13 1.28004 0.982911 0.630538 0.52237 

Q 0.336406 0.3561 -4 0.801724 0.857468 14 1.16945 0.948353 0.617375 0.519134

N 0.221683 0.269169 -3 0.941093 0.964805 15 1.11546 0.886143 0.530369 0.426656

H 0.18568 0.228484 -2 1.05196 1.06002 16 1.01185 0.826289 0.47963 0.365645

R 0.176914 0.587904 -1 1.16318 1.13616 17 0.981126 0.823421 0.485875 0.33697 

K 0.300523 0.879637 0 1.20872 1.20596 18 0.903084 0.736005 0.47725 0.214245

E 0.33729 1.0084 1 1.15937 1.19012 19 0.872304 0.716983 0.420956 0.276911

D 0.313504 0.14952 2 1.0893 1.13637 20 0.752184 0.61095 0.416503 0.194493

sM -0.373603  3 0.990943 1.02883 21 0.748407 0.499084 0.430953 0.111944

Unk 0  4 0.870869 0.907538 22 0.763484 0.461497 0.473511 0.072126

nM 0/0.502239*  5 0.746035 0.762543 23 0.676419 0.330615 0.44771 0.037252

Xtn 0  6 0.642842 0.658838 24 0.618042 0.367348 0.447826 0.066394

   7 0.536048 0.55776 25 0.542703 0.233581 0.239495 0.083206

   8 0.466368 0.47139 26 0.521499 0.273114 0.268665 0.050606

   9 0.396445 0.406485 27 0.471237 0.0484837 0.233608 0.045287

   10 0.329051 0.353803 28 0.421336 0.156365 0.090456 0.040655

   11 0.288911 0.288708 29 0.386133 0.114393 0.159885 0.054771

   12 0.284116 0.277521 30 0.285652 0.0785499 0.143035 0.078479

   13 0.246708 0.173134       

   14 0.232329 0.165124       

   15 0.214341 0.19073       

   16 0.171901 0.17734       

   17 0.164679 0.177871       
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Table A-2. Standard simple sequence predictor normalized residue disorder parameters (see 
abbreviations descriptions in Table A-1 caption). As with Table A-1, the N-terminal 
methionine values are 0 for the predictor without tail adjustments and the values shown for 
the predictor with tail adjustments. 

Training run number  
Residue 

type 1 2 3 4 5 Average 

W -0.981474 -1.15887 -0.890212 -0.998254 -1.00815 -1.00739 
F -0.513251 -0.569435 -0.596236 -0.544599 -0.478549 -0.540414 
Y -0.514543 -0.502256 -0.522074 -0.553623 -0.475447 -0.513589 
L -0.404131 -0.419579 -0.424611 -0.431416 -0.411183 -0.418184 
I -0.526755 -0.501785 -0.455878 -0.532025 -0.554929 -0.514274 
V -0.33608 -0.353305 -0.395778 -0.341857 -0.363813 -0.358167 
M -0.279456 -0.245185 -0.203865 -0.168794 -0.184584 -0.216377 
C -0.614056 -0.594474 -0.532113 -0.480098 -0.482917 -0.540732 
P 0.334784 0.319255 0.324822 0.338855 0.318835 0.32731 
G 0.251483 0.232549 0.239284 0.231184 0.250941 0.241088 
A 0.0649797 0.0776471 0.0558383 0.0579555 0.0649605 0.0642762 
T 0.0376378 0.0365068 0.0114282 0.0655553 0.0154877 0.0333232 
S 0.382256 0.405499 0.399513 0.410855 0.403322 0.400289 
Q 0.327662 0.359927 0.369718 0.325243 0.29948 0.336406 
N 0.214824 0.214658 0.228237 0.231275 0.219422 0.221683 
H 0.166189 0.146834 0.222083 0.211106 0.182186 0.18568 
R 0.182866 0.158461 0.181368 0.173441 0.188434 0.176914 
K 0.294989 0.306523 0.289887 0.317157 0.294059 0.300523 
E 0.331722 0.355504 0.330986 0.335849 0.332387 0.33729 
D 0.309075 0.349132 0.332807 0.28588 0.290624 0.313504 

sM -0.357501 -0.393014 -0.366183 -0.290883 -0.460432 -0.373603 
Unk 0 0 0 0 0 0 
nM 0/0.375914 0/0.582456 0/0.389022 0/0.480076 0/0.338568 0/0.433207 
Xtn 0 0 0 0 0 0 
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Table A-3. Standard simple sequence predictor (sw35_8) window position weights. 
Training run number  

Window 
position 1 2 3 4 5 Average 

-17 0.115072 0.073077 0.03553 0.144771 0.037029 0.081096 
-16 0.016718 0.19195 0.110667 0.083625 0.069775 0.094547 
-15 0.144982 0.186976 0.121768 0.07112 0.07579 0.120127 
-14 0.112646 0.197966 0.150181 0.127839 0.01483 0.120692 
-13 0.15361 0.218307 0.105064 0.174095 0.169521 0.164119 
-12 0.151778 0.179491 0.083493 0.178716 0.10426 0.139548 
-11 0.18592 0.24006 0.172559 0.227509 0.211142 0.207438 
-10 0.218298 0.282251 0.209617 0.255946 0.251243 0.243471 
-9 0.275447 0.308516 0.270668 0.304082 0.274856 0.286714 
-8 0.378721 0.398619 0.330181 0.421462 0.374579 0.380712 
-7 0.443281 0.468518 0.414094 0.462704 0.447889 0.447297 
-6 0.54438 0.558788 0.517371 0.572851 0.546265 0.547931 
-5 0.65377 0.675059 0.664989 0.675303 0.67773 0.66937 
-4 0.801217 0.785366 0.78536 0.817266 0.81941 0.801724 
-3 0.936319 0.911268 0.945917 0.945877 0.966082 0.941093 
-2 1.05993 1.02476 1.04959 1.04905 1.07647 1.05196 
-1 1.18527 1.11776 1.15017 1.15811 1.2046 1.16318 
0 1.21853 1.15035 1.21641 1.18992 1.2684 1.20872 
1 1.17486 1.09581 1.1787 1.14759 1.19989 1.15937 
2 1.10448 1.03068 1.09938 1.09988 1.11207 1.0893 
3 1.00961 0.941716 0.99523 0.993208 1.01495 0.990943 
4 0.909861 0.818672 0.860986 0.878433 0.886391 0.870869 
5 0.769424 0.709889 0.733907 0.757798 0.759156 0.746035 
6 0.653292 0.605388 0.641497 0.662462 0.651568 0.642842 
7 0.543691 0.521369 0.545176 0.543049 0.526956 0.536048 
8 0.477271 0.464462 0.490214 0.458566 0.441328 0.466368 
9 0.404665 0.400067 0.411322 0.393871 0.372301 0.396445 

10 0.326691 0.333995 0.366713 0.308524 0.309331 0.329051 
11 0.291399 0.291402 0.329476 0.273414 0.258866 0.288911 
12 0.274706 0.253982 0.32384 0.271497 0.296555 0.284116 
13 0.229783 0.244883 0.277473 0.237906 0.243495 0.246708 
14 0.215083 0.259011 0.264033 0.18404 0.23948 0.232329 
15 0.193541 0.217347 0.234657 0.210553 0.215605 0.214341 
16 0.17695 0.190454 0.219947 0.072688 0.199468 0.171901 
17 0.148795 0.151788 0.19382 0.146267 0.182725 0.164679 
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Table A-4. Standard profile predictor normalized residue disorder parameters. 
Training run number  Residue 

type 1 2 3 4 5 Average 

W -2.09148 -2.61706 -2.10484 -2.0888 -2.2796 -2.23636 
F -0.272436 -0.23715 -0.383806 -0.369084 -0.00459476 -0.253414 
Y -1.0419 -1.05509 -1.01128 -0.930724 -1.08809 -1.02542 
L -0.978854 -0.953488 -1.02118 -0.870715 -1.0373 -0.972307 
I -0.729807 -0.420555 -0.294466 -1.05833 -0.693406 -0.639313 
V -0.714005 -0.920532 -0.976652 -0.529684 -0.930981 -0.814371 
M 0.746268 0.155 0.326881 0.660004 0.671975 0.512026 
C -1.50318 -1.27558 -1.41914 -1.62398 -1.35694 -1.43576 
P 0.976002 0.94045 0.878351 0.899822 0.9562 0.930165 
G 0.203708 0.177357 0.251211 0.230187 0.174587 0.20741 
A -0.610474 -0.525186 -0.47482 -0.673394 -0.510652 -0.558905 
T -0.49623 -0.53368 -0.71771 -0.666015 -0.571961 -0.597119 
S 2.00211 1.88305 1.96218 2.18644 2.12034 2.03082 
Q 0.418755 0.335255 0.380311 0.285556 0.360622 0.3561 
N 0.153391 0.373362 0.341846 0.305805 0.171442 0.269169 
H 0.198718 0.166899 0.23351 0.337146 0.206149 0.228484 
R 0.610558 0.621636 0.436463 0.669908 0.600952 0.587904 
K 0.864976 0.894584 1.04699 0.798693 0.792939 0.879637 
E 0.909475 1.08819 0.878528 1.08422 1.08159 1.0084 
D 0.178503 0.137327 0.268034 0.0476701 0.116066 0.14952 
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Table A-5. Standard profile predictor window position weights. 
Training run number  

Window 
position 1 2 3 4 5 Average 

-17 0.017013 0.088907 0.133231 0.078248 0.08234 0.079948 
-16 0.017552 0.030972 0.073181 0.053874 0.102209 0.055558 
-15 0.022917 0.047326 0.114234 0.037145 0.10171 0.064666 
-14 0.026025 0.120131 0.012032 0.093898 0.107797 0.071977 
-13 0.126485 0.181741 0.066548 0.027241 0.075608 0.095525 
-12 0.10354 0.104397 0.150097 0.182928 0.137139 0.13562 
-11 0.183511 0.230327 0.196159 0.215022 0.194948 0.203993 
-10 0.214491 0.25926 0.207021 0.262806 0.258714 0.240458 
-9 0.249253 0.316021 0.224052 0.282858 0.28456 0.271349 
-8 0.371762 0.40504 0.312477 0.360584 0.363162 0.362605 
-7 0.468579 0.449815 0.411092 0.464358 0.453659 0.449501 
-6 0.608507 0.563704 0.560012 0.594176 0.573404 0.579961 
-5 0.772676 0.724139 0.726149 0.746663 0.732009 0.740327 
-4 0.884612 0.855578 0.842851 0.865021 0.839276 0.857468 
-3 0.989309 0.948756 0.953995 0.967486 0.964476 0.964805 
-2 1.07997 1.04883 1.05692 1.06 1.05438 1.06002 
-1 1.16679 1.10768 1.14318 1.12682 1.13632 1.13616 
0 1.2278 1.18035 1.2236 1.18579 1.21225 1.20596 
1 1.20561 1.16322 1.21238 1.18308 1.18631 1.19012 
2 1.15834 1.09531 1.17186 1.12401 1.13231 1.13637 
3 1.04427 1.01774 1.04017 1.01535 1.02663 1.02883 
4 0.947668 0.900626 0.912686 0.888584 0.888125 0.907538 
5 0.785478 0.766792 0.744848 0.764501 0.751096 0.762543 
6 0.685634 0.679634 0.654048 0.645084 0.629792 0.658838 
7 0.562415 0.556191 0.590561 0.553921 0.52571 0.55776 
8 0.479626 0.457896 0.509658 0.465259 0.444511 0.47139 
9 0.419713 0.393795 0.431992 0.402685 0.384238 0.406485 

10 0.394628 0.312392 0.369269 0.35628 0.336446 0.353803 
11 0.308664 0.267835 0.292386 0.289764 0.284893 0.288708 
12 0.283267 0.284649 0.273019 0.272334 0.274334 0.277521 
13 0.014283 0.196372 0.215059 0.231336 0.208619 0.173134 
14 0.179404 0.195753 0.081787 0.171605 0.197073 0.165124 
15 0.158007 0.200946 0.205394 0.191813 0.197492 0.19073 
16 0.166223 0.151515 0.21592 0.16617 0.186871 0.17734 
17 0.175974 0.19636 0.172138 0.1733 0.171585 0.177871 
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Table A-6. Simple sequence predictor tail adjustment weights (sw35_st30_8). 
Amino-terminal Carboxy-terminal 

1 2 3 4 5 1 2 3 4 5 

2.95122 2.92139 2.88618 2.75912 3.09391 2.87765 2.86338 2.94348 2.83384 2.84627 

2.7422 2.71433 2.73129 2.57017 2.9182 2.7382 2.72483 2.80311 2.6961 2.77617 

2.69202 2.65603 2.66935 2.49931 2.84913 2.66822 2.62347 2.73143 2.61471 2.64963 

2.62266 2.64305 2.62332 2.4697 2.82183 2.59164 2.57489 2.67484 2.55255 2.61011 

2.39744 2.42338 2.37943 2.22882 2.51196 2.32182 2.3496 2.43951 2.29603 2.36616 

2.26809 2.2525 2.22591 2.09992 2.39965 2.15267 2.14715 2.29833 2.11822 2.12355 

2.07061 2.08518 2.00394 1.8712 2.177 1.95088 1.9882 2.0996 1.91267 1.97044 

2.0109 1.9641 1.86316 1.82485 2.08281 1.75794 1.78645 1.86391 1.69635 1.77947 

1.88323 1.88436 1.77469 1.69793 1.95061 1.60245 1.6285 1.72289 1.56429 1.58372 

1.73963 1.6344 1.59361 1.54045 1.77843 1.45094 1.48963 1.54105 1.4123 1.42367 

1.54142 1.47213 1.46163 1.40738 1.60889 1.34757 1.42583 1.39471 1.28478 1.28489 

1.38652 1.3365 1.33124 1.25732 1.51296 1.16484 1.15849 1.18742 1.05833 1.08258 

1.28602 1.3041 1.23413 1.15253 1.42344 0.997914 0.975544 1.04956 0.959134 0.932402 

1.17155 1.16964 1.19471 0.989852 1.3215 0.965862 0.985113 0.976916 0.90061 0.913264 

1.13186 1.11569 1.05547 0.998223 1.27604 0.900207 0.942069 0.940972 0.861653 0.785814 

0.999379 0.979297 0.975673 0.939135 1.16579 0.895872 0.908994 0.857644 0.762732 0.706204 

1.00977 0.969899 0.895169 0.902013 1.12878 0.897527 0.848942 0.894894 0.783116 0.692626 

0.919833 0.882011 0.851562 0.826684 1.03533 0.797916 0.757788 0.776663 0.665118 0.682541 

0.841003 0.930447 0.855604 0.744537 0.98993 0.773312 0.728921 0.792134 0.639136 0.651414 

0.649349 0.742536 0.762833 0.687687 0.918513 0.678893 0.602246 0.682521 0.642107 0.448984 

0.774696 0.722433 0.750266 0.661668 0.832973 0.616518 0.47774 0.500184 0.567448 0.333528 

0.860596 0.72213 0.805107 0.63192 0.797667 0.564332 0.495797 0.499904 0.429144 0.31831 

0.699155 0.675839 0.755939 0.594616 0.656546 0.402511 0.391994 0.413192 0.295742 0.149637 

0.641918 0.578148 0.588893 0.592867 0.688385 0.404681 0.333733 0.426928 0.422549 0.248848 

0.525485 0.572256 0.517095 0.504277 0.594403 0.230442 0.253457 0.327271 0.208478 0.148259 

0.50425 0.555744 0.545916 0.496856 0.504731 0.24462 0.409565 0.283658 0.078142 0.349584 

0.485847 0.542437 0.40723 0.448216 0.472454 0.025462 0.020112 0.024092 0.031243 0.141509 

0.434298 0.41043 0.415835 0.444438 0.40168 0.244944 0.128885 0.066935 0.235698 0.105365 

0.254242 0.42818 0.306552 0.509931 0.431761 0.251597 0.072864 0.043097 0.042158 0.162251 

0.07064 0.402114 0.211555 0.372051 0.371899 0.17296 0.02949 0.053476 0.104693 0.032131 

 



149 

 

Table A-7. Profile predictor tail adjustment weights (p2w35_st30_6). 
Amino-terminal Carboxy-terminal 

1 2 3 4 5 1 2 3 4 5 

3.06922 2.9956 3.05903 2.84037 3.09672 2.85854 2.6035 2.79042 2.72584 2.80366 

2.8145 2.72965 2.8403 2.57816 2.85803 2.68281 2.41594 2.58911 2.5211 2.65256 

2.64033 2.60113 2.63615 2.46082 2.66358 2.52904 2.29022 2.50284 2.4284 2.51979 

2.52308 2.43623 2.50523 2.29731 2.54933 2.47735 2.21144 2.37356 2.3619 2.40356 

2.12913 2.10687 2.11374 1.97505 2.17068 2.08683 1.85937 2.04007 2.01537 1.99208 

1.8689 1.88651 1.89506 1.7138 1.95576 1.71439 1.56824 1.75922 1.68059 1.62926 

1.6201 1.63726 1.61811 1.51545 1.69083 1.51411 1.31585 1.57172 1.52769 1.41719 

1.4764 1.49354 1.46297 1.34681 1.54025 1.34689 1.2029 1.38345 1.30875 1.22148 

1.35923 1.26778 1.27759 1.23008 1.36686 1.15164 0.966148 1.13833 1.1037 1.03126 

1.09527 0.93518 0.989914 1.02264 1.1538 1.02421 0.822445 0.956797 0.957503 0.859916 

0.834503 0.790989 0.820054 0.869739 0.929083 0.930647 0.740141 0.842163 0.830073 0.761437 

0.698475 0.70142 0.688236 0.650201 0.778365 0.783838 0.642468 0.740091 0.620224 0.668467 

0.625319 0.628164 0.583726 0.62087 0.694613 0.615096 0.503477 0.49992 0.523806 0.469551 

0.639186 0.654134 0.590606 0.540729 0.66222 0.642644 0.54821 0.506071 0.43214 0.466605 

0.515409 0.450939 0.535996 0.488431 0.66107 0.524963 0.446889 0.461965 0.3463 0.353163 

0.490839 0.406112 0.483955 0.450352 0.566892 0.530508 0.336137 0.371206 0.210417 0.379955 

0.480844 0.483709 0.469996 0.489319 0.505509 0.529777 0.0899301 0.457047 0.256224 0.35187 

0.431788 0.533873 0.478843 0.427692 0.514054 0.39582 0.225915 0.0699969 0.192204 0.187288 

0.406164 0.464302 0.443014 0.273624 0.517674 0.422884 0.240674 0.389178 0.215653 0.116166 

0.405515 0.411242 0.413671 0.41215 0.439937 0.35419 0.173044 0.283571 0.0215711 0.140087 

0.514222 0.509831 0.489043 0.113483 0.528185 0.204253 0.0634088 0.172524 0.0651806 0.0543519 

0.501189 0.435677 0.530227 0.350939 0.549524 0.0518996 0.0288032 0.141393 0.0343 0.104233 

0.498561 0.327244 0.595595 0.252578 0.56457 0.0284103 0.020274 0.0870711 0.0244622 0.0260432 

0.442373 0.367486 0.584159 0.325496 0.519615 0.0588513 0.0452898 0.080633 0.089147 0.0580466 

0.332665 0.230197 0.413059 0.0523173 0.169236 0.199379 0.0528933 0.0401139 0.0749777 0.0486681 

0.201654 0.291364 0.406757 0.25301 0.190541 0.136381 0.0290707 0.0330476 0.031061 0.0234691 

0.264329 0.0308322 0.340227 0.299649 0.233004 0.0312199 0.0440925 0.0255211 0.0280191 0.0975845 

0.225599 0.122397 0.0209585 0.046923 0.0364001 0.023547 0.0506543 0.0470612 0.0563806 0.0256308 

0.151323 0.221083 0.102846 0.11411 0.210065 0.0667974 0.0225231 0.0205237 0.0749558 0.0890538 

0.0295684 0.0595531 0.369945 0.0309509 0.225159 0.0488324 0.0558655 0.0930292 0.120292 0.074376 
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APPENDIX B 
AAIndex search results 

 
Table B-1. Associations found with other scales from searches of AAIndex with H, R, K, D, 
E, C, and P excluded in calculation of R2. (Note: The values given in the AAIndex1 residue 
tables were used in calculating R2. In some instances in these tables, residues without actual 
values are given a default value of 0, or one value is selected if multiple are given for a single 
residue; this exercise was not key to making our initial findings, and no effort was made to 
manually exclude residues without actual values or to take into account alternative residue 
values). 
 
R2 range R2 AAIndex ID Note 

0.9775 HOPT810101 Hopp/Woods 
0.9775 LEVM760101  0.95 - 1 
0.9675 NOZY710101 Nozaki/Tanford 
0.9410 RADA880102 Radzicka/Wolfenden oct/wat 
0.9386 JOND750101  
0.9384 ARGP820101  
0.9269 TAKK010101  
0.9237 MEEJ800102  
0.9183 CIDH920102  
0.9166 MEEJ810101  
0.9122 VINM940101  
0.9068 MEEJ810102  

0.9-0.95 

0.9004 SIMZ760101  
0.8998 VINM940102  
0.8794 GOLD730101  
0.8792 OOBM770103  
0.8775 CIDH920105  
0.8766 FAUJ830101  

0.85-0.9 

0.8646 GUOD860101  
0.8469 PARJ860101  
0.8409 KARP850101  
0.8376 FUKS010104  
0.8314 WOLS870101  
0.8301 NISK860101 14 Ang contact number 
0.8268 ROSG850101  
0.8209 EISD860101  
0.8140 CIDH920104  
0.8109 VINM940103  

0.8 - 
0.85 

0.8047 ZIMJ680105  
0.7981 PARS000101  0.75 - 

0.8 0.7945 BULH740101  
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0.7903 MEEJ800101  
0.7869 LEVM760107  
0.7861 WERD780101  
0.7818 WIMW960101  
0.7809 CIDH920101  
0.7769 ZASB820101  
0.7731 PLIV810101  
0.7725 CHOP780213  
0.7719 LEVM760106  
0.7715 ROBB790101  
0.7693 GRAR740103  
0.7618 BIOV880101  
0.7558 NADH010104  
0.7555 VENT840101  
0.7496 NADH010105  
0.7402 GRAR740102  
0.7397 WEBA780101  
0.7357 BROC820102  
0.7316 BIOV880102  
0.7286 GOLD730102  
0.7220 TSAJ990101  
0.7209 BIGC670101  
0.7185 KRIW790101  
0.7133 TSAJ990102  
0.7127 NADH010106  
0.7114 FUKS010102  
0.7046 ROSG850102  

0.7 - 
0.75 

0.7028 KRIW790103  
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Table B-2. Associations found with other scales from searches of AAIndex including all 
residues in calculation of R2. See note in caption of  Table B-1. 

0.95 - 1      
0.9-0.95      
0.85-0.9 0.8646 VINM940102  

0.8395 NISK860101 14 Ang contact number 
0.8386 CIDH920104  
0.8371 OOBM770103  
0.8346 MEEJ810101  
0.8336 CIDH920102  
0.8314 CIDH920105  

0.8-0.85 

0.8084 MEEJ810102  
0.7934 VINM940101  
0.7872 FAUJ830101  
0.7789 NOZY710101  
0.7729 NADH010104  
0.7717 WERD780101  
0.7686 BIOV880101  
0.7686 PARJ860101  
0.7614 ROBB790101  
0.7612 PONP930101  
0.7597 MIYS850101  
0.7569 GUOD860101  
0.7532 KRIW790101  

0.75-0.8 

0.7500 VINM940103  
0.7481 NADH010105  
0.7384 PARS000101  
0.7355 NADH010103  
0.7296 NISK800101  
0.7252 GRAR740102  
0.7168 PONP800108  
0.7136 MEIH800101  
0.7133 ROSG850102  
0.7089 CIDH920103  
0.7084 BIOV880102  

0.7-0.75 

0.7061 PLIV810101  
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APPENDIX C 
PSIPRED 

 
Table C-1. For each bin combining PSIPRED coil, helix, and strand score information, any 
significant tendency toward being ordered or disordered ('Gap' or 'Nongap') is listed, as 
determined by two-tailed, pairwise t-test p-values. (This is not intended to be a perfect 
statistical test.) For any given test set, relative bin frequencies are produced in two different 
ways—either by dividing by the number of residues within that bin by the total number of 
residues in all bins, or by dividing by the total number of residues within its given coils 
category. As an example, the sixteenth entry gives coil category = 1, helix category = 4, 
strand category = 1; meaning this bin includes a count of all residues that are assigned by 
PSIPRED a coil score between 0.000 and 0.199, a helix score between 0.800 and 1.000, and 
a strand score between 0.000 and 0.199. When the frequencies of ordered and disordered 
residues within this bin for the 5 cross-validation test sets are compared (ordered vs. 
disordered), it is found that when the frequencies are calculated relative to all residues, that 
residues in this bin tend to be ordered, with a p-value for this tendency less than 0.1, but 
greater than 0.05. This makes sense, because residues with low coil scores would be expected 
to tend to be ordered. However, when frequencies are calculated relative to the coil 
category—comparing only with other residues that receive a low coil score, residues that fall 
within this particular bin tend to be disordered when compared to other residues with low 
coil scores, and this difference has a calculated p-value of < 0.05. A similar pattern also 
occurs for the twenty-first entry: coil category = 1, helix category = 5, strand category = 1. 
Therefore, it appears that for residues with weak coil scores, a strong helix score and a weak 
strand score makes it more likely to be disordered. 
   p < 0.1 p < 0.05 

Coil bin 
Helix 
bin 

Strand 
bin by all by coil bin by all by coil bin 

1 1 1         
1 1 2 Nongap Nongap     
1 1 3       
1 1 4 Nongap  Nongap   
1 1 5 Nongap Nongap Nongap Nongap 
1 2 1       
1 2 2       
1 2 3       
1 2 4 Nongap      
1 2 5         
1 3 1       
1 3 2       
1 3 3       
1 3 4       
1 3 5         
1 4 1 Nongap Gap   Gap 
1 4 2       
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1 4 3 Nongap  Nongap   
1 4 4       
1 4 5         
1 5 1 Nongap Gap Nongap Gap 
1 5 2 Nongap  Nongap   
1 5 3       
1 5 4       
1 5 5         
2 1 1 Nongap Nongap     
2 1 2       
2 1 3       
2 1 4 Nongap Nongap Nongap Nongap 
2 1 5 Nongap Nongap Nongap Nongap 
2 2 1 Nongap Nongap   Nongap 
2 2 2 Gap Gap Gap   
2 2 3       
2 2 4       
2 2 5         
2 3 1 Gap Gap Gap   
2 3 2 Gap Gap Gap Gap 
2 3 3 Nongap Nongap Nongap Nongap 
2 3 4       
2 3 5         
2 4 1 Gap Gap Gap Gap 
2 4 2       
2 4 3       
2 4 4       
2 4 5         
2 5 1       
2 5 2       
2 5 3       
2 5 4       
2 5 5         
3 1 1 Nongap Nongap Nongap Nongap 
3 1 2 Gap      
3 1 3 Nongap Nongap Nongap Nongap 
3 1 4 Nongap Nongap Nongap Nongap 
3 1 5         
3 2 1 Gap Gap Gap Gap 
3 2 2 Gap Gap Gap Gap 
3 2 3       
3 2 4       
3 2 5         
3 3 1 Gap Gap Gap Gap 
3 3 2       
3 3 3       
3 3 4       
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3 3 5         
3 4 1       
3 4 2       
3 4 3       
3 4 4       
3 4 5         
3 5 1       
3 5 2       
3 5 3       
3 5 4       
3 5 5         
4 1 1 Gap Gap Gap Gap 
4 1 2  Nongap   Nongap 
4 1 3 Nongap Nongap Nongap Nongap 
4 1 4       
4 1 5         
4 2 1 Gap Gap Gap Gap 
4 2 2       
4 2 3       
4 2 4       
4 2 5         
4 3 1  Nongap   Nongap 
4 3 2       
4 3 3       
4 3 4       
4 3 5         
4 4 1       
4 4 2       
4 4 3       
4 4 4       
4 4 5         
4 5 1       
4 5 2       
4 5 3       
4 5 4       
4 5 5         
5 1 1 Gap Gap Gap Gap 
5 1 2 Nongap Nongap Nongap Nongap 
5 1 3 Nongap Nongap Nongap Nongap 
5 1 4       
5 1 5         
5 2 1       
5 2 2       
5 2 3       
5 2 4       
5 2 5         
5 3 1       
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5 3 2       
5 3 3       
5 3 4       
5 3 5         
5 4 1       
5 4 2       
5 4 3       
5 4 4       
5 4 5         
5 5 1       
5 5 2       
5 5 3       
5 5 4       
5 5 5         
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APPENDIX D 
Code 

 
 Some of the following code gives an overview of the details of the individual runs 

(e.g., number of annealing steps, parameter start file, etc.). Minor editing of the original code 

has been done, not in a way that should actually affect results (e.g., removing extraneous 

commented out lines). 

 This section provides code used for training, code used for normalization/production 

of final parameters, samples of code used for analysis, and a table listing the functions of 

some of the code used in relation to the datasets (such as processing PDB files and obtaining 

cross validation sets). Code has sometimes been reformatted/adjusted from that in the 

original files, with no material changes. This section is not comprehensive in coverage of 

code used for generating results described in this dissertation. Code may be made publicly 

available at http://prodata.swmed.edu. 
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D.1 OPTIMIZATION CODE 

sw35_8.cpp: Training standard simple sequence-based predictor 
 
#include "annealer1.hpp" 
#include "simple_window35.hpp" 
using namespace SimpleWindow35; 
 
int main(int argc, char *argv[]) 
{ typedef SequenceProcessorTuple<TYPELIST_2(default_preprocessor_tp, 
  DomainDivisionNeutralizer<(tail_length + 1)/2>) > preprocessor_tp; 
 Annealer1<scorer_tp, SCOPDataset, preprocessor_tp, default_seq_reader_tp> annealer; 
 int rseed, set_num; 
 
  try 
  { if(argc != 2) 
 { cerr << "Should have run number as an argument." << endl; exit(1); 
 } 
 set_num = MyString::string2int(argv[1]); 
 rseed = set_num * 1000000 + 5000000; 
 srand(rseed); // Just affects Metropolis decisions, I think 
 annealer.dataset.preprocessor.set_num_terminal(tail_length + 1); 
 annealer.set_set_num(set_num); 
 annealer.set_dataset_base_name("scop1.67_fam_alpha_beta_2000_3.0_min50_5xv1"); 
 annealer.set_primary_dir(default_primary_dir); 
 annealer.set_run_base_name("sw35_8"); 
 annealer.set_start_file_base_name("simple_window35"); 
 annealer.read_start_file(1); 
 annealer.genome.randomize(); 
 annealer.evaluator.set_roc_false_pos_fraction(0.5); 
 annealer.set_optimization_direction(Maximize); 
 annealer.enviro.set_fractions(0.5, 0.2); 
 annealer.genome.set_temperatures(0.4); 
 annealer.set_temperature(0.002); 
 annealer.set_all_increments(1.01395948); // Temp halves every 50 steps 
 annealer.set_cycles_per_step(250); 
 annealer.anneal(700); 
  } CATCHES 
} 

sw35_7.cpp: Training ‘high specificity’ sequence-based predictor 
 
#include "annealer1.hpp" 
#include "simple_window35.hpp" 
using namespace SimpleWindow35; 
 
int main(int argc, char *argv[]) 
{ typedef SequenceProcessorTuple<TYPELIST_2(default_preprocessor_tp, 
  DomainDivisionNeutralizer<(tail_length + 1)/2>) > preprocessor_tp; 
 Annealer1<scorer_tp, SCOPDataset, preprocessor_tp, default_seq_reader_tp> annealer; 
 int rseed, set_num; 
 
  try 
  { if(argc != 2) 
 { cerr << "Should have run number as an argument." << endl; exit(1); 
 } 
 
 set_num = MyString::string2int(argv[1]); 
 rseed = set_num * 1000000 + 5000000; 
 srand(rseed); 
 annealer.dataset.preprocessor.set_num_terminal(tail_length + 1); 
 annealer.set_set_num(set_num); 
 annealer.set_dataset_base_name("scop1.67_fam_alpha_beta_2000_3.0_min50_5xv1"); 
 annealer.set_primary_dir(default_primary_dir); 
 annealer.set_run_base_name("sw35_7"); 
 annealer.set_start_file_base_name("simple_window35"); 
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 annealer.read_start_file(1); 
 annealer.genome.randomize(); 
/**/ annealer.evaluator.set_roc_false_pos_fraction(0.05); 
 annealer.set_optimization_direction(Maximize); 
 annealer.enviro.set_fractions(0.5, 0.2); //?? 
 annealer.genome.set_temperatures(0.4); 
 annealer.set_temperature(0.002); 
 annealer.set_all_increments(1.01395948); // Temp halves every 50 steps 
 annealer.set_cycles_per_step(250); 
 annealer.anneal(700); 
  } CATCHES 
} 

p2w35_4.cpp: Training standard profile-based predictor 
 
#include "annealer1.hpp" 
#include "profile2_window35.hpp" 
using namespace Profile2Window35; 
 
int main(int argc, char *argv[]) 
{ typedef SequenceProcessorTuple<TYPELIST_2(default_preprocessor_tp, 
  DomainDivisionNeutralizer<(tail_length + 1)/2>) > preprocessor_tp; 
 Annealer1<scorer_tp, SCOPDataset, preprocessor_tp, default_seq_reader_tp> annealer; 
 int rseed, set_num; 
 
  try 
  { if(argc != 2) 
 { cerr << "Should have run number as an argument." << endl; exit(1); 
 } 
 set_num = MyString::string2int(argv[1]); 
 annealer.dataset.preprocessor.set_num_terminal(tail_length + 1); 
 annealer.set_set_num(set_num); 
 annealer.set_dataset_base_name("scop1.67_fam_alpha_beta_2000_3.0_min50_5xv1_prof"); 
 annealer.set_primary_dir(default_primary_dir); 
 annealer.set_run_base_name("p2w35_4"); 
 annealer.set_start_file_base_name("profile2_window35"); 
 annealer.read_start_file(1); 
 annealer.genome.randomize(); 
 annealer.evaluator.set_roc_false_pos_fraction(0.5); 
 annealer.set_optimization_direction(Maximize); 
 annealer.enviro.set_fractions(0.5, 0.2); 
 annealer.genome.set_temperatures(0.4); 
 annealer.set_temperature(0.002); 
 annealer.set_all_increments(1.01395948); // Temp halves every 50 steps 
 annealer.set_cycles_per_step(250); 
 annealer.anneal(700); 
  } CATCHES 
} 

sw35_st30_8.cpp: Training simple sequence-based predictor tail adjustments and N-terminal 
methionine 
 
#include "annealer1.hpp" 
#include "simple_window35_simple_tail30.hpp" 
using namespace SimpleWindow35_SimpleTail30; 
 
int main(int argc, char *argv[]) 
{ try { 
 typedef SequenceProcessorTuple<TYPELIST_2(default_preprocessor_tp, 
  DomainDivisionNeutralizer<9>) > preprocessor_tp; 
 Annealer1<scorer_tp, SCOPDataset, preprocessor_tp, default_seq_reader_tp> annealer; 
 int rseed, set_n; 
 
 if(argc != 2) 
 { cerr << "Should have run number as an argument." << endl; exit(1); 
 } 
 set_n = MyString::string2int(argv[1]); 
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 annealer.dataset.preprocessor.set_num_terminal(0); 
/**/ annealer.dataset.preprocessor.set_min_his_tag_terminus_noncounted_length(30);  
 annealer.set_set_num(set_n); 
 annealer.set_dataset_base_name("scop1.67_fam_alpha_beta_2000_3.0_min50_5xv1"); 
 annealer.set_primary_dir(default_primary_dir); 
 annealer.set_run_base_name("sw35_st30_8"); 
 annealer.set_start_file_base_name("simple_window35_simple_tail30"); 
 annealer.read_start_file(6, set_n); 
 annealer.genome.randomize(); 
 annealer.evaluator.set_roc_false_pos_fraction(0.5); 
 annealer.set_optimization_direction(Maximize); 
 annealer.enviro.set_fractions(0.5, 0.2); 
 annealer.genome.set_temperatures(0.4); 
 annealer.set_temperature(0.001); 
 annealer.set_all_increments(1.01395948); // Temp halves every 50 steps 
 annealer.set_cycles_per_step(250); 
 annealer.anneal(700); 
  } CATCHES 
} 

p2w35_st30_5.cpp: Training profile-based predictor tail adjustments 
 
#include "annealer1.hpp" 
#include "profile2_window35_simple_tail30.hpp" 
#include "my_string.hpp" 
using namespace Profile2Window35_SimpleTail30_Fast; 
 
int main(int argc, char *argv[]) 
{ try 
  { typedef SequenceProcessorTuple<TYPELIST_2(default_preprocessor_tp,  
  DomainDivisionNeutralizer<(tail_length + 1)/2>) > preprocessor_tp; 
 Annealer1<scorer_tp, SCOPDataset, preprocessor_tp, default_seq_reader_tp> annealer; 
 Genome preproc_param; 
 int dummy = 0, set_num; 
 
 if(argc != 2) 
 { cerr << "Should have run number as an argument." << endl; exit(1); 
 } 
 set_num = MyString::string2int(argv[1]); 
  // Profile2Window35_SimpleTail30::preproc_file_path 
 preproc_param.read(preproc_file_path(4, set_num)); 
 annealer.dataset.preprocessor.import(preproc_param, 0, dummy); 
 annealer.dataset.preprocessor.set_num_terminal(0); 
 annealer.dataset.preprocessor.set_min_his_tag_terminus_noncounted_length(30); 
 annealer.set_set_num(set_num); 
 annealer.set_dataset_base_name("scop1.67_fam_alpha_beta_2000_3.0_min50_5xv1_prof"); 
 annealer.set_primary_dir(default_primary_dir); 
 annealer.set_run_base_name("p2w35_st30_5"); 
 annealer.set_start_file_base_name("profile2_window35_simple_tail30_tails"); 
 annealer.read_start_file(2); 
 annealer.genome.randomize(); 
 annealer.evaluator.set_roc_false_pos_fraction(0.5); 
 annealer.set_optimization_direction(Maximize); 
 annealer.enviro.set_fractions(0.5, 0.2); //?? 
 annealer.genome.set_temperatures(0.2); 
 annealer.set_temperature(0.001); 
 annealer.set_all_increments(1.01395948); // Temp halves every 50 steps 
 annealer.set_cycles_per_step(250); 
 annealer.anneal(700); 
  } CATCHES 
} 

sw9_1.cpp: Training short window (length = 9) predictor (standard ROC0.5 optimization 
performance measure used) 
 
#include "annealer1.hpp" 
#include "simple_window9.hpp" 
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using namespace SimpleWindow9; 
 
int main(int argc, char *argv[]) 
{ typedef SequenceProcessorTuple<TYPELIST_2(default_preprocessor_tp, 
  DomainDivisionNeutralizer<9>) > preprocessor_tp; 
 Annealer1<scorer_tp, SCOPDataset, preprocessor_tp, default_seq_reader_tp> annealer; 
 int rseed, set_num; 
 
  try 
  { if(argc != 2) 
 { cerr << "Should have run number as an argument." << endl; exit(1); 
 } 
 annealer.dataset.preprocessor.set_num_terminal(18); 
 set_num = MyString::string2int(argv[1]); 
 annealer.set_set_num(set_num); 
 annealer.set_dataset_base_name("scop1.67_fam_alpha_beta_2000_3.0_min50_5xv1"); 
 annealer.set_primary_dir(default_primary_dir); 
 annealer.set_run_base_name("sw9_1"); 
 annealer.set_start_file_base_name("simple_window9"); 
 annealer.read_start_file(1); 
 annealer.genome.randomize(); 
 annealer.evaluator.set_roc_false_pos_fraction(0.5); 
 annealer.set_optimization_direction(Maximize); 
 annealer.enviro.set_fractions(0.5, 0.2); 
 annealer.genome.set_temperatures(0.4); 
 annealer.set_temperature(0.002); 
 annealer.set_all_increments(1.01395948); // Temp halves every 50 steps 
 annealer.set_cycles_per_step(150); 
 annealer.anneal(700); 
  } CATCHES 
} 

sw9_2.cpp: Training short window (length = 9) predictor, ROC1.0 optimization performance 
measure used 
 
#include "annealer1.hpp" 
#include "simple_window9.hpp" 
using namespace SimpleWindow9; 
 
int main(int argc, char *argv[]) 
{ typedef SequenceProcessorTuple<TYPELIST_2(default_preprocessor_tp, 
  DomainDivisionNeutralizer<9>) > preprocessor_tp; 
 Annealer1<scorer_tp, SCOPDataset, preprocessor_tp, default_seq_reader_tp> annealer; 
 int rseed, set_num; 
 
  try 
  { if(argc != 2) 
 { cerr << "Should have run number as an argument." << endl; exit(1); 
 } 
 
 annealer.dataset.preprocessor.set_num_terminal(18); 
 set_num = MyString::string2int(argv[1]); 
 annealer.set_set_num(set_num); 
 annealer.set_dataset_base_name("scop1.67_fam_alpha_beta_2000_3.0_min50_5xv1"); 
 annealer.set_primary_dir(default_primary_dir); 
 annealer.set_run_base_name("sw9_2"); 
 annealer.set_start_file_base_name("simple_window9"); 
 annealer.read_start_file(1); 
 annealer.genome.randomize(); 
/**/ annealer.evaluator.set_roc_false_pos_fraction(1); 
 annealer.set_optimization_direction(Maximize); 
 annealer.enviro.set_fractions(0.5, 0.2); 
 annealer.genome.set_temperatures(0.4); 
 annealer.set_temperature(0.002); 
 annealer.set_all_increments(1.01395948); // Temp halves every 50 steps 
 annealer.set_cycles_per_step(150); 
 annealer.anneal(700); 
  } CATCHES 
} 
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D.2 NORMALIZATION CODE 

sw35_8_score_dbn_adjust.cpp 
 
#include "simple_window35.hpp" 
#include "score_distribution_adjustment_client.hpp" 
 
int main() 
{ try 
  { using namespace SimpleWindow35; 
 typedef SequenceProcessorTuple<TYPELIST_2(default_preprocessor_tp, 
  DomainDivisionNeutralizer<(tail_length + 1)/2>) > preprocessor_tp; 
 ScoreDistributionAdjustmentClient<scorer_tp, SCOPDataset, preprocessor_tp, 
  default_seq_reader_tp> client; 
 
 client.dataset.preprocessor.set_num_terminal(tail_length + 1); 
 client.set_dataset_base_name("scop1.67_fam_alpha_beta_2000_3.0_min50_5xv1"); 
 client.set_primary_dir("SimpleWindow35"); 
 client.set_run_base_name("sw35_8"); 
 client.set_trial_nums(1, 1); 
 client.set_step_num(700); 
 client.analyzer.set_num_iterations(2); 
 client.gather_results(); 
  } CATCHES 
} 

p2w35_4_score_dbn_adjust.cpp 
 
 
#include "profile2_window35.hpp" 
#include "score_distribution_adjustment_client.hpp" 
 
int main() 
{ try 
  { using namespace Profile2Window35; 
 typedef SequenceProcessorTuple<TYPELIST_2(default_preprocessor_tp, 
  DomainDivisionNeutralizer<(tail_length + 1)/2>) > preprocessor_tp; 
 ScoreDistributionAdjustmentClient<scorer_tp, SCOPDataset, preprocessor_tp, 
  default_seq_reader_tp> client; 
 
 client.dataset.preprocessor.set_num_terminal(tail_length + 1); 
 client.set_dataset_base_name("scop1.67_fam_alpha_beta_2000_3.0_min50_5xv1_prof"); 
 client.set_primary_dir(default_primary_dir); 
 client.set_run_base_name("p2w35_4"); 
 client.set_trial_nums(1, 1); 
 client.set_step_num(700); 
/**/ client.analyzer.set_num_iterations(1); 
 client.analyzer.set_predictor_type(ScoreDistributionAdjustmentAnalyzer<scorer_tp>::Profile)
; 
 client.gather_results(); 
  } CATCHES 
} 

sw35_st30_8_700_avg_params.cpp 
 
#include "genome_averager.hpp" 
#include "file_name_handler.hpp" 
 
int step_num = 700; 
 
int main() 
{ FileNameHandler fnh; 
 GenomeAverager averager; 
 vector<Genome *> v_params; 
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 Genome params; 
 int set_n; 
 
 fnh.set_primary_dir("SimpleWindow35_SimpleTail30"); 
 fnh.set_run_base_name("sw35_st30_8"); 
 for(set_n = 1; set_n <= 5; ++set_n) 
 { v_params.push_back(new Genome(fnh.parm_file_path(set_n, step_num))); 
 } 
 params = averager.average(v_params); 
 params.write(fnh.averaged_param_path(700)); 
} 

(Final parameter sets for p2w35_st30_6 were obtained manually) 
 

sw9_1_score_dbn_adjust.cpp 
 
#include "simple_window9.hpp" 
#include "score_distribution_adjustment_client.hpp" 
 
int main() 
{ try 
  { using namespace SimpleWindow9; 
 typedef SequenceProcessorTuple<TYPELIST_2(default_preprocessor_tp, 
DomainDivisionNeutralizer<9>) > preprocessor_tp; 
 ScoreDistributionAdjustmentClient<scorer_tp, SCOPDataset, preprocessor_tp, 
default_seq_reader_tp> client; 
 
 client.dataset.preprocessor.set_num_terminal(18); 
 client.set_dataset_base_name("scop1.67_fam_alpha_beta_2000_3.0_min50_5xv1"); 
 client.set_primary_dir(default_primary_dir); 
 client.set_run_base_name("sw9_1"); 
 client.set_trial_nums(1, 1); 
 client.set_step_num(700); 
 client.analyzer.set_num_iterations(2); 
 client.gather_results(); 
  } CATCHES 
} 

sw9_2_score_dbn_adjust.cpp 
 
#include "simple_window9.hpp" 
#include "score_distribution_adjustment_client.hpp" 
 
int main() 
{ try 
  { using namespace SimpleWindow9; 
 typedef SequenceProcessorTuple<TYPELIST_2(default_preprocessor_tp, 
DomainDivisionNeutralizer<(tail_length + 1)/2>) > preprocessor_tp; 
 ScoreDistributionAdjustmentClient<scorer_tp, SCOPDataset, preprocessor_tp, 
default_seq_reader_tp> client; 
 
 client.dataset.preprocessor.set_num_terminal(tail_length + 1); 
 client.set_dataset_base_name("scop1.67_fam_alpha_beta_2000_3.0_min50_5xv1"); 
 client.set_primary_dir("SimpleWindow9"); 
 client.set_run_base_name("sw9_2"); 
 client.set_trial_nums(1, 1); 
 client.set_step_num(700); 
 client.analyzer.set_num_iterations(2); 
 client.gather_results(); 
  } CATCHES 
} 
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D.3 SAMPLES OF CODE FOR OTHER ANALYSES 

sw35_8_700_norm_param_report.cpp: Produce a report of parameters in tab-delimited 
form that can be opened and easily used in spreadsheet form [Results found at 
SimpleWindow35/sw35_8/NormalizedScoreParams/sw35_8_700_train_norm_scr_params_r
eport_1.txt] 
 
#include "parameter_report_maker.hpp" 
 
int main() 
{ SingleScorerParmReportMaker<SingleWindowParmReportModule> r_m; 
try 
  { r_m.set_step_num(700); 
 r_m.set_primary_dir("SimpleWindow35"); 
 r_m.set_run_base_name("sw35_8"); 
 r_m.set_norm_param_trial_num(1); 
 r_m.set_score_type(FileNameHandler::Normalized); 
 r_m.create_report(); 
  } CATCHES 
} 

sw35_8_test_roc_prof_exc0t_htx30.cpp: Obtaining ROC scores at different cutoffs [note that 
file name reflects that 0 terminal residues were excluded, except for sequence ends where 
polyhistidine tags were excluded, in which case, the first thirty residues at that end are 
excluded; results found at 
SimpleWindow35/sw35_8/ROC/sw35_8_700_test_norm_exc0t_htx30_prof_roc_all_1.txt] 
 
#include "simple_window35.hpp" 
#include "roc_score_analysis_client.hpp" 
 
int main() 
{ try 
  { using namespace SimpleWindow35; 
 typedef SequenceProcessorTuple<TYPELIST_2(default_preprocessor_tp, 
  DomainDivisionNeutralizer<9>) > preprocessor_tp; 
 ROCScoreAnalysisClient<scorer_tp, SCOPDataset, preprocessor_tp, default_seq_reader_tp> 
  client; 
 
 client.dataset.preprocessor.set_num_terminal(0); 
 client.dataset.preprocessor.set_min_his_tag_terminus_noncounted_length(30); 
 client.set_dataset_base_name("scop1.67_fam_alpha_beta_2000_3.0_min50_5xv1_prof"); 
 client.set_primary_dir(default_primary_dir); 
 client.set_run_base_name("sw35_8"); 
 client.set_score_type(FileNameHandler::Normalized); 
 client.set_trial_nums(1, 1); 
 client.set_step_num(700); 
 client.set_report_token("exc0t_htx30_prof_roc"); 
 client.gather_results(); 
  } CATCHES 
} 

sw35_8_test_snsp_prof_exc0t_htx30.cpp: Obtaining specificity vs. sensitivity curves, which 
can be transformed into ROC curves (sens. vs. 1 – spec.) [Results found at 
SimpleWindow35/sw35_8/SensSpec/sw35_8_700_test_norm_exc0t_prof_snsp_htx30_all_1.tx
t] 
 
#include "simple_window35.hpp" 
#include "sens_spec_client.hpp" 
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int main() 
{ try 
  { using namespace SimpleWindow35; 
 typedef SequenceProcessorTuple<TYPELIST_2(default_preprocessor_tp, 
  DomainDivisionNeutralizer<9>) > preprocessor_tp; 
 SensSpecClient<scorer_tp, SCOPDataset, preprocessor_tp, default_seq_reader_tp> client; 
 
 client.dataset.preprocessor.set_num_terminal(0); 
 client.dataset.preprocessor.set_min_his_tag_terminus_noncounted_length(30); 
 client.set_dataset_base_name("scop1.67_fam_alpha_beta_2000_3.0_min50_5xv1_prof"); 
 client.set_primary_dir(default_primary_dir); 
 client.set_run_base_name("sw35_8"); 
 client.set_score_type(FileNameHandler::Normalized); 
 client.set_trial_nums(1, 1); 
 client.set_step_num(700); 
 client.set_report_token("exc0t_prof_snsp_htx30"); 
 client.gather_results(); 
  } CATCHES 
} 

sw35_8a_combine_train_score_output.pl: Obtain average begin-of-cycle scores for each 
optimization step from record files produced during optimization [Results found at 
SimpleWindow35/sw35_8a/RecordFiles/sw35_8a_train_scr_summ.txt] 
 
#!/usr/bin/perl -w 
 
use strict; 
 
my $run_base_name = "sw35_8a"; 
my $fileprefix = "SimpleWindow35/$run_base_name/RecordFiles/$run_base_name" . "_train"; 
my $filesuffix = ".rec2"; 
my @line; 
my $c; 
 
sub infilename 
{ my $filename; 
 
 $filename = $fileprefix . $_[0] . $filesuffix; 
 return $filename; 
} 
 
open(INFILE1, infilename(1)) 
 || die "Cannot open input file"; 
open(INFILE2, infilename(2)); 
open(INFILE3, infilename(3)); 
open(INFILE4, infilename(4)); 
open(INFILE5, infilename(5)); 
 
my $outfilename = $fileprefix . "_scr_summ.txt"; 
print "Writing to $outfilename.\n"; 
open(OUTFILE, "> $outfilename"); 
 
print OUTFILE "\t1_1\t1_2\t2_1\t2_2\t3_1\t3_2\t4_1\t4_2\t5_1\t5_2\n"; 
while(<INFILE1>) 
{ chomp; 
 my @split_line = split(/\t/, $_); 
 print OUTFILE $split_line[0]; 
 output_line($_); 
 $_ = <INFILE2>; 
 output_line($_); 
 $_ = <INFILE3>; 
 output_line($_); 
 $_ = <INFILE4>; 
 output_line($_); 
 $_ = <INFILE5>; 
 output_line($_); 
 print OUTFILE "\n"; 
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} 
 
sub output_line 
{ chomp($_); 
 my @split_line = split(/\t/, $_[0]); 
 print OUTFILE "\t"; 
 print OUTFILE $split_line[1]; 
 print OUTFILE "\t"; 
 print OUTFILE $split_line[2]; 
} 
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D.4 CODE RELATED TO DATASETS 

Table D.4-1. Description of some (not all) dataset-related code files. (Actual code may be 
made available at http://prodata.swmed.edu.) 

get_scop1.67_chain_names.cpp 

Gets set of unique chain names (4-character PDB ID 
with lower case letters, plus chain identifier 
character) for chains containing domains from SCOP 
classes A – H. 

make_seqfiles6files.cpp 

Processing PDB data—obtaining files with 
information on chains—listing the type and status 
(Gap, Nongap, etc.) of each individual residue, the 
sequence being based on the sequence provided in 
SEQRES entries in PDB files. Writes successfully 
obtained ‘sequence files’ to SeqFiles6/. 

produce_scop1.67_fam_all.cpp Obtains initial set of domains, grouped into families, 
with revised domain boundaries, in XML form. 

find_scop1.67_mult_chain_domain_probl
ems.cpp 

Helps find domains that are located in multiple 
chains and need to be manually revised. 

produce_scop1.67_fam_alpha_beta.cpp Obtains the subset of grouped families of domains 
that are in the first five families of SCOP classes. 

produce_scop1.67_fam_alpha_beta_200
0_3.0_min50.cpp 

Obtains subset of domains in first five SCOP classes 
that are dated 2000 or later and have a resolution no 
worse than 3.0. 

produce_scop1.67_fam_alpha_beta_200
0_3.0_min50_5xv1.cpp 

Divides families into cross-validation sets 

produce_scop1.67_fam_alpha_beta_200
0_3.0_min50_5xv1_env.cpp 

Produces standardized testing data ‘subsets’ (same 
domain can represent a family in the ‘subset’ 
multiple times). 
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