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Skeletal muscle is one of the largest tissues in the human body and hence muscle 

diseases caused by genetic mutations have a profound and systemic impact on human health. 

Duchenne muscular dystrophy (DMD) is a lethal neuromuscular disorder, caused by mutations 

in the DMD gene on the X chromosome, which consists of 79 exons encoding dystrophin 

protein. Patients with DMD develop progressive muscle weakness and cardiomyopathy, and 

ultimately succumb to respiratory and cardiac failure in their mid-20s. The dystrophin gene 

was identified three decades ago and mutations in the DMD gene are well-characterized. 

However, there is no effective treatment for this debilitating disease. The CRISPR/Cas 

(clustered regularly interspaced short palindromic repeats and CRISPR-associated proteins) 



 

was first discovered as an adaptive immune system in bacteria and archaea for defending 

against phage infection. Recently, the CRISPR/Cas system has been applied for mammalian 

genome editing because it provides site-specific DNA double-stranded breaks with simplicity 

and precision. In this study, I demonstrate the feasibility of using CRISPR/Cpf1 to correct a 

DMD exon 48-50 out-of-frame deletion mutation in cardiomyocytes derived from patient 

induced pluripotent stem cells by exon skipping and exon reframing strategies. Next, I 

precisely correct a Dmd exon 23 nonsense mutation in mdx mouse by CRISPR/Cpf1-mediated 

germline editing. Furthermore, I apply CRISPR/Cas9-mediated post-natal genome editing to 

correct a Dmd exon 44 out-of-frame deletion mutation in a DMD mouse model. Finally, I 

develop an effective strategy to improve CRISPR/Cas9-mediated in vivo genome editing by 

packaging Cas9 nuclease in conventional single-stranded AAV and CRISPR single guide 

RNAs in double-stranded self-complementary AAV. This strategy significantly reduces the 

amount of AAV vector needed for therapeutic genome editing and enhances dystrophin 

restoration after delivery into a mouse model of DMD harboring an exon 44 deletion. These 

findings represent an important advancement toward therapeutic translation of genome editing 

technology for permeant correction of Duchenne muscular dystrophy. 
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CHAPTER ONE 
 
 

DUCHENNE MUSCULAR DYSTROPHY AND CRISPR/CAS THERAPEUTIC 

GENOME EDITING 

 
Acknowledgement 

Parts of this chapter, including figures, have been reproduced, with or without modifications, 

from my previously published work (Zhang et al., 2018). 

 

SKELETAL MUSCLE AND MUSCULAR DYSTROPHY 

Skeletal Muscle Structure 

From intense body movement in Greco-Roman wrestling to delicate vocal control in 

coloratura soprano, skeletal muscle supports a remarkably wide range of human activities. As 

one of the largest tissues, skeletal muscle accounts for approximately 40% of human body 

weight and is essential for physical support, locomotion, energy expenditure and metabolism.  

Skeletal muscle is a highly organized tissue and is composed of thousands of 

multinucleated myofibers, which are formed by fusion of mono-nucleated myoblasts during 

development and regeneration. Bundles of myofibers form a muscle fascicle and groups of 

fascicles contribute to the structure of a skeletal muscle (Figure 1.1, panel A). The functional 

unit of a myofiber is the sarcomere, which is comprised of actin thin filaments and myosin 

thick filaments. Sliding of the thin and thick filaments past each other generates a muscle 

contraction. 
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Figure 1.1 Skeletal muscle structure. 

(A) Skeletal muscle is composed of 

thousands of multinucleated myofibers. 

Bundles of myofibers form muscle 

fascicles and groups of fascicles 

contribute to skeletal muscle structure. 

(B) Satellite cells are adult skeletal 

muscle stem cells, which reside between 

the sarcolemma and basal lamina of 

myofibers. 

 

 

Skeletal Muscle Regeneration and Satellite Cells 

The adult musculature has a remarkable regenerative capacity, primarily due to the 

contribution of the skeletal muscle resident stem cells, known as satellite cells (Brack and 

Rando, 2012; Chang and Rudnicki, 2014; Yin et al., 2013). Satellite cells reside between the 

sarcolemma and basal lamina of myofibers and are marked by expression of a paired-box 

transcription factor, Pax7 (Seale et al., 2000) (Figure 1.1, panel B). Upon muscle injury, 

quiescent satellite cells become activated and undergo proliferation and differentiation, and 

finally forming multinucleated myofibers by fusion. Activated satellite cells can also undergo 

asymmetric division, in which one daughter cell maintains a satellite stem cell fate and the 

other one acquires a myogenic commitment, becoming a satellite cell committed myogenic 

progenitor (Conboy et al., 2007; Kuang et al., 2007; Shinin et al., 2006). Pax7 is the canonical 

biomarker for quiescent and activated satellite cells, and is downregulated during myogenic 
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differentiation. Genetic ablation experiments demonstrated that Pax7+ satellite cells are 

indispensable for adult skeletal muscle regeneration (Lepper et al., 2011; McCarthy et al., 

2011; Murphy et al., 2011; Sambasivan et al., 2011). 

Skeletal muscle regeneration is evolutionarily conserved among many bilaterians, 

requiring involvement of satellite cells or satellite-like cells (Baghdadi and Tajbakhsh, 2017). 

However, in certain bilateral species such as zebra fish and adult newt, myofiber 

dedifferentiation is also a unique mechanism for skeletal muscle regeneration. For example, 

extraocular muscle regeneration in adult zebrafish involves dedifferentiation of residual 

myocytes, which do not express Pax7 but express Mef2c (Saera-Vila et al., 2015). Similarly, 

limb muscle regeneration in the adult newt requires dedifferentiation of myocytes to Pax7-

negative mononuclear cells (Sandoval-Guzman et al., 2014). 

 

Muscular Dystrophy 

Despite the remarkable regenerative capacity of skeletal muscle, muscles are 

vulnerable to numerous disorders, including congenital myopathies, muscular dystrophies, and 

inflammatory myopathies. Muscular dystrophies are a large group of genetic disorders 

characterized by progressive weakness of multiple muscle groups. Owing to the advancement 

of genome research, the genetic causes of many muscular dystrophies have been identified, 

with many affecting sarcolemma-associated proteins, extracellular matrix proteins, 

glycosyltransferase enzymes as well as nuclear proteins (Kanagawa and Toda, 2006; Mercuri 

and Muntoni, 2013). Depending on the mutation type and disease onset, muscular dystrophies 
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can significantly impair the quality of life and cause premature death. There is no cure for these 

debilitating diseases. 

Duchenne muscular dystrophy (DMD) is an X-linked recessive muscular dystrophy 

caused by mutations in the DMD gene, which encodes dystrophin (Hoffman et al., 1987). DMD 

is the most common type of monogenic muscular dystrophy, affecting approximately 1 in 

every 5,000 boys (Guiraud et al., 2015). DMD patients seem normal at birth, but within a few 

years they begin having trouble walking and lose ambulation between 7 to 12 years of age. 

Cardiac and respiratory failure causes premature death in DMD patients, often by their early 

30s. 

 

DMD gene structure and mutations 

Dystrophin is a key component of the dystrophin glycoprotein complex, which is a 

large multicomponent protein complex essential for sarcolemma integrity and stability (Figure 

1.2, panel A) (Gao and McNally, 2015; Guiraud et al., 2015). The structure of the full-length 

dystrophin protein can be organized into four major domains: i) the N-terminal region 

containing an actin-binding domain; ii) the central region containing a stretch of 24 spectrin-

like repeats, forming the rod domain, which is interrupted by 4 hinge regions; iii) the cysteine-

rich domain which contains several sub-domains, including a WW domain, two EF-hand-like 

domains and a ZZ domain, which are important for interacting with β-dystroglycan, 

calmodulin and ankyrin-B; and iv) the C-terminal domain which interacts with dystrobrevin 

and syntrophins (Ahn and Kunkel, 1993; Gao and McNally, 2015; O'Brien and Kunkel, 2001).  
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Figure 1.2 Structure of the dystrophin-glycoprotein complex and the dystrophin gene. (A) The main 

components of the dystrophin-glycoprotein complex are the dystroglycan complex, sarcoglycan complex, and 

dystrophin. The dystrophin-glycoprotein complex provides sarcolemma stability and integrity through interaction 

with laminin in the basement membrane on the extracellular matrix, and actin in the cytoplasm. Other dystrophin-

associated proteins include neuronal nitric oxide synthase (nNOS), dystrobrevins, syntrophins, and sarcospan. 

Mutations of the main components of the DGC cause muscular dystrophies, such as Duchenne or Becker muscular 

dystrophy (dystrophin mutation), and limb-girdle muscular dystrophy type 2C, 2D, 2E, and 2F (sarcoglycan 

mutations). (B) The dystrophin gene has 79 exons. Different dystrophin isoforms can be transcribed from various 

promoters (demarcated as Dp, followed by a numeric number indicating isoform molecular weight in 

kiloDaltons). The dystrophin protein expressed in skeletal muscle and heart is transcribed from the Dp427m 

promoter. Domains essential for binding with other DGC components or cytoskeletal proteins are underlined. 

Exons are color-coded according to the domain they encode. N-terminus (yellow), central rod domain (blue), 

cysteine-rich domain (orange) and C-terminus (green). 
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The DMD gene, comprised of 79 exons (Figure 1.2, panel B), gives rise to different 

isoforms of the dystrophin protein which are expressed in various tissues by tissue-specific 

promoters and/or alternative splicing (Muntoni et al., 2003). The large 427 kDa cytoskeletal 

protein which is primarily expressed in skeletal muscle and heart is transcribed from the 

Dp427m promoter.  

More than 7,000 mutations have been identified in the DMD gene (Bladen et al., 2015). 

These mutations can be categorized as deletion (68%), duplication (11%) of single or multiple 

exons, or small point mutations (20%), such as missense and nonsense substitutions (Aartsma-

Rus et al., 2006; Bladen et al., 2015; Monaco et al., 1988). Mutations in the DMD gene are not 

uniformly distributed but cluster into hot spots, which are clustered within exons 2–20 and 

exons 45–55 (Bladen et al., 2015). Approximately 15% of all exon deletion events and 50% of 

all exon duplication events are observed within exons 2-20; whereas, 70% of all exon deletion 

events and 15% of all exon duplication events are observed within exons 45-55 (Bladen et al., 

2015; Yang et al., 2013b). In-frame deletion or duplication of exon(s) within the central region 

of the DMD gene retains the protein reading frame and generates either a truncated or extended 

dystrophin protein. These mutant dystrophin proteins retain their N- and C-termini, which are 

essential for actin cytoskeleton and dystrophin glycoprotein complex interaction, leading to a 

milder form of muscular dystrophy, known as Becker muscular dystrophy (BMD) (Aartsma-

Rus et al., 2016; Guiraud et al., 2015). In contrast, out-of-frame deletion or duplication of 

exon(s) either disrupts the protein reading frame or generates a premature termination codon 

and leads to DMD. 
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Animal models of DMD 

The most commonly used animal model for DMD is the mdx mouse, in which a C-to-

T transition in exon 23 creates a nonsense mutation, leading to loss of full-length dystrophin 

expression (Bulfield et al., 1984; Sicinski et al., 1989). The mdx mice do not develop severe 

DMD phenotypes, such as muscle wasting, scoliosis and cardiomyopathy until reaching 15 

months of age. In contrast to DMD patients whose lifespan is significantly reduced, the lifespan 

of mdx mice is reduced by only 25% (Chamberlain et al., 2007). Four chemically induced mdx 

strains have also been developed, known as mdx2cv, mdx3cv, mdx4cv, mdx5cv, with a point 

mutation in intron 42, intron 65, exon 53 or exon 10, respectively (Chapman et al., 1989). In 

addition to the mdx strains with point mutations, four additional DMD mouse models have 

been established with either exon 2 duplication, exon 45 deletion, exon 50 deletion or exon 52 

deletion (Araki et al., 1997; Vulin et al., 2015; Young et al., 2017).  

Because dystrophin-deficient mouse models generally do not develop severe 

pathological phenotypes as seen in DMD patients. Several double knockout (dKO) mouse 

models were generated, in which the Dmd gene was knocked out, along with additional genes 

required for sarcolemma integrity, stem cell maintenance and muscle homeostasis (Deconinck 

et al., 1997; Grady et al., 1997; McGreevy et al., 2015; Mourkioti et al., 2013; Sacco et al., 

2010). Genome editing technology also played a role in expanding the rodent models of DMD. 

For example, two DMD rat models were created by TALEN- or CRISPR/Cas-mediated 

targeting of the Dmd exon 23 or exons 3-6, leading to an exon 23 frame shifting or exon 3-6 

deletion (Larcher et al., 2014; Nakamura et al., 2014). Most recently, CRISPR/Cas9 was used 
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to create two mouse models lacks exon 50 or 44, representing two most common “hot-spot” 

mutations in humans (Amoasii et al., 2017; Min et al., 2019). 

In addition to small rodent models, large animal models of DMD have been developed, 

including dog (Atencia-Fernandez et al., 2015; Kornegay et al., 2012; Schatzberg et al., 1999; 

Smith et al., 2011; Valentine et al., 1986; Walmsley et al., 2010; Winand et al., 1994), pig 

(Klymiuk et al., 2013; Selsby et al., 2015; Yu et al., 2016) and non-human primates (Chen et 

al., 2015). Monkey models of DMD are still at F0 with mosaicism, which requires additional 

breeding to generate a pure background (Chen et al., 2015). Disease progression in some 

porcine models of DMD is so severe that the majority of the affected pigs die within the first 

week of life, which limits its application in therapeutic translation (Selsby et al., 2015). In 

contrast, canine DMD models share more similar clinical phenotypes as seen in human 

patients, including limb muscle fibrosis, joint contracture, hypersalivation and an early cardiac 

defect (McGreevy et al., 2015). Moreover, canine DMD models have fewer regenerated 

myofibers than mdx mice as indicated by central nucleation, which is histologically similar to 

human patients (Cozzi et al., 2001; Smith et al., 2011). In addition, canine DMD models 

develop limb muscle weakness at 2 to 3 months of age and have approximately 75% reduction 

of lifespan, showing similar disease progression as human patients (Valentine et al., 1988). 

Therefore, the canine model of DMD seems superior to the other large animal models in regard 

to current availability, genetic background and speed of disease progression. 
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GENOME EDITING 

History of Genome Editing 

Three decades ago the laboratories of Mario Capecchi and Oliver Smithies 

independently developed methods for homologous recombination (HR)-mediated mammalian 

gene targeting technology by providing mammalian cells with exogenous plasmid DNA 

containing sequence homology to the endogenous genome (Doetschman et al., 1987; Mansour 

et al., 1988; Smithies et al., 1985; Thomas and Capecchi, 1987; Thomas et al., 1986). This HR-

mediated technology allows precise gene knockout or correction of genetic mutations. HR-

mediated embryonic stem cell gene targeting, together with mouse chimeras and germline 

transmission technologies developed by the laboratory of Martin Evans (Bradley et al., 1984) 

paved the way for the generation of “knockin” and “knockout” animal models, which 

significantly expanded our knowledge of gene function and advanced many fields of biological 

research. However, because DNA double-strand breaks (DSBs) occur randomly in the genome, 

the frequency of HR-mediated gene targeting is low (between 10-6 and 10-4, depending on the 

length of sequence homology of the targeting vector) (Deng and Capecchi, 1992). Moreover, 

screening of correctly targeted clones requires positive-negative selection and/or Southern blot 

analysis, which is time-consuming and labor-intensive (Capecchi, 2005). Therefore, routine 

application of the conventional HR-mediated gene targeting technology for studying gene 

function was not feasible at that time. 

In the early ‘90s, it was discovered that HR-mediated gene targeting efficiency could 

be enhanced by more than 100-fold, when the DNA DSBs were initiated at the target region 

by providing mammalian cells with a rare-cutting meganuclease discovered in yeast (Rouet et 
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al., 1994). This discovery stimulated the development of programmable nucleases for creating 

site-specific DNA DSBs. Within the past two decades, four major classes of nucleases have 

been engineered, which are: i) meganucleases (Smith et al., 2006), ii) zinc-finger nucleases 

(ZFNs) (Miller et al., 2007; Urnov et al., 2005), iii) transcription activator-like effector 

nucleases (TALENs) (Boch et al., 2009; Christian et al., 2010; Miller et al., 2011; Moscou and 

Bogdanove, 2009), and iv) CRISPR/Cas endonucleases (clustered regularly interspaced short 

palindromic repeats and CRISPR-associated proteins) (Cong et al., 2013; Jinek et al., 2012; 

Mali et al., 2013b; Zetsche et al., 2015).  

Permanent correction of genetic mutations that contribute to monogenic neuromuscular 

disorders offers the ultimate treatment for these diseases. Early attempts at genome editing for 

treatment of muscular dystrophies were challenged by low efficiency, cytotoxicity and delivery 

issues (Gao et al., 2016; Li et al., 2015; Maggio et al., 2016b; Ousterout et al., 2015b; Ousterout 

et al., 2013; Popplewell et al., 2013; Turan et al., 2016; Xia et al., 2015). The newly discovered 

CRISPR/Cas system has been effectively used in genome engineering and represents a new 

approach to therapeutic genome editing. 

 

Meganucleases 

Meganucleases are engineered homing endonucleases, which were initially discovered 

in archaea, bacteria, and unicellular eukaryotic genomes (Stoddard, 2005, 2011). Unlike 

conventional Type II restriction endonucleases that recognize short 4-8 base pairs (bp) of 

palindromic DNA sequences (Pingoud et al., 2014), meganucleases require extended DNA 

recognition sequences (typically 16-18 bp) to generate site-specific DNA DSBs 
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(Chandrasegaran and Carroll, 2016). Meganucleases have been used to enhance HR-mediated 

gene targeting efficiency by introducing site-specific DNA DSBs in cultured mammalian cells 

and plants (Chiurazzi et al., 1996; Choulika et al., 1995; Donoho et al., 1998; Puchta et al., 

1996; Rouet et al., 1994), but they have not been widely adopted for genome engineering 

because the DNA-recognition domain and the nuclease domain overlap (Silva et al., 2011; 

Smith et al., 2006). This overlap may adversely affect the catalytic activity of the nuclease 

domain (Arnould et al., 2006), making it very challenging to engineer the DNA recognition 

domain for specificity in new-sequence binding.  

To address this issue, researchers began to focus on the Type IIS restriction enzyme, 

FokI, which has two separate domains for DNA recognition and cleavage (Kim et al., 1994; Li 

and Chandrasegaran, 1993; Li et al., 1992; Li et al., 1993). They engineered novel chimeric 

FokI endonucleases with new DNA sequence specificities by swapping DNA-binding domains 

from other transcription factors, such as the Drosophila Ubx homeodomain (Kim and 

Chandrasegaran, 1994), yeast Gal4 domain (Kim et al., 1998), zinc-finger protein (Kim et al., 

1996), and TAL effector (Christian et al., 2010). The latter two chimeric FokI endonucleases 

paved the way for the development of ZFNs and TALENs, respectively. 

 

Zinc-finger nucleases (ZFNs) 

ZFNs are chimeric endonucleases containing multiple Cys2-His2 zinc-finger domains 

at the amino terminus (N-terminus) for DNA-binding and a FokI nuclease domain at the 

carboxyl terminus (C-terminus) for DNA cleavage (Figure 1.3) (Kim et al., 1996). Each 

individual zinc-finger domain contains approximately 30 amino acids folded in a ββα 
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arrangement and contacts 3 bp of DNA sequence (Pavletich and Pabo, 1991). Each ZFN 

monomer consists of 3-6 individual zinc-finger domains, and thus can bind to 9-18 bp of DNA 

sequence.  

 

Figure 1.3 Zinc-finger nucleases (ZFNs) used for genome editing. A schematic illustration of a pair 

ZFN monomers bound to DNA. ZFN is a chimeric endonuclease composed of multiple zinc finger domains 

(colored boxes) at the N-terminus for DNA binding and a Fok1 nuclease domain (green oval) at the C-terminus 

for DNA cleavage. Dimerization of two Fok1 nucleases induces a DNA double-strand break (DSB) with 4 bp of 

5’ overhang. 

Two approaches have been applied to improve genome targeting specificity and expand 

the targeting range of ZFNs. The first one is to engineer the wild-type (WT) FokI nuclease to 

reduce the formation of cleavage-competent homodimers (Miller et al., 2007; Szczepek et al., 

2007). The engineered ZFNs require hetero-dimerization to form a functional nuclease, in 

which two monomers are separated by 5-7 bp of spacer (Bitinaite et al., 1998). The second 

approach is to engineer zinc-finger domains for unique triplet DNA binding specificity by 

combinatorial library selection and/or oligomerized pool engineering (OPEN) (Bhakta et al., 

2013; Dreier et al., 2001; Dreier et al., 2005; Gonzalez et al., 2010; Kim et al., 2011; Maeder 

et al., 2008; Segal et al., 1999).  

These two approaches paved the way for modular assembly of customized ZFNs, which 

have been used for genome targeting in cultured cells, animals, and plants (Gaj et al., 2013; 
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Perez-Pinera et al., 2012; Segal and Meckler, 2013; Urnov et al., 2010). However, because of 

the context-dependent effects between adjacent zinc-finger domains, large-scale assembly of 

functional ZFNs remains challenging and cytotoxicity caused by off-target effects is also a 

critical issue (Gabriel et al., 2011; Pattanayak et al., 2011; Sander et al., 2013). Moreover, the 

genome targeting density of ZFNs is also limited because the engineered zinc-finger domains 

cannot target all 64 possible triplet DNA sequences, especially 5’-TNN-3’ sequences (N 

represents any nucleotide) (Bhakta and Segal, 2010). These obstacles prevent wide application 

of ZFNs for genome engineering. 

 

Transcription activator-like effector nucleases (TALENs) 

TALENs are chimeric endonucleases that contain multiple DNA-binding domains, 

known as transcription activator-like effectors (TALEs), at the N-terminus, and a FokI 

nuclease domain at the C-terminus for DNA cleavage (Figure 1.4) (Christian et al., 2010). 

Unlike the zinc-finger domain in ZFNs, which binds to a triplet DNA sequence, the TALE 

domain, consisting of 33-35 amino acids in tandem arrays, recognizes a single base pair (Deng 

et al., 2012; Mak et al., 2012). The sequence specificity of each TALE repeat is determined by 

the 12th and 13th amino acids at the TALE domain, known as repeat variable diresidues (RVDs) 

(Boch et al., 2009; Moscou and Bogdanove, 2009). Similar to ZFNs, functional TALENs 

require dimerization of the FokI nuclease domain with each TALE arm targeting 15-20 bp of 

DNA sequence separated by 12-21 bp of spacer. TALENs have been widely used to target 

genomes of various species including cultured cells, animals and plants (Gaj et al., 2013; Joung 

and Sander, 2013; Segal and Meckler, 2013; Sun and Zhao, 2013). Although many cloning 
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methods have been developed for the construction of functional TALENs, such as Type II 

restriction enzyme-based Golden Gate assembly (Cermak et al., 2011), solid-phase assembly 

(Briggs et al., 2012; Reyon et al., 2012) and ligation-independent cloning (Schmid-Burgk et 

al., 2013), modular assembly of customized TALENs is still challenging and time-consuming 

because each TALEN arm consists of up to 20 highly repetitive TALE arrays.  

 

Figure 1.4 Transcription activator-like effector nucleases (TALENs) used for genome editing. A schematic 

illustration of a pair of TALENs bound to DNA. TALEN is a chimeric endonuclease composed of multiple TALE 

repeats (colored rectangles) at the N-terminus and a Fok1 nuclease domain (green oval) at the C-terminus. Each 

TALE repeat recognizes 1 bp of DNA and the sequence specificity is determined by repeat-variable diresidues 

(RVD; shown in red). TALEN-mediated DNA DSBs are induced by dimerization of two Fok1 nucleases.  

Despite the difficulty of assembling TALE arrays, TALENs still offer many advantages 

over other programmable nucleases. First, TALENs have the highest genome-targeting density 

compared to ZFNs and CRISPR/Cas because each TALE array recognizes DNA sequence at 

single nucleotide resolution (Boch et al., 2009; Moscou and Bogdanove, 2009). Second, 

TALENs have minimal off-target effects because a functional TALEN requires dimerization 

of two TALEN pairs, which can bind 30-40 bp of DNA sequence (Deng et al., 2012; Kim and 

Kim, 2014; Mak et al., 2012). Therefore, TALENs offer benefits for genome engineering. 
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CRISPR/Cas 

The discovery of CRISPR can be dated back to 1987, when a Japanese research group 

identified a series of directed repeats interspaced with short spacer sequences in the genome of 

Escherichia coli, although the function of these repeats was unknown at that time (Ishino et 

al., 1987). It was not until the mid-2000s that researchers discovered that these directed repeats 

are widely present in over 40% of sequenced bacteria and 90% of archaea genomes (Mojica et 

al., 2000), and found that the short spacer sequences between the directed repeats are of 

plasmid and viral origin (Bolotin et al., 2005; Mojica et al., 2005; Pourcel et al., 2005). After 

realizing that the CRISPR locus is actively transcribed and the protein product has potential 

nuclease and helicase activities, scientists proposed that the CRISPR/Cas system functions as 

an adaptive immune system in bacteria and archaea to defend against viral infection 

(Barrangou et al., 2007; Bolotin et al., 2005; Brouns et al., 2008; Haft et al., 2005; Jansen et 

al., 2002; Makarova et al., 2006; Marraffini and Sontheimer, 2008; Pourcel et al., 2005). The 

CRISPR/Cas system can be grouped into two classes and six subtypes: the Class 1 system 

encodes multiple effector proteins forming a Cascade complex (CRISPR-associated complex 

for antiviral defense) with their corresponding signature proteins, such as Cas3, Cas10 and 

Csf1 from Type I, III and IV CRISPR systems, respectively (Makarova et al., 2011a; Makarova 

et al., 2011b; Makarova et al., 2015; Shmakov et al., 2015). The Class 2 system encodes a 

single Cas protein with multiple functions, including Cas9, Cpf1 and Cas13a/C2c2 from Type 

II, V and VI CRISPR systems (Abudayyeh et al., 2016; East-Seletsky et al., 2017; Shmakov et 

al., 2015; Zetsche et al., 2015). 

The mechanism of CRISPR immunity in bacteria and archaea varies between different 
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CRISPR types, but generally can be divided into three elements, which are protospacer 

acquisition, precursor CRISPR RNA (pre-crRNA) processing, and crRNA-guided cleavage of 

exogenous nucleic acids (Marraffini, 2015; Wright et al., 2016). Most CRISPR immunity 

requires a protospacer adjacent motif (PAM) located next to the crRNA target region in the 

exogenous invading genome. (Hsu et al., 2014; Wright et al., 2016). 

Owing to the simplicity of the Class 2 CRISPR system in which only one RNA-guided 

endonuclease is required for nucleic acid cleavage, scientists engineered Cas9 endonuclease in 

conjunction with a hybrid crRNA-tracrRNA duplex, known as single guide RNA (sgRNA), 

for efficient site-specific genome cleavage in eukaryotic cells (Figure 1.5) (Cong et al., 2013; 

Jinek et al., 2012; Mali et al., 2013b). Currently, the most widely used Cas9 endonuclease is 

from Streptococcus pyogenes with 5’-NGG-3’ or 5’-NAG-3’ PAM preference. Other Cas9 

orthologs are also available for genome targeting, including Cas9 endonucleases from 

Staphylococcus aureus (Ran et al., 2015), Neisseria meningitides (Hou et al., 2013) and 

Streptococcus thermophilus (Magadan et al., 2012; Muller et al., 2016), although these Cas9 

orthologs recognize longer and more complicated PAM sequences.  
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Figure 1.5 Clustered regularly interspaced short palindromic repeats-CRISPR associated protein 9 

(CRISPR/Cas9) used for genome editing. A schematic illustration of the engineered CRISPR/Cas9 system from 

Streptococcus pyogenes. In the CRISPR/Cas9 system, target recognition is mediated by DNA hybridization with 

a single guide RNA (sgRNA), which is an engineered RNA chimera composed of CRISPR RNA (crRNA) and 

trans-activating crRNA (tracrRNA). CRISPR/Cas9-mediated DNA DSB requires a protospacer adjacent motif 

(PAM; shown in red) and cleavage is induced at the nucleotide 3 bp proximal to the PAM. Red arrowheads 

indicate cleavage site. 

Besides the Type II CRISPR/Cas9 system, the most recently discovered Type V 

CRISPR effectors including Cpf1 (Zetsche et al., 2015) further expand the range of genome 

editing and nucleic acid detection. CRISPR/Cpf1, from the Class 2 Type V CRISPR system, 

is a RNA-guided endonuclease capable of DNA cleavage (Figure 1.6) (Fonfara et al., 2016; 

Zetsche et al., 2015). Two Cpf1 orthologs, LbCpf1 (from Lachnospiraceae bacterium 

ND2006) and AsCpf1 (from Acidaminococcus sp. BV3L6) have been engineered for genome 

editing in a variety of systems, including mammalian cells, animals, and plants (Endo et al., 

2016; Hur et al., 2016; Jiang et al., 2017; Kim et al., 2017; Kim et al., 2016; Ma et al., 2017b; 

Murovec et al., 2017; Port and Bullock, 2016; Toth et al., 2016; Ungerer and Pakrasi, 2016; 

Zaidi et al., 2017; Zhang et al., 2017b). The CRISPR/Cpf1 system has many unique features 

compared to CRISPR/Cas9: (i) Cas9-mediated genome cleavage requires two RNA 

components consisting of a crRNA and a tracrRNA (which can be engineered as a single 

sgRNA hybrid), whereas Cpf1-mediated genome cleavage is tracrRNA-independent, so it only 

requires a short crRNA. (ii) The PAM sequence of Cpf1 is 5’-TTTN-3’, located at the 5’ end 

of a protospacer; in contrast, the 5’-NGG-3’ or 5’-NAG-3’ PAM for SpCas9 is located at the 

3’ end of a protospacer. (iii) Cas9-mediated DNA DSB is blunt-ended and proximal to the 
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PAM site, whereas Cpf1-mediated DNA DSBs are cleaved as a staggered cut distal to the PAM 

site. (iv) The pre-crRNA processing in the CRISPR/Cas9 system is catalyzed by an additional 

RNase III, whereas Cpf1 has intrinsic RNase activity and can directly process pre-crRNA by 

itself (Fonfara et al., 2016; Zetsche et al., 2015). 

 

Figure 1.6 CRISPR from Prevotella and Francisella 1 (CRISPR/Cpf1) used for genome editing. A novel 

Class 2 CRISPR/Cpf1 system has been engineered for RNA-guided DNA cleavage. Domain organization of the 

LbCpf1 protein discovered in Lachnospiraceae bacterium ND2006. All Cpf1 orthologs have two nuclease 

domains: i) the RuvC domain which cleaves the non-target DNA strand and ii) the Nuc domain which cleaves the 

target DNA strand. The LbCpf1 crRNA is shown hybridizing with its DNA target. The PAM is highlighted in 

red. Red arrowheads indicate cleavage site. 

Because of its T-rich PAM preference, Cpf1 represents an alternative to Cas9 for 

genome editing at AT-rich loci. In addition to the canonical 5’-TTTN-3’ PAM sequence, Cpf1 

also recognizes 5’-CTTV-3’, 5’-TCTV-3’, 5’-TTCV-3’ (V represents A, G, or C) as non-

canonical PAMs, because the PAM-binding channel of Cpf1 has conformational flexibility 

(Yamano et al., 2017) that further expands the targeting range of the CRISPR/Cpf1 system. 

Another advantage of Cpf1 compared to Cas9 is the convenience of multiplex genome editing. 

CRISPR/Cas9-mediated multiplex genome editing requires multiple sgRNAs transcribed from 

separate promoters or additional RNA sequences for recognition and cleavage by other 
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nucleases if multiple sgRNAs are transcribed from a single promoter (Kabadi et al., 2014; 

Sakuma et al., 2014; Tsai et al., 2014; Xie et al., 2015). However, CRISPR/Cpf1-mediated 

multiplex genome editing only requires a single promoter for the transcription of multiple 

crRNAs, because Cpf1 can process polycistronic crRNAs into individual ones using its own 

RNase activity, which significantly simplifies multiplex genome editing (Zetsche et al., 2017). 

Therefore, Cpf1 is more than an alternative to Cas9 in terms of genome and epigenome editing 

but offers a broader range of genomic editing options. 

 

CRISPR/Cas-mediated Genome Editing  

On average, each human cell undergoes approximately 50 spontaneous DNA DSBs 

during each cell cycle (Vilenchik and Knudson, 2003). DNA DSBs occur randomly, so the 

efficiency of HR-mediated gene targeting in the absence of programmable nucleases is 

extremely low (Deng and Capecchi, 1992). The RNA-guided CRISPR/Cas system 

significantly enhances and simplifies genome editing, in which the Cas9-sgRNA 

ribonucleoprotein complex binds to DNA by base-pairing with sgRNA, generating a site-

specific DNA DSB adjacent to the PAM sequence. Depending on the cell cycle stage and repair 

machinery, the DNA DSBs can be repaired by error-prone non-homologous end joining 

(NHEJ) or by accurate homology-directed repair (HDR). Additionally, there is a third DNA 

DSB repair pathway known as microhomology-mediated end joining (MMEJ), which is a sub-

type of alternative NHEJ (alt-NHEJ).  
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Classical Non-homologous end joining (C-NHEJ) 

Classical NHEJ (C-NHEJ) DNA repair machinery is triggered when a CRISPR/Cas-

induced DNA DSB occurs in the absence of a repair template (Figure 1.7, panel A). Although 

C-NHEJ is active in all stages of the cell cycle, it occurs preferentially during the G1 phase 

when the DNA-end resection activity is low (Ira et al., 2004). The end of a DNA DSB is 

recognized by Ku70/Ku80 heterodimers, which recruit and activate the catalytic subunit of 

DNA-dependent protein kinase (DNA-PKcs). Depending on the nature of the break, the ends 

of DNA DSBs can be directly ligated by the DNA ligase IV-XRCC4 complex, or requires 

additional processing steps, such as end resection by Artmis, WRN, or APLF nucleases and 

nucleotide synthesis by DNA polymerases μ and λ (Ciccia and Elledge, 2010; Davis and Chen, 

2013). 

DNA DSBs repaired by C-NHEJ usually generate insertions or deletions (INDELs). 

Depending on the location of the site-specific cleavage, C-NHEJ has been used for different 

purposes of genome editing. The most widely used application of C-NHEJ is gene disruption, 

because INDELs often cause a frameshift of an exon and subsequently disrupt gene function, 

resulting in a gene knockout. However, C-NHEJ can also cause exon skipping if the INDELs 

disrupt the splice acceptor site (Li et al., 2015), or an exonic splice enhancer/silencer sequence 

(Mou et al., 2017); although the outcome of the latter scenario is less predictable. Depending 

on the reading frame of the skipped exon and adjacent exons, exon skipping can cause gene 

knockout when the newly spliced adjacent exons are out of frame. Conversely, exon skipping 

can also produce a truncated protein if the newly spliced adjacent exons are perfectly in frame 

with each other.  
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C-NHEJ was generally considered as an error-prone DSB repair pathway. However, 

some recent studies also demonstrated the precision of C-NHEJ (Auer et al., 2014; Maresca et 

al., 2013) and used this repair pathway for homology-independent targeted integration (HITI) 

of DNA fragments into post-mitotic cells and animals, further expanding the application of 

CRISPR/Cas-mediated C-NHEJ in genome editing (Suzuki et al., 2016). 

 

Figure 1.7 DNA repair pathways involved in CRISPR/Cas-induced DNA double-strand break repair. A. 

Classical non-homologous end joining (c-NHEJ) is a Ku-dependent DNA repair pathway that is active throughout 

the cell cycle. In the absence of a donor template, c-NHEJ generates insertions or deletions (INDELs; shown in 

red) in the genome. B. When a DNA double-strand break (DSB) is induced in the S or G2 phase of the cell cycle, 

homology-directed repair (HDR) can be triggered if a donor template is present (magenta), leading to precise 

repair of the genome. C. A Ku-independent microhomology-mediated end joining (MMEJ) pathway can be used 

for DNA DSB repair if the DNA breakage site shares sequence homology. MMEJ-mediated repair generates 

INDELs in the genome (red).  
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Homology-directed repair (HDR) 

DNA DSBs can also be repaired by homology-directed repair (HDR) during S and G2 

phases of the cell cycle, when sister chromatids can be used as a template for HR (Figure 1.7, 

panel B) (You and Bailis, 2010). During HDR, the end of the DNA DSB is recognized by the 

MRE11-RAD50-NBS1 (MRN) complex, which undergoes initial DNA end resection induced 

by MRE11 (Williams et al., 2007), followed by extensive end resection induced by the EXO1-

BLM complex (Bolderson et al., 2010), producing single-stranded DNA (ssDNA). The 

exposed ssDNA is coated by RPA until RAD51 detects the homology sequence, leading to 

strand invasion and Holliday junction formation (West, 2003). HDR is completed when the 

Holliday junction is either dissolved by the BLM/TOPOIII complex or resolved by GEN1 or 

SLX1/SLX4 nucleases (Wyatt and West, 2014).  

Currently, the most widely used repair templates for HDR are double-stranded DNA 

(circular or linearized plasmid) and single-stranded oligodeoxynucleotides (ssODNs). Before 

programmable nucleases were employed in HR-mediated gene targeting, the length of 

sequence homology on the targeting vector for HDR could be up to 14 kb for efficient gene 

targeting (Deng and Capecchi, 1992). The development of programmable nucleases, especially 

the CRISPR/Cas system significantly enhanced site-specific DNA DSBs and further reduced 

the length of sequence homology on the targeting vector to several hundred base pairs 

(Maruyama et al., 2015; Zhang et al., 2017a).  

A ssODN can also serve as a repair template for HDR, especially for introducing small 

DNA modifications (Long et al., 2014; Richardson et al., 2016; Wu et al., 2013; Zhang et al., 

2017b). Interestingly, asymmetrical ssODN complementary to the non-target strand (the DNA 
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strand that does not base pair with the CRISPR sgRNA) can drive the efficiency of HDR up to 

60%, because the Cas9 endonuclease first releases the PAM-distal non-target DNA strand, 

which is more available for ssODN binding (Richardson et al., 2016). Due to the accuracy of 

HDR, it is possible that the Cas9 endonuclease will continuously generate DSBs at the target 

site as long as the PAM and the sgRNA target sequence remain intact, even when HDR is 

completed. Because of codon degeneracy, introducing a silent mutation at the third nucleotide 

of the triplet codon for the disruption of the PAM and/or sgRNA target sequence can 

effectively overcome the re-cleavage event (Long et al., 2014; Zhang et al., 2017b). 

 

Microhomology-mediated end joining (MMEJ) 

Microhomology-mediated end joining (MMEJ) is a Ku-independent alt-NHEJ repair 

pathway for DNA DSBs, which displays maximal activity in S phase (Figure 1.7, panel C) 

(Truong et al., 2013). Similar to HDR, MMEJ undergoes initial DNA end resection induced 

by MRE11 but does not require extensive end resection induced by the EXO1-BLM complex 

(Rass et al., 2009; Truong et al., 2013; Xie et al., 2009). If microhomology is present, the 

exposed ssDNA ends generated by initial DNA end resection will anneal with each other and 

the gap between the newly annealed ssDNA will be filled by DNA polymerases θ (Chan et al., 

2010; Yu and McVey, 2010) and finally ligated by the LIG3-XRCC1 complex (Audebert et 

al., 2004; Simsek et al., 2011; Wang et al., 2005a).   

In the absence of template DNA, MMEJ is an error-prone DNA repair pathway because 

of INDEL formation (Sfeir and Symington, 2015; Truong et al., 2013). However, several 

studies have adopted MMEJ for precise integration of exogenous reporter genes into the 
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genome after TALEN or CRISPR/Cas9-mediated DNA DSBs (Hisano et al., 2015; Nakade et 

al., 2014; Sakuma et al., 2016). This method, known as Precise Integration into Target 

Chromosome (PITCh), requires three DNA DSBs, with one DSB located at the target locus in 

the genome, and the other two DSBs located at the 5’- and 3’-ends of a reporter cassette (e.g. 

GFP). The reporter cassette is cloned into a plasmid with 5-25 bp of sequence homology to the 

target locus, serving as the MMEJ repair template. Therefore, MMEJ provides an alternative 

method for precise genome editing similar to HDR. 

MYOEDITING: PREVENTION OF DUCHENNE MUSCULAR DYSTROPHY 

Introduction of Myoediting 

To date, more than 800 monogenic neuromuscular disorders with mutations in over 

400 different genes have been recorded (Bonne et al., 2017). The discovery and application of 

programmable nucleases for genome editing paves the way for permanent correction of these 

genetic diseases (Cox et al., 2015; Porteus, 2015; Prakash et al., 2016). Meganucleases, ZFNs 

and TALENs have been reported to correct mutations responsible for certain muscular 

dystrophies including Duchenne muscular dystrophy (DMD), limb-girdle muscular dystrophy 

(LGMD), and myotonic dystrophy (DM) (Gao et al., 2016; Li et al., 2015; Maggio et al., 

2016b; Ousterout et al., 2015b; Ousterout et al., 2013; Popplewell et al., 2013; Turan et al., 

2016; Xia et al., 2015). However, these early versions of programmable nucleases were not 

widely adopted for correcting mutations in various muscular dystrophies because of the low 

genome targeting density, difficulty of assembly of the functional nuclease domains and 

cytotoxicity caused by off-target effects. The CRISPR/Cas system revolutionized the genome 
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editing field and significantly simplified the process of permanent correction of monogenic 

neuromuscular disorders.  

CRISPR/Cas-mediated genome editing in skeletal muscle and heart, which we termed 

myoediting (Long et al., 2016; Long et al., 2014), can permanently correct various DMD 

mutations and restore dystrophin function. Initially, myoediting was performed in the germline 

of mdx mice, a mouse model of DMD with a nonsense mutation in exon 23. By injecting Cas9 

mRNA, a sgRNA targeting the mutated exon 23, and a ssODN repair template into the zygotes 

of mdx mice, it was demonstrated that CRISPR/Cas9-mediated myoediting can successfully 

correct the Dmd mutation by HDR or NHEJ and restore dystrophin expression (Long et al., 

2014). However, germline editing in humans is currently not feasible, necessitating alternative 

strategies for therapeutic genome editing. Therefore, we and other groups used recombinant 

adeno-associated virus (rAAV) to deliver the CRISPR/Cas9 genome editing components to 

postnatal mdx mice for skipping or deleting the mutated exon in vivo (Bengtsson et al., 2017; 

El Refaey et al., 2017; Long et al., 2016; Nelson et al., 2016; Tabebordbar et al., 2016). The 

rAAV-delivered CRISPR/Cas9-mediated postnatal genome editing successfully restored 

dystrophin expression and improved muscle function in mdx mice. These studies underscore 

the therapeutic potential of the CRISPR/Cas9 system for treating devastating muscle diseases.  

The CRISPR/Cpf1 system was also used to correct DMD mutations in human induced 

pluripotent stem cells (iPSCs) and in mdx mice either by exon skipping or HDR (Zhang et al., 

2017b), which further expands the range of CRISPR/Cas-mediated genome editing in AT-rich 

loci. Due to post-mitotic and multinucleation features, skeletal muscle is ideal for therapeutic 

CRISPR/Cas9 genome editing because genomic correction of a sub-population of nuclei leads 
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to steady improvement of muscle function (Bengtsson et al., 2017; El Refaey et al., 2017; Long 

et al., 2016; Long et al., 2014; Nelson et al., 2016; Tabebordbar et al., 2016; Zhang et al., 

2017b). Therefore, CRISPR/Cas-mediated myoediting represents a novel method for DMD 

treatment. In the following sections, different strategies of applying the CRISPR/Cas system 

for correcting DMD mutations are discussed in detail. 

 

Strategies of CRISPR/Cas-mediated DMD Correction 

Initial efforts to apply programmable nucleases such as meganuclease, ZFN and 

TALEN for precise genome editing provided many insights into the permanent correction of 

DMD mutations (Li et al., 2015; Maggio et al., 2016b; Ousterout et al., 2015b; Ousterout et 

al., 2013; Popplewell et al., 2013). The CRISPR/Cas system significantly simplified the 

genome editing process. To date, four strategies have been developed for CRISPR/Cas-

mediated correction of DMD mutations, which are exon deletion, exon skipping, exon 

reframing and exon knock-in. 

 

Exon deletion  

Approximately 80% of mutations found in the DMD gene are out-of-frame exon 

deletions or duplications, leading to reading frame incompatibility between adjacent exons 

(Figure 1.8, panel A) (Aartsma-Rus et al., 2006; Bladen et al., 2015). The most traditional 

strategy to permanently restore the DMD open reading frame (ORF) is in-frame exon deletion, 

in which a pair of sgRNAs is used to generate two simultaneous DNA DSBs within the intron 

regions flanking the out-of-frame exon, leading to complete removal of a single exon or 
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multiple exons to generate a compatible reading frame outcome with the adjacent exon (Figure 

1.8, panel B). CRISPR/Cas-mediated exon deletion is best suited for correcting DMD 

mutations caused by exon duplication and has been reported with high efficiency in human 

DMD myoblasts with exon 2 or exon 18-30 duplications (Lattanzi et al., 2017; Wojtal et al., 

2016). Removal of the duplicated exons, restores the DMD ORF and produces full-length 

dystrophin protein that is indistinguishable from wild type or normal dystrophin, although 

small INDELs can be observed at the genomic level.  

 

Figure 1.8 Strategies for CRISPR/Cas-mediated correction of DMD mutations. (A) A schematic illustration 

showing arrangement of exons 43-46 of the DMD gene in terms of their reading frame compatibility. This 

genomic region is used here as an example to highlight the strategies for CRISPR/Cas9 correction of DMD 

mutations. An out-of-frame deletion of DMD exon 44 results in splicing of exon 43 to exon 45. This creates a 

premature stop codon in exon 45 (red STOP sign). (B) Exon deletion is used to restore the DMD reading frame. 

Two sgRNAs targeting introns 44 and 45 will generate two DNA DSBs flanking exon 45. This leads to excision 
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of exon 45 and subsequent splicing of exon 43 to exon 46. (C) Exon skipping is mediated by a single sgRNA 

which targets the splice acceptor site of exon 45. The INDELs generated by NHEJ-mediated repair disrupt the 

splice acceptor site of exon 45, leading to splicing of exon 43 to exon 46. (D) Exon reframing is mediated by a 

single sgRNA targeting exon 45. The INDELs in exon 45 generated by NHEJ-mediated repair may restore the 

reading frame compatibility of exon 45 with exons 43 and 46. (E) Exon knock-in relies on HDR DNA repair 

pathway in the presence of a donor template. A single sgRNA targeting intron 44 will generate a DNA DSB and 

repaired by HDR when exon 44 is used as a donor template, leading to exon 44 knock-in between exons 43 and 

45. 

DMD mutations caused by an out-of-frame exon deletion can be corrected by an in-

frame exon deletion, producing a truncated dystrophin protein with internal deletions. For 

example, cultured myoblasts from DMD patients with an out-of-frame deletion of exons 48-

50 have an incompatible reading frame when exon 47 is spliced with exon 51. A pair of 

sgRNAs targeting intron 50 and 51 was used to delete exon 51, restoring the reading frame 

between exon 47 and 52 (Ousterout et al., 2015a). Similarly, the dystrophin reading frame 

incompatibility caused by an out-of-frame deletion of exons 45-52 has been corrected by exon 

53 deletion, leading to splicing of exon 44 to exon 54 and subsequently restoring the dystrophin 

reading frame (Maggio et al., 2016a; Maggio et al., 2016b). Multiple exons can also be deleted 

to restore the dystrophin reading frame. By using a pair of sgRNAs targeting intron 44 and 55, 

a large deletion extending from exon 45 to 55 was generated, leading to reading frame 

restoration of exon 44 to exon 56 (Ousterout et al., 2015a; Young et al., 2016). Similarly, a 

large deletion extending from exons 44 to 54 was generated, by using a pair of sgRNAs 

targeting intron 43 and 54, leading to reading frame restoration between exon 43 and 55 

(Maggio et al., 2016a; Maggio et al., 2016b). Several in vivo studies in postnatal mdx or mdx4cv 

mice used exon deletion strategies to remove a single or multiple exons with a point mutation 
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and thereby restored dystrophin expression and muscle function (Bengtsson et al., 2017; El 

Refaey et al., 2017; Long et al., 2016; Nelson et al., 2016; Tabebordbar et al., 2016; Xu et al., 

2016).  

Exon deletion is a promising strategy to correct mutations clustered in the second hot 

spot region (exons 45-55) because the spectrin-like repeats within the central rod domain are 

tolerant of large in-frame deletions (Gao and McNally, 2015; Guiraud et al., 2015). However, 

special consideration should be given to mutations at the N- and C-termini of dystrophin 

because these regions encode many essential domains known to interact with the actin 

cytoskeleton and dystrophin glycoprotein complex. For example, three different exon deletion 

strategies were applied to correct the DMD mutation caused by an out-of-frame deletion of 

exons 8-9 and different outcomes were observed in regard to dystrophin protein stability and 

function (Kyrychenko et al., 2017). Specifically, an in-frame deletion of exons 7-11 retained 

all three actin binding sites but this truncated dystrophin was structurally unstable and showed 

minimal recovery of cardiomyocyte function in vitro. In contrast, in-frame deletion of exons 

3-9 only retained actin binding site 1 but was the most effective strategy to restore functionality 

of human iPSC-derived cardiomyocytes. Reading frame restoration does not guarantee 

functional recovery and hence additional empirical analysis should be performed to further 

evaluate different correction strategies. 
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Exon skipping 

Exon skipping has been achieved using anti-sense oligonucleotide (AON)-based 

therapy (Aartsma-Rus, 2012). However, AON-based exon skipping corrects at the mRNA 

level, while retaining the mutant DMD in the genome. Thus, this approach requires life-long 

treatment. In contrast, CRISPR/Cas-based exon skipping is achieved by NHEJ-mediated 

disruption of the splice acceptor or donor sequence at the genomic level, leading to permanent 

exon skipping and completely eliminating the source of the mutation. For example, human 

iPSCs derived from DMD patients with exon 44 deletion have an incompatible reading frame 

between exon 43 and 45 (Figure 1.8, panel A). A single sgRNA was designed to specifically 

target the intron 44 and exon 45 boundary, thereby inducing a DNA DSB at the splice acceptor 

site of exon 45 (Figure 1.8, panel C). The INDELs generated by NHEJ-based DSB repair 

disrupted the splice acceptor sequence of exon 45, leading to exon 45 skipping during mRNA 

splicing (Li et al., 2015). Similarly, DMD mutations caused by an out-of-frame deletion of 

exons 48-50 or exons 45-52 have been corrected by skipping exon 51 or exon 53, respectively 

(Maggio et al., 2016a; Maggio et al., 2016b; Zhang et al., 2017b). Recently, exon skipping has 

also been used to correct Dmd in a mouse model representing the most commonly deleted hot 

spot mutation in humans (Amoasii et al., 2017). This mouse model has an out-of-frame deletion 

of exon 50, which generates a premature stop codon in exon 51. A single sgRNA was designed 

to target the exon 51 splice acceptor site, leading to exon 51 skipping. Therefore, using a single 

sgRNA-mediated exon skipping strategy, which abolishes either the splice site acceptor or 

splice site donor or allows for reframing, overcomes the necessity of double sgRNA-based 

exon deletion.  
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Usually, the single sgRNA-mediated exon skipping strategy generates a relatively 

small INDEL at the intron/exon boundary, destroying the exon splice acceptor or donor site 

but retaining the residual part of the exon sequence in the genome. If “AG” nucleotides are 

present in the residual part of the exon, they can serve as a pseudo-splice acceptor sequence, 

rendering the single sgRNA-mediated exon skipping ineffective. Therefore, additional 

experimental studies, such as reverse transcription polymerase chain reaction (RT-PCR) or 

Western blot analysis should be performed to confirm exon skipping at the RNA and protein 

level.  

 

Exon reframing  

A NHEJ-based reframing strategy can also be applied to restore the dystrophin ORF, 

in which a single or a pair of sgRNAs are used to generate DNA DSBs within the exon region, 

leading to a targeted frameshift, since in theory, one-third of INDELs created by NHEJ should 

be in-frame (Figure 1.8, panel D). Several studies have applied this strategy to restore the 

dystrophin reading frame by inducing targeted frameshifts in exons with an incompatible 

reading frame in regard to the adjacent exon, including exons 23, 45, 50, 51, 53 and 54 

(Bengtsson et al., 2017; Iyombe-Engembe et al., 2016; Li et al., 2015; Long et al., 2014; 

Maggio et al., 2016a; Maggio et al., 2016b; Ousterout et al., 2015a; Zhang et al., 2017b). 

Unlike the exon deletion strategy, which excises a single or multiple exons, exon reframing 

only creates small INDELs and hence, minimizes the length of the genomic deletion. 

Both exon skipping and exon reframing strategies require using one sgRNA-mediated 

single cut in the genome. These two strategies are considered more efficient than using two 
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sgRNA-mediated double cuts in the genome. This is because exon deletion by excision using 

two sgRNAs requires two cooperative DNA DSBs. However, two DNA DSBs do not always 

occur simultaneously since there is a possibility that a single DNA DSB can be rapidly rejoined 

by NHEJ-mediated DNA repair, leaving the second intronic DSB ineffective. In this situation, 

exon deletion cannot be achieved because of the latency between the two DNA DSBs. In 

contrast, one sgRNA-mediated single cut near the splice acceptor site can be sufficient to 

restore the DMD ORF. For example, if the INDEL disrupts the splice acceptor sequence, this 

could lead to exon skipping. Alternatively, if the INDEL does not disrupt the splice acceptor 

sequence, there is still a possibility that one-third of the INDELs within the exon could be in-

frame, leading to exon reframing.  

 

Exon knock-in 

In general, DMD mutations corrected by exon deletion, skipping or reframing strategies 

will generate truncated dystrophin proteins with internal deletions. In principle, DMD 

mutations can also be corrected by exon knock-in, leading to expression of full-length 

dystrophin protein (Figure 1.8, panel E). Exon knock-in requires a DNA donor template and 

active cell cycle to induce HDR-mediated precise editing in the S and G2 phases. This repair 

strategy has been used in DMD patient-derived iPSCs to correct a mutation caused by an out-

of-frame deletion of exon 45 (Li et al., 2015). In addition, point mutations in mouse Dmd exon 

23 and 53 have also been corrected by HDR-mediated precise editing (Bengtsson et al., 2017; 

Long et al., 2014; Zhang et al., 2017b; Zhu et al., 2017).  
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Mutations at specific regions in the N- and C-termini of dystrophin generally are not 

feasible for exon deletion or skipping-based correction because essential domains known to 

interact with cytoskeletal actin or the sarcoglycan complex are encoded within these regions. 

Therefore, exon knock-in is required to correct these types of mutations. However, due to the 

post-mitotic nature of mature striated muscle and cardiomyocytes, HDR efficiency remains 

low in CRISPR/Cas-mediated postnatal genome editing (Bengtsson et al., 2017). Recently, 

precise genome editing in post-mitotic cells and animals with high efficiency was reported 

(Suzuki et al., 2016). This technology, which was termed homology-independent targeted 

integration (HITI), only relies on the NHEJ pathway and can be used to precisely integrate 

DNA fragments into the mammalian genome, regardless of the cell cycle state, which may 

provide opportunities to correct certain DMD mutations by exon knock-in. 

 

IN VIVO GENOME EDITING OF ANIMAL MODELS. 

The ultimate goal of therapeutic application of genome editing is to permanently 

correct mutations that contribute to human monogenic diseases. Programmable nucleases such 

as the CRISPR/Cas-system have been demonstrated to be effective in precise correction of 

pathogenic mutations found in the human embryo (Kang et al., 2016b; Liang et al., 2015; Ma 

et al., 2017a; Tang et al., 2017). However, ethical issues, as well as public policies, restrict 

therapeutic application of human germline editing, leaving postnatal genome editing as the 

means to achieve the same goal. 

Therapeutic genome editing requires delivering programmable nucleases and other 

genome editing components to target cells, which can be achieved ex vivo or in vivo. Ex vivo 
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editing requires in vitro editing of the cellular genome, followed by transplantation of the 

targeted cell population to the original host. CRISPR/Cas-mediated ex vivo editing has been 

shown to be effective in the hematopoietic system (DeWitt et al., 2016; Genovese et al., 2014; 

Gundry et al., 2016; Sather et al., 2015; Wang et al., 2015). In theory, ex vivo genome editing 

can be applied to the skeletal muscle system because satellite cells serve as adult stem cells of 

skeletal muscle and are capable of surviving manipulation in vitro. However, skeletal muscle 

is the largest tissue in the human body, comprising approximately 40% of body weight. 

Transplantation of edited satellite cells or progenitor cells may improve local muscle function 

but systemic functional recovery remains questionable (Zhu et al., 2017). In addition to skeletal 

muscle, the heart is also affected in a variety of muscular dystrophies, but does not have stem 

cells or stem cell-like cell populations capable of transplantation and regeneration (Balsam et 

al., 2004; Ellison et al., 2013; Murry et al., 2004; Orlic et al., 2001; Sultana et al., 2015; van 

Berlo et al., 2014). Taken together, ex vivo transplantation-based approaches are generally not 

feasible to treat muscular dystrophies, especially for those affecting both skeletal muscle and 

the heart. Therefore, in vivo postnatal genome editing turns out to be a more practical approach 

to permanently correct genetic mutations causing muscular dystrophies. 

 

Delivery of Genome Editing Components by Non-Viral Vectors 

Achieving in vivo postnatal genome editing requires an efficient and effective delivery 

system. Genome editing components can be physically or chemically delivered to target cells 

by non-viral vectors (Figure 1.9). For example, microinjection and electroporation have been 

demonstrated as effective methods to deliver CRISPR/Cas genome editing components to 
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target cells (Chen et al., 2016; Kimura et al., 2014; Meca-Cortes et al., 2017; Niu et al., 2014; 

Yang et al., 2013a). However, these physical approaches are widely used for germline editing 

or embryo manipulation but are not feasible for systemic delivery in the postnatal host. In 

contrast, hydrodynamic intravenous injection can achieve systemic delivery in multiple tissues, 

including liver, kidney, lung, skeletal muscle and heart (Bonamassa et al., 2011; Suda and Liu, 

2007). Some studies have applied this technology to deliver CRISPR/Cas genome editing 

components to postnatal mice for mutating cancer genes in the mouse liver, correcting a 

tyrosinemia mutation and disrupting hepatitis B virus (Lin et al., 2014a; Xue et al., 2014; Yin 

et al., 2014b; Zhen et al., 2015). However, hydrodynamic injection requires a large injection 

volume and high pressure, which may damage tissues or organs.  

Figure 1.9 Systemic delivery of genome editing 

components. Non-viral (lipid-based carriers or 

polymeric carriers) and viral (rAAV) vector-based 

delivery of genome editing components into target 

tissue. Following administration, the delivery 

vectors pass through the blood vessel by 

extravasation to reach their target tissues.  In the 

tissue, they undergo cytoplasmic trafficking, 

endosomal escape and nuclear entry to perform 

genome editing in the nucleus.  
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In addition to physical vectors, chemical vectors, such as polymeric carriers and lipid-

based carriers, are also widely used for in vivo delivery. Polymeric carriers are cationic 

polymers that can condense negatively charged DNA or RNA, whereas lipid-based carriers 

can spontaneously assemble into liposomes consisting of nucleic acids and cationic or neutral 

lipids (Yin et al., 2014a). The CRISPR/Cas system and other genome editing components can 

be chemically delivered into animals in the form of plasmid DNA, mRNA or ribonucleoprotein 

complexes. Chemical vectors can protect nucleic acids or ribonucleoproteins from degradation 

by endonucleases or proteases in physiological fluids and extracellular space, improving 

stability and half-life. For example, chemically modified CRISPR/Cpf1 mRNA and crRNA 

have been reported to enhance genome editing efficiency (Li et al., 2017). However, many 

challenges still remain, including efficient delivery to the tissue of interest, cellular 

internalization and protection from the lysosomal degradation pathway (Wang et al., 2017; Yin 

et al., 2014a).  

It has been reported that plasmid DNA can be retained in skeletal muscle for over a 

year after intramuscular injection, suggesting the likelihood of long term gene expression and 

retention in post-mitotic tissue (Wolff et al., 1992). In contrast, localized non-viral delivery 

such as intramuscular injection cannot generate a systemic effect, which is not ideal for treating 

muscular dystrophies since skeletal muscle is one of the largest tissues in the human body and 

multiple muscle groups can be affected. Systemic non-viral delivery, such as intravenous or 

intraperitoneal injection, have extended the targeting range but may cause gene expression in 

non-targeted tissues. Therefore, delivery of genome editing components to animals by non-

viral vectors still requires improvement and optimization before clinical translation.  
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Delivery of Genome Editing Components by Viral Vectors 

Many viral vectors have been used for gene therapy, including lentivirus, retrovirus, 

herpes simplex virus, poxvirus, adenovirus, adeno-associated virus, baculovirus, and Epstein-

Barr virus (Nayerossadat et al., 2012; Wang et al., 2016). Among these, adeno-associated virus 

(AAV) is the most promising viral vector for the delivery of genome editing components to 

specific tissues, such as muscle and heart. AAV is an non-enveloped DNA virus with an 

approximately 5 kb linear ssDNA genome (Srivastava et al., 1983). The genome of wild-type 

AAV has two major ORFs flanked by two inverted terminal repeats (ITRs), while in the 

recombinant AAV (rAAV), the viral ORFs encoding the replication and capsid proteins are 

replaced by the customized gene expression cassette (Flotte and Berns, 2005). Both wild-type 

and rAAVs are nonpathogenic in humans or animals, and their propagation requires a helper 

virus, making them a safe delivery system for therapeutic genome editing (Kotterman and 

Schaffer, 2014; Samulski and Muzyczka, 2014; Sun et al., 2003).  

The rAAVs have many appealing features, including broad spectrum tissue tropism 

with minimal integration risk and long-term transgene expression from the episomal genome 

after viral transduction (Duan et al., 1998; Nonnenmacher and Weber, 2012; Schnepp et al., 

2005). Currently, 13 AAV serotypes are widely available for gene delivery and each of them 

shows different tissue tropism. AAV serotypes 1, 6, 8 and 9 have high tropism in skeletal 

muscle and heart (Blankinship et al., 2004; Chao et al., 2000; Gao et al., 2002; Gregorevic et 

al., 2004; Inagaki et al., 2006; Pan et al., 2015; Wang et al., 2005b; Yue et al., 2011; Zincarelli 

et al., 2010). In addition, tissue tropism and transduction efficiency can also be improved by 

pseudo-typing. For example, AAV2 genomes pseudo-packaged into AAV5 capsids can 
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enhance gene delivery to skeletal muscle, whereas improved cardiomyocyte transduction has 

been observed by pseudo-packaging AAV2 genomes into AAV6 capsids (Duan et al., 2001; 

Sipo et al., 2007). rAAV has been successfully used as a delivery system to administer 

CRISPR/Cas9 and other genome editing components to postnatal mdx or mdx4cv mice and 

correct Dmd mutations by exon deletion or reframing strategies (Bengtsson et al., 2017; El 

Refaey et al., 2017; Long et al., 2016; Nelson et al., 2016; Tabebordbar et al., 2016) (Figure 

1.9). In addition, several other studies reported rAAV-delivered CRISPR/Cas9-mediated in 

vivo genome editing in mouse models of human Huntington disease and congenital muscular 

dystrophy (Kemaladewi et al., 2017; Monteys et al., 2017; Yang et al., 2017). These studies 

demonstrated that the combination of a rAAV-based delivery system with CRISPR/Cas9-

mediated postnatal genome editing is a compelling strategy to permanently correct mutations 

responsible for monogenic neuromuscular disorders. However, long term benefits and effects 

in animal models still need to be examined to prepare for future clinical trials. 
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CRISPR/CPF1 CORRECTION OF MUSCULAR DYSTROPHY MUTATIONS IN 

HUMAN CARDIOMYOCYTES AND MICE 
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Abstract 

Duchenne muscular dystrophy (DMD), caused by mutations in the x-linked dystrophin gene 

(DMD), is characterized by fatal degeneration of striated muscles. Dilated cardiomyopathy is 

one of the most common lethal features of the disease. We deployed Cpf1, a unique class 2 

CRISPR effector, to correct DMD mutations in patient-derived induced pluripotent stem cells 

(iPSCs) and mdx mice, an animal model of DMD. Cpf1-mediated genomic editing of human 

iPSCs, either by skipping of an out-of-frame DMD exon or correcting a nonsense mutation, 

fully restored dystrophin expression after differentiation to cardiomyocytes and enhanced 

contractile function. Similarly, pathophysiological hallmarks of muscular dystrophy were 

corrected in mdx mice following Cpf1-medated germline editing. These findings are the first 

to show the efficiency of Cpf1-mediated correction of genetic mutations in human cells and in 

an animal disease model, and represent a significant step toward therapeutic translation of gene 

editing for correction of DMD. 
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Introduction 

Duchenne muscular dystrophy (DMD) is an X-linked recessive disease caused by 

mutations in the gene coding for dystrophin, which is a large cytoskeletal protein essential for 

integrity of muscle cell membranes (Hoffman et al., 1987; Koenig et al., 1987). DMD causes 

progressive muscle weakness, culminating in premature death by the age of 30, generally from 

cardiomyopathy. There is no effective treatment for this disease. Numerous approaches to 

rescue dystrophin expression in DMD have been attempted, including delivery of truncated 

dystrophin or utrophin by recombinant adeno-associated virus (rAAV) (Bostick et al., 2011; 

Hollinger and Chamberlain, 2015) and skipping of mutant exons with anti-sense 

oligonucleotides and small molecules (Shimizu-Motohashi et al., 2016). However, these 

approaches cannot correct DMD mutations or permanently restore dystrophin expression. 

The CRISPR (clustered regularly interspaced short palindromic repeats) system 

functions as an adaptive immune system in bacteria and archaea that defends against phage 

infection (Mojica et al., 2005). In this system, an endonuclease is guided to specific genomic 

sequences by a single guide RNA (sgRNA), resulting in DNA cutting near a proto-spacer 

adjacent motif (PAM) sequence. The CRISPR-Cas (CRISPR-associated proteins) system 

represents a promising approach for correction of diverse genetic defects. However, many 

challenges remain to be addressed. For example, Streptococcus pyogenes Cas9 (SpCas9), 

currently the most widely used Cas9 endonuclease, has a G-rich PAM requirement (NGG) that 

excludes genome editing of AT-rich regions (Ran et al., 2015). Additionally, the large size of 

SpCas9 reduces the efficiency of packaging and delivery in low-capacity viral vectors, such as 

adeno-associated virus (AAV) vectors. The Cas9 endonuclease from Staphylococcus aureus 
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(SaCas9), although smaller in size than SpCas9, has a PAM sequence (NNGRRT) that is longer 

and more complex, thus limiting the range of its genomic targets (Ran et al., 2015). Smaller 

CRISPR enzymes with greater flexibility in recognition sequence and comparable cutting 

efficiency would facilitate precision gene editing, especially for translational applications.   

 Recently, a new RNA-guided endonuclease, named Cpf1 (CRISPR from Prevotella 

and Francisella 1), was shown to be effective in mammalian genome cleavage (Zetsche et al., 

2015). Cpf1 has several unique features that expand its genome editing potential: (1) Cpf1-

mediated cleavage is guided by a single and short crRNA (abbreviated as gRNA), whereas 

Cas9-mediated cleavage is guided by a hybrid of CRISPR RNA (crRNA) and a long trans-

activating crRNA (tracrRNA) (Jinek et al., 2012). (2) Cpf1 prefers a T-rich PAM at the 5’-end 

of a protospacer, while Cas9 requires a G-rich PAM at the 3’ end of the target sequence. (3) 

Cpf1-mediated cleavage produces a sticky end distal to the PAM site, which activates DNA 

repair machinery, while Cas9 cutting generates a blunt end. (4) Cpf1 also has RNase activity, 

which can process precursor crRNAs to mature crRNAs (Fonfara et al., 2016; Zetsche et al., 

2015). Like Cas9, Cpf1 binds to a targeted genomic site and generates a double-stranded break 

(DSB), which is then repaired either by non-homologous end-joining (NHEJ) or by homology-

directed repair (HDR) if an exogenous template is provided. Although Cpf1 has been shown 

to be active in mammalian genome editing (Kim et al., 2016; Zetsche et al., 2015), its potential 

usefulness for correction of genetic mutations in mammalian cells and animal models of 

disease has yet to be demonstrated. 

Previously, we and others used CRISPR-Cas9 to correct the DMD mutation in mice 

and human cells (Amoasii et al., 2018; Amoasii et al., 2017; Bengtsson et al., 2017; Hakim et 
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al., 2018; Long et al., 2016; Min et al., 2019; Nelson et al., 2016; Nelson et al., 2019; 

Tabebordbar et al., 2016). In this chapter I show that Cpf1 provides a robust and efficient RNA-

guided genome editing system that can be used to permanently correct DMD mutations by 

different strategies, thereby restoring dystrophin expression and preventing progression of the 

disease. These findings provide a new approach for the permanent correction of human genetic 

mutations. 

 

Results 

Strategies for CRISPR/Cpf1-mediated genome editing of DMD exon 51 

Exon deletions preceding exon 51 of the human DMD gene, which disrupt the open 

reading frame (ORF) by juxtaposing out of frame exons, represent the most common type of 

human DMD mutation (Aartsma-Rus et al., 2009). Skipping of exon 51 can, in principle, 

restore the DMD ORF in 13% of DMD patients with exon deletions (Cirak et al., 2011). To 

test the potential of Cpf1 to correct this type of “hot-spot” mutation, we used DMD patient 

fibroblast-derived iPSCs (Riken HPS0164, abbreviated as Riken51), which harbor a deletion 

of exons 48 to 50, introducing a premature termination codon within exon 51 (Figure 2.1, panel 

A). 

The splice acceptor region is generally pyrimidine rich (Padgett, 2012), which creates 

an ideal PAM sequence for genome editing by Cpf1 endonuclease (Figure 2.1, panel B). To 

rescue dystrophin expression in Riken51 iPSCs, we used a Cpf1 gRNA to target exon 51, 

introducing small insertions and deletions (INDELs) in exon 51 by NHEJ and subsequently 

reframing the dystrophin ORF, theoretically, in one-third of corrected genes, a process we refer 
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to as “reframing” (Figure 2.1, panel A). We also compared two Cpf1 orthologues, LbCpf1 

(from Lachnospiraceae bacterium ND2006) and AsCpf1 (from Acidaminococcus sp. BV3L6), 

which use the same PAM sequences for genome cleavage. 

 

Figure 2.1 Strategy for CRISPR/Cpf1-meidated correction of DMD exons 48-50 out-of-frame deletion 

mutation. (A) A DMD deletion of exons 48-50 results in splicing of exon 47 to 51, generating an out-of-frame 

mutation of dystrophin. Two strategies were used for the restoration of dystrophin expression by Cpf1. In the 

“reframing” strategy, small INDELs in exon 51 restore the protein reading frame of dystrophin.  The “exon 

skipping” strategy is achieved by disruption of the splice acceptor of exon 51, which results in splicing of exon 

47 to 52 and restoration of the protein reading frame. (B) The 3’ end of an intron is T-rich, which generates Cpf1 

PAM sequences enabling genome cleavage by Cpf1. (C) Illustration of Cpf1 gRNA targeting DMD exon 51. The 

T-rich PAM (red line) is located upstream of exon 51 near the splice acceptor site. The sequence of the Cpf1 g1 

gRNA targeting exon 51 is shown, highlighting the complementary nucleotides in blue. Cpf1 cleavage produces 
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a staggered-end distal to the PAM site (demarcated by red arrowheads). The 5’ region of exon 51 is shaded in 

light blue.  Exon sequence is upper case. Intron sequence is lower case.  

Cpf1 cleavage was targeted to the T-rich splice acceptor site of exon 51 using a guide 

RNA (designated g1) (Figure 2.1, panel C), which was cloned into plasmids pLbCpf1-2A-GFP 

and pAsCpf1-2A-GFP (Figure 2.2, panel A). These plasmids express human codon optimized 

LbCpf1 or AsCpf1, plus GFP; enabling fluorescence activated cell sorting (FACS) of Cpf1-

expressing cells (Figure 2.2, panel A). Initially, we evaluated the cleavage efficiency of Cpf1-

editing with g1 in human 293T cells. Both LbCpf1 and AsCpf1 efficiently induced DNA 

cleavage with g1, as detected using a T7E1 assay that recognizes and cleaves non-perfectly 

matched DNA (Figure 2.2, panel B). 

 

Figure 2.2 in vitro genome editing in human 293T cells and iPSCs by CRISPR/LbCpf1 or CRISPR/AsCpf1. 

(A) Illustration of a plasmid encoding human codon-optimized Cpf1 (hCpf1) with a nuclear localization signal 

(NLS) and 2A-GFP. The plasmid also encodes a Cpf1 gRNA driven by the U6 promoter. Cells transfected with 

this plasmid express GFP, allowing for selection of Cpf1-expressing cells by FACS. (B) T7E1 assays using human 

293T cells or DMD iPSCs (RIKEN51) transfected with plasmid expressing LbCpf1 or AsCpf1, gRNA and GFP 
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show genome cleavage at DMD exon 51. Red arrowheads point to cleavage products. M, marker. (C) DNA 

sequencing of DMD exon 51 from a mixture of RIKEN 51 iPSCs edited by LbCpf1 or AsCpf1 using g1 gRNA.  

 

Next, we used LbCpf1 and AsCpf1 with g1 to edit Riken51 iPSCs, and by the T7E1 

assay we observed genome cleavage at DMD exon 51. Genomic PCR products from the Cpf1-

edited DMD exon 51 were cloned and sequenced (Figure 2.2, panel C). We observed INDELs 

near the exon 51 splice acceptor site in both LbCpf1- and AsCpf1-edited Riken51 iPSCs. Out 

of 20 clones, we observed four clones with reframed DMD exon 51, which restored the ORF 

(Figure 2.2, panel C). 

 

Restoration of dystrophin expression in DMD iPSC-derived cardiomyocytes after 

CRISPR/Cpf1-mediated reframing 

Riken51 iPSCs edited by CRISPR-Cpf1 using the reframing strategy were induced to 

differentiate into cardiomyocytes (Figure 2.3, panel A). Cardiomyocytes with the reframed 

DMD gene were identified by RT-PCR using a forward primer targeting exon 47 and a reverse 

primer targeting exon 52 and PCR products were sequenced (Figure 2.3, panel B and C). 

Uncorrected iPSC-derived cardiomyocytes have a premature termination codon following the 

first 8 amino acids encoded by exon 51, which creates a premature stop codon (Figure 2.3, 

panel C). Cardiomyocytes differentiated from Cpf1-edited Riken51 iPSCs showed restoration 

of the DMD ORF as seen by sequencing of the RT-PCR products from amplification of exons 

47 to 52 (Figure 2.3, panel C). We also confirmed restoration of dystrophin protein expression 

by Western blot analysis and immunocytochemistry using dystrophin antibody (Figure 2.3, 

panel D and E). Surprisingly, even without clonal selection and expansion, cardiomyocytes 
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differentiated from Cpf1-edited iPSC mixtures showed levels of dystrophin protein 

comparable to WT cardiomyocytes (Figure 2.3, panel D). 

 

 

Figure 2.3 DMD iPSC-derived cardiomyocytes express dystrophin after Cpf1-mediated genome editing by 

reframing. (A) DMD skin fibroblast-derived iPSCs were edited by Cpf1 using gRNA (corrected DMD-iPSCs) 

and then differentiated into cardiomyocytes (corrected cardiomyocytes) for analysis of genetic correction of the 

DMD mutation. (B) A DMD deletion of exons 48-50 results in splicing of exon 47 to 51, generating an out-of-
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frame mutation of dystrophin. Forward primer (F) targeting exon 47 and reverse primer (R) targeting exon 52 

were used in RT-PCR to confirm the reframing strategy by Cpf1-meditated genome editing in cardiomyocytes. 

Uncorrected cardiomyocytes lack exons 48-50. In contrast, after reframing, exon 51 is placed back in-frame with 

exon 47. (C) Sequencing of representative RT-PCR products shows that uncorrected DMD iPSC-derived 

cardiomyocytes have a premature stop codon in exon 51, which creates a nonsense mutation. After Cpf1-mediated 

reframing, the ORF of dystrophin is restored. Dashed red line denotes exon boundary. (D) Western blot analysis 

shows dystrophin expression in a mixture of DMD iPSC-derived cardiomyocytes edited by reframing with 

LbCpf1 or AsLpf1 and g1 gRNA. Even without clonal selection, Cpf1-mediated reframing is efficient and 

sufficient to restore dystrophin expression in the cardiomyocyte mixture. αMHC is loading control. (E) 

Immunocytochemistry shows dystrophin expression in iPSC-derived cardiomyocyte (CM) mixtures following 

LbCpf1- or AsCpf1-mediated reframing. Dystrophin staining (red); Troponin I staining (green). Scale bar = 100 

microns. (F) Western blot analysis shows dystrophin expression in single clones (#2 and #5) of iPSC-derived 

cardiomyocytes following clonal selection after LbCpf1-mediated reframing. αMHC is loading control. (G) 

Immunocytochemistry showing dystrophin expression in clone #2 LbCpf1-edited iPSC-derived cardiomyocytes. 

Scale bar = 100 microns. 

From mixtures of LbCpf1-edited Riken51 iPSCs, we picked two clones (clone #2 and 

#5) with in-frame INDELs of different sizes and differentiated the clones into cardiomyocytes.  

Clone #2 had an 8 bp deletion at the 5’-end of exon 51, together with an endogenous deletion 

of exons 48-50. The total 405 bp deletion restored the DMD ORF and allowed for the 

production of a truncated dystrophin protein with a 135 amino acid deletion. Clone #5 had a 

17 bp deletion in exon 51 and produced dystrophin protein with a 138 amino acid deletion.  

Although there is high efficiency of cleavage by Cpf1, the amount of DNA inserted or deleted 

at the cleavage site varies. Additionally, INDELs can generate extra codons at the edited locus, 

causing changes of the ORF. The dystrophin protein expressed by clone #2 cardiomyocytes 

generated four additional amino acids (Leu-Leu-Leu-Arg) between exon 47 and exon 51, 
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whereas dystrophin protein expressed by clone #5 cardiomyocytes generated only one 

additional amino acid (Leu). From both clones #2 and #5, we observed restored dystrophin 

protein by Western blot analysis and immunocytochemistry (Figure 2.3, panel F and G). Due 

to the large size of dystrophin, the internally-deleted forms migrated similarly to WT 

dystrophin on SDS-PAGE (Figure 2.3, panel F) 

 

 

 

 

 

 

Figure 2.4 DMD iPSC-derived cardiomyocytes restore mitochondria number and improve oxygen 

consumption rate after Cpf1-mediated genome editing by reframing. (A) Quantification of mitochondrial 

DNA copy number in single clones (#2 and #5) of LbCpf1-edited iPSC-derived cardiomyocytes. Data are 

represented as mean ± SEM (n = 3). (&) P < 0.01; (#) P < 0.005; (ns) not significant. (B) Basal oxygen 

consumption rate (OCR) of single clones (#2 and #5) of LbCpf1-edited iPSC-derived cardiomyocytes, and OCR 

in response to oligomycin, FCCP, and Rotenone and Antimycin A, normalized to cell number. Data are 

represented as mean ± SEM (n = 5). (*) P < 0.05; (&) P < 0.01; (#) P < 0.005; (ns) not significant. 

We also performed functional analysis of DMD iPSC-derived cardiomyocytes by 

measuring mitochondrial DNA copy number and cellular respiration rates. Uncorrected DMD 

iPSC-derived cardiomyocytes had significantly fewer mitochondria than the LbCpf1-corrected 

cardiomyocytes (Figure 2.4, panel A). After LbCpf1-mediated reframing, both corrected 

clones restored mitochondrial number to a level comparable to that of WT cardiomyocytes 

(Figure 2.4, panel A). Clone #2 iPSC-derived cardiomyocytes also showed an increase in 
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oxygen consumption rate (OCR) compared to uncorrected iPSC-derived cardiomyocytes at 

baseline (Figure 2.4, panel B). OCR was inhibited by oligomycin in all iPSC-derived 

cardiomyocytes, and treatment with the uncoupling agent FCCP enhanced OCR. Finally, 

treatment with rotenone and antimycin A further inhibited OCR in all cardiomyocytes. These 

results demonstrate that Cpf1-mediated DMD correction improved respiratory capacity of 

mitochondria in corrected iPSC-cardiomyocytes. Our findings show that Cpf1-mediated 

reframing is a highly efficient strategy to rescue DMD phenotypes in human cardiomyocytes. 

 

Restoration of dystrophin expression in DMD iPSC-derived cardiomyocytes by 

CRISPR/Cpf1-mediated exon skipping 

In contrast to the single gRNA-mediated reframing method, which introduces small 

INDELs, exon skipping uses two gRNAs to disrupt splice sites and generates a large deletion 

(Figure 2.5, panel A). As an independent strategy to restore dystrophin expression in the 

Riken51 iPSCs, we designed two LbCpf1 gRNAs (g2 and g3) that target the 3’-end of intron 

50 and tested the cleavage efficiency in human 293T cells. T7E1 assay showed that g2 had 

higher cleavage efficiency within intron 50 compared to g3 (Figure 2.5, panel B). Therefore, 

we co-delivered LbCpf1, g2 and g1 (g1 targets the 5’ region of exon 51) into Riken51 iPSCs 

with the aim of disrupting the splice acceptor site of exon 51. Genomic PCR showed a lower 

band in LbCpf1-edited iPSCs (Figure 2.5, panel C) and sequencing data confirmed the 

presence of a deletion of ~200 bp between intron 50 and exon 51, which disrupted the 

conserved splice acceptor site (Figure 2.5, panel D).  
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Figure 2.5 Strategy for Cpf1-mediated DMD exon 51 skipping in iPSC-derived cardiomyocytes. (A) Two 

gRNAs, either gRNA (g2 or g3), which target intron 50, and the other (g1), which targets exon 51, were used to 

direct Cpf1-mediated removal of the exon 51 splice acceptor site. (B) T7E1 assay using 293T cells transfected 

with LbCpf1 and gRNA2 (g2) or gRNA3 (g3) shows cleavage of the DMD locus at intron 50.  Red arrowheads 

denote cleavage products. M, marker. (C) PCR products of genomic DNA isolated from DMD-iPSCs transfected 

with a plasmid expressing LbCpf1, g1 + g2 and GFP. The lower band (red arrowhead) indicates removal of the 

exon 51 splice acceptor site. (D) Sequence of the lower PCR band from panel c shows a 200-bp deletion, spanning 

from the 3’-end of intron 50 to the 5’-end of exon 51. This confirms removal of the “ag” splice acceptor of exon 

51. The sequence of the uncorrected allele is shown above that of the LbCpf1-edited allele. 

Riken51 iPSCs edited by the exon skipping strategy with g1 and g2 were differentiated 

into cardiomyocytes. Cells harboring the edited DMD allele were identified by RT-PCR using 

a forward primer targeting exon 47 and a reverse primer targeting exon 52; showing deletion 
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of the exon 51 splice acceptor site which allows skipping of exon 51 (Figure 2.6, panel A). 

Sequencing of the RT-PCR products confirmed that exon 47 was spliced to exon 52, which 

restored the DMD ORF (Figure 2.6, panel B). Western blot analysis and immunocytochemistry 

confirmed the restoration of dystrophin protein expression in a mixture of LbCpf1-edited 

cardiomyocytes with g1 and g2 (Figure 2.6, panel C and D). Thus, Cpf1-editing by the exon 

skipping strategy is highly efficient in rescuing the DMD phenotype in human cardiomyocytes. 

 

 

Figure 2.6 DMD iPSC-derived cardiomyocytes express dystrophin after Cpf1-mediated exon skipping. (A) 

RT-PCR of iPSC-derived cardiomyocytes using primer sets described in Fig. 2B. The 700-bp band in the WT 

lane is the dystrophin transcript from exon 47-52; the 300-bp band in the uncorrected lane is the dystrophin 

transcript from exon 47-52 with exon 48-50 deletion; and the lower band in the g1+g2 mixture lane (edited by 

LbCpf1) shows exon 51 skipping. (B) Sequence of the lower band from panel e (g1+g2 mixture lane) confirms 

skipping of exon 51, which reframed the DMD ORF. (C) Western blot analysis shows dystrophin protein 
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expression in iPSC-derived cardiomyocyte mixtures after exon 51 skipping by LbCpf1 with g1 + g2. αMHC is 

loading control. (D) Immunocytochemistry shows dystrophin expression in iPSC-derived cardiomyocyte 

mixtures (CMs) following Cpf1-mediated exon skipping with g1 + g2 gRNA compared to WT and uncorrected 

CMs. Dystrophin staining (red). Troponin I staining (green). Scale bar = 100 microns. 

 

Restoration of dystrophin in mdx mice by Cpf1-mediated correction 

To further evaluate the potential of Cpf1-mediated Dmd correction in vivo, we used 

LbCpf1 to permanently correct the mutation in germline of mdx mice by HDR-mediated 

correction or NHEJ-mediated reframing. mdx mice carry a nonsense mutation in exon 23 of 

the Dmd gene, due to a C to T transition (Figure 2.7, panel A). Three gRNAs (g1, g2 and g3) 

that target exon 23 were screened and tested in mouse 10T1/2 fibroblasts for cleavage 

efficiency (Figure 2.7, panel B). The T7E1 assay revealed that LbCpf1 and AsCpf1 had 

different cleavage efficiencies at Dmd exon 23 (Figure 2.7, panel C).  
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Figure 2.7 CRISPR/LbCpf1-mediated editing of Dmd exon 23 of the mdx mouse. (A) Illustration of mouse 

Dmd locus highlighting the mutation at exon 23. Sequence shows the nonsense mutation caused by C to T 

transition, which creates a premature stop codon. (B) Illustration showing the targeting location of gRNAs (g1, 

g2 and g3) (shown in light blue) on exon 23 of the Dmd gene. Red line represents LbCpf1 PAM.  (C) T7E1 assay 

using mouse 10T1/2 cells transfected with LbCpf1 or AsCpf1 with different gRNAs (g1, g2 or g3) targeting exon 

23 shows that LbCpf1 and AsCpf1 have different cleavage efficiency at the Dmd exon 23 locus.  Red arrowheads 

show cleavage products of genome editing. M, marker. (D) Illustration of LbCpf1-mediated gRNA (g2) targeting 

of Dmd exon 23. Red arrowheads indicate the cleavage site. The ssODN HDR template contains the mdx 

correction, four silent mutations (green) and a TseI restriction site (underlined). 

 

LbCpf1-editing with g2 recognizes a PAM sequence 9 bps upstream of the mutation 

site and creates a staggered double-stranded DNA cut 8 bps downstream of the mutation site 

(Figure 2.7, panel D). To obtain HDR genome editing, we used a 180 bp single-stranded 

oligodeoxynucleotide (ssODN) in combination with LbCpf1 and g2 since it has been shown 

that ssODNs are more efficient in introducing genomic modification than double-stranded 

donor plasmids (Long et al., 2014; Wu et al., 2013). We generated a ssODN containing 90 bp 

of homology sequence flanking the cleavage site, including, four silent mutations and a TseI 

restriction site to facilitate genotyping as previously described. This ssODN was designed to 

be used with LbCpf1 and g2 to correct the C to T mutation within Dmd exon 23 and to restore 

dystrophin in mdx mice by HDR.  

 

Correction of muscular dystrophy in mdx mice by CRISPR/LbCpf1-mediated HDR or NHEJ 

mdx zygotes were co-injected with in vitro transcribed LbCpf1 mRNA, in vitro 

transcribed g2 gRNA and 180 bp ssODN and re-implanted into pseudo-pregnant females 
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(Figure 2.8, panel A). Three litters of LbCpf1-edited mdx mice were analyzed by T7E1 assay 

and TseI RFLP (restriction fragment length polymorphism) (Figure 2.8, panel B and C). Out 

of 24 pups born, 12 were T7E1 positive and 5 carried corrected alleles (mdx C1-C5), as 

detected by TseI RFLP and sequencing (Figure 2.8, panel C and D).  
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Figure 2.8 CRISPR/LbCpf1-mediated Dmd exon 23 correction in mdx mice. (A) Strategy of gene correction 

in mdx mice by LbCpf1-mediated germline editing. Zygotes from intercrosses of mdx parents were injected with 

gene editing components (LbCpf1 mRNA, g2 gRNA and ssODN) and reimplanted into pseudo-pregnant mothers, 

which gave rise to pups with gene correction (mdx-C). (B) Illustration showing LbCpf1 correction of mdx allele 

by HDR or NHEJ. (C) Genotyping results of LbCpf1-edited mdx mice. Top panel shows T7E1 assay. Blue 

arrowhead denotes uncleaved DNA and red arrowhead shows T7E1 cleaved DNA. Bottom panel shows TseI 

RFLP assay. Blue arrowhead denotes uncorrected DNA. Red arrowhead points to TseI cleavage indicating HDR 

correction. mdx-C1-C5 denotes LbCpf1-edited mdx mice. (D) Top panel shows sequence of WT Dmd exon 23. 

Middle panel shows sequence of mdx Dmd exon 23 with C to T mutation, which generates a STOP codon. Bottom 

panel shows sequence of Dmd exon 23 with HDR correction by LbCpf1-mediated editing. Black arrow points to 

silent mutations introduced by the ssODN HDR template. 

 

Additionally, we performed immunohistochemistry and hematoxylin and eosin (H&E) 

staining of different tissues from multiple mdx-C mice with correction rates from 8%-50%. All 

LbCpf1-corrected mdx-C mice showed restored dystrophin expression in multiple tissues, 

including skeletal muscles, heart and brain (Figure 2.9). Importantly, muscles of mdx-C mice 

with 50% genomic correction displayed no sign of fibrosis or inflammatory infiltration (Figure 

2.10, panel A). Western blot analysis showed expression of dystrophin protein in multiple 

skeletal muscle groups, heart and brain (Figure 2.10, panel B), consistent with percentages of 

dystrophin-positive fibers seen with immunohistochemistry (Figure 2.9).  
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Figure 2.9 Immunohistochemistry of skeletal muscles, heart and brain of WT, mdx and LbCpf1-edited mice 

(mdx-C). Immunohistochemistry of quadriceps, soleus, diaphragm, heart and brain from WT, mdx, and LbCpf1-

edited mdx-C mice (HDR-8%, HDR-25%, HDR-50% corrected allele) using antibody to dystrophin (red) shows 

restored dystrophin expression after LbCpf1-mediated correction. Scale bar = 100 microns. 
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Figure 2.10 H&E staining and Western blot analysis of skeletal muscles, heart and brain of WT, mdx and 

LbCpf1-edited mice (mdx-C). (A) H&E staining of quadriceps, soleus, diaphragm, heart and brain of WT, mdx, 

and LbCpf1-edited mdx-C mice (HDR-8%, HDR-25%, HDR-50% corrected allele) shows reduced fibrosis and 

inflammatory infiltration after LbCpf1-mediated correction. Scale bar = 100 microns. (B) Western blot analysis 

of limb muscles, diaphragm, heart and brain of WT, mdx, and LbCpf1-edited mdx-C mice (HDR-8%, HDR-25%, 



58 

 

HDR-50% corrected allele) shows restored dystrophin expression after LbCpf1-mediated correction. Vinculin 

(VCL) is loading control. 

LbCpf1-mediated correction of the Dmd mutation in germ cells was evaluated in eggs 

and sperm of LbCpf1-corrected mdx-C mice by T7E1 assays and TseI RFLP. All LbCpf1-

corrected mdx-C mice carried a corrected allele in their germ cells (Figure 2.11). Genome 

editing efficiency of Cas9 and LbCpf1 was compared at the Dmd exon 23 locus and no 

significant difference was observed (Table 2.1). 

Figure 2.11 T7E1 and TseI RFLP analysis of germ cells from 

LbCpf1-edited mice (mdx-C) and uncorrected mdx mice. (A) 

T7E1 assay of germ cells from LbCpf1-edited mice (mdx-C) and 

uncorrected mdx mice. Blue arrowhead denotes uncleaved DNA 

and red arrowhead shows T7E1 cleaved DNA. (B) TseI RFLP 

assay of germ cells from LbCpf1-edited mice (mdx-C) and 

uncorrected mdx mice. Blue arrowhead denotes uncorrected 

DNA. Red arrowhead points to TseI cleavage indicating HDR 

correction in germline. mdx-C6-C9 denotes LbCpf1-edited mdx 

mice. 

 

 

Table 2.1 Comparison of CRISPR/Cas9 and CRISPR/Cpf1 mediated HDR correction in mdx mice. 

 

Strain
Dose of 

Cas9/sgRNA/ssODN 
(ng/ul)

Dose of 
Cpf1/sgRNA/ssODN 

(ng/ul)

Injection 
Method

No. of 
Transferred 

Zygotes

No. of 
Pups/zygotes 

(%)

No. of Mutant 
Founders/Pups 

(%)

No. of 
HDR/Pups 

(%)
- Nuc 103 29 (28%) 4 (14%) 1 (3.4%)
- Nuc+cyt 150 58 (39%) 7 (12%) 4 ( 6.9%)
- Nuc 30 14 (47%) 2 (6.7%) 0
- Nuc+cyt 120 23 (19%) 3 (39%) 2 (8.9%)

mdx - 50/20/10 Nuc+cyt 270 118 (44%) 28 (23.7) 11 (9.3%)

mdx 10/10/10

mdx 50/20/10
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Physiological and functional analyses were also performed in wild-type, mdx and 

LbCpf1-corrected mdx-C mice. Serum creatine kinase levels were decreased substantially in 

mdx-C mice and were inversely correlated with the percentage of genome correction (Table 

2.2). Importantly, the forelimb grip strength test indicated that LbCpf1-corrected mdx-C mice 

had improved muscle strength compared to mdx mice (Table 2.2).  

 

Table 2.2 Serum CK measurement and forelimb grip strength of WT, mdx and LbCpf1-corrected mdx-C 

mice. M, male; F, female. 
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Discussion 

In this study, we show that the newly discovered CRISPR-Cpf1 nuclease can efficiently 

correct DMD mutations in patient-derived iPSCs and mdx mice, allowing for restoration of 

dystrophin expression. Lack of dystrophin in DMD has been show to disrupt integrity of the 

sarcolemma, causing mitochondria dysfunction and oxidative stress (Millay et al., 2008; 

Mourkioti et al., 2013). We found increased mitochondrial DNA and higher oxygen 

consumption rates in LbCpf1-corrected iPSC-derived cardiomyocytes compared to 

uncorrected DMD iPSC-derived cardiomyocytes. Metabolic abnormalities of human DMD 

iPSC-derived cardiomyocytes were also rescued by Cpf1-mediated genomic editing. Our 

findings also demonstrated the robustness and efficiency of Cpf1 in mouse genome editing. By 

using HDR-mediated correction, the ORF of the mouse Dmd gene was completely restored 

and pathophysiological hallmarks of the dystrophic phenotype such as fibrosis and 

inflammatory infiltration were also rescued.  

Two different strategies, “exon reframing” and “exon skipping”, were applied to restore 

the ORF of the DMD gene using LbCpf1-mediated genome editing. Reframing creates small 

INDELs and restores the ORF by placing out-of-frame codons in-frame. Only one gRNA is 

required for reframing.  Although we did not observe any differences in subcellular localization 

between WT dystrophin protein and reframed dystrophin protein by immunocytochemistry, 

we observed differences in dystrophin expression level, mitochondrial DNA quantity, and 

oxygen consumption rate in different edited clones, suggesting that reframed dystrophin may 

not be structurally or functionally identical to WT dystrophin. 
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Various issues should be considered with respect to the use of one or two gRNAs with 

Cpf1-editing. Here we show that two gRNAs are more effective than one gRNA for disruption 

of the splice acceptor site compared to reframing. When using two gRNAs, Cpf1-editing 

excises the intervening region and not only removes the splice acceptor site but can be designed 

to remove deleterious “AG” nucleotides, eliminating the possibility of generating a pseudo-

splice acceptor site. However, with two gRNAs there is the necessity that both gRNAs cleave 

simultaneously, which may not occur. If only one of the two gRNAs cleaves, the desired 

deletion will not be generated. However, there remains the possibility that cleavage with one 

of the two gRNAs will generate INDELS at the targeted exon region, reframing the ORF, since 

in theory, one third of the INDELS will be in-frame. Using one gRNA to disrupt the splice 

acceptor site seems more efficient because it eliminates the need for two simultaneous cuts to 

occur. However, there is uncertainty with respect to the length of the INDEL generated by one 

gRNA-mediated editing. More importantly, with one gRNA there remains the possibility of 

leaving exonic “AG” nucleotides near the cleavage site, which can serve as an alternative 

pseudo-splice acceptor site. 

With its unique T-rich PAM sequence, Cpf1 further expands the genome editing range 

of the CRISPR family, which is important for potential correction of other disease-related 

mutations since not all mutation sites contain G-rich PAM sequences for SpCas9 or PAMs for 

other Cas9 orthologues. Moreover, the staggered cut generated by Cpf1 may be also 

advantageous for NHEJ-mediated genome editing (Maresca et al., 2013). Finally, the LbCpf1 

used in this study is 140-amino-acids smaller than the most widely used SpCas9, which would 

enhance packaging and delivery by AAV. 
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Our findings show that Cpf1 is highly efficient in correcting human and mouse Dmd 

mutations in vitro and in vivo. CRISPR-Cpf1-mediated genome editing represents a new and 

powerful approach to permanently eliminate genetic mutations and rescue abnormalities 

associated with DMD and other disorders.  

 

Materials and Methods 

 

Generation of pLbCpf1-2A-GFP and pAsCpf1-2A-GFP plasmids 

Human codon-optimized LbCpf1 and AsCpf1 were PCR amplified from pY016 plasmid 

(pcDNA3.1-hLbCpf1), a gift from Feng Zhang (Addgene plasmid # 69988) and pY010 

plasmid (pcDNA3.1-hAsCpf1), a gift from Feng Zhang (Addgene plasmid # 69982), 

respectively. Cpf1 cDNA and T2A-GFP DNA fragment were cloned into the backbone of the 

pSpCas9(BB)-2A-GFP (PX458) plasmid, a gift from Feng Zhang (Addgene plasmid # 48138) 

that was cut with AgeI/EcoRI to remove SpCas9(BB)-2A-GFP. In-Fusion HD cloning kit 

(Takara Bio) was used. Cpf1 guide RNAs (gRNAs) targeting the human DMD or the mouse 

Dmd locus were sub-cloned into a newly generated pLbCpf1-2A-GFP plasmid and pAsCpf1-

2A-GFP plasmid using BbsI digestion and T4 ligation. Detailed primer sequences can be found 

in supplementary materials (Table 2.3). 

 

Human iPSC maintenance, nucleofection and differentiation 

Human iPSCs (RBRC-HPS0164) were purchased from Cell Bank RIKEN BioResource 

Center. Human iPSCs were cultured in mTeSRTM1 media (STEMCELL Technologies) and 
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passaged approximately every 4 days (1:18 split ratio). One hour before nucleofection, iPSCs 

were treated with 10 uM ROCK inhibitor (Y-27632) and dissociated into single cells using 

Accutase (Innovative Cell Technologies, Inc.). 1x106 iPS cells were mixed with 5 ug of 

pLbCpf1-2A-GFP or pAsCpf1-2A-GFP plasmid and nucleofected using the P3 Primary Cell 

4D-Nucleofector X kit (Lonza) according to manufacturer's protocol. After nucleofection, 

iPSCs were cultured in mTeSRTM1 media supplemented with 10 uM ROCK inhibitor, 

penicillin-streptomycin (1:100) (ThermoFisher Scientific) and 100 ug/ml Primosin 

(InvivoGen). Three days post-nucleofection, GFP(+) and (-) cells were sorted by FACS and 

subjected to T7E1 assay. Single clones derived from GFP(+) iPSCs were picked and 

sequenced. iPSCs were induced to differentiate into cardiomyocytes, as previously described 

(Burridge et al., 2015). 

 

Genomic DNA isolation 

Genomic DNA of mouse 10T1/2 fibroblasts and human iPSCs was isolated using Quick-

gDNA MiniPrep kit (Zymo Research) according to manufacturer's protocol. 

 

Reverse-transcription PCR 

RNA was isolated using TRIzol (ThermoFisher Scientific), according to manufacturer's 

protocol. cDNA was synthesized using iScript Reverse Transcription Supermix (Bio-Rad 

Laboratories) according to manufacturer's protocol. RT-PCR was performed using primers 

flanking DMD exon 47 and 52 (forward: 5’-CCCAGAAGAGCAAGATAAACTTGAA-3’; 

reverse: 5’-CTCTGTTCCAAATCCTGCTTGT-3’). RT-PCR products amplified from WT 
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cardiomyocytes, uncorrected cardiomyocytes and exon 51 skipped cardiomyocytes were 717 

bps, 320 bps and 87 bps, respectively. 

 

Dystrophin Western blot analysis 

Western blot analysis for human iPSC-derived cardiomyocytes was performed as previously 

described (Long et al., 2014) using rabbit anti-dystrophin antibody (Abcam, ab15277) and 

mouse anti-cardiac myosin heavy chain antibody (Abcam, ab50967). For mouse skeletal 

muscles, heart and brain, the Western blot was performed as previously described (Long et al., 

2014) using mouse anti-dystrophin antibody (Sigma-Aldrich, D8168) and mouse anti-vinculin 

antibody (Sigma-Aldrich, V9131). 

 

Dystrophin immunocytochemistry and immunohistochemistry 

iPSC-derived cardiomyocytes fixed with acetone, blocked with serum cocktail (2% normal 

horse serum/2% normal donkey serum/0.2% bovine serum albumin (BSA)/PBS), and 

incubated with dystrophin antibody (MANDYS8, 1:800, Sigma-Aldrich) and troponin-I 

antibody (H170, 1:200, Santa Cruz Biotechnology) in 0.2% BSA/PBS. Following overnight 

incubation at 4°C, they were incubated with secondary antibodies (biotinylated horse anti-

mouse IgG, 1:200, Vector Laboratories, fluorescein-conjugated donkey anti-rabbit IgG, 1:50, 

Jackson Immunoresearch) for one-hour. Nuclei were counterstained with Hoechst 33342 

(Molecular Probes). Immunohistochemisty of skeletal muscles, heart and brain were 

performed as previously described (Long et al., 2014) using dystrophin antibody (MANDYS8, 

1:800, Sigma-Aldrich). Nuclei were counterstained with propidium iodide (Molecular Probes). 
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Mitochondrial DNA copy number quantification 

Genomic and mitochondrial DNA were isolated using Trizol, followed by back extraction as 

previously described (Zechner et al., 2010). KAPA SYBR FAST qPCR kit (Kapa Biosystems) 

was used to perform real-time PCR to quantitatively determine mitochondrial DNA copy 

number. Human mitochondrial ND1 gene was amplified using primers (forward: 5’- 

CGCCACATCT-ACCATCACCCTC -3’; reverse: 5’- CGGCTAGGCTAGAGGTGGCTA -

3’). Human genomic LPL gene was amplified using primers (forward: 5’- GAGTATGCAGA- 

AGCCCCGAGTC -3’; reverse: 5’- TCAACATGCCCAACTGGTTTCTGG -3’). mtDNA 

copy number per diploid genome was calculated using formula: ΔCT = (mtND1 CT – LPL CT) 

and mtDNA copy number per diploid genome = 2 × 2-ΔCT 

 

Cellular respiration rates 

Oxygen consumption rates (OCR) were determined in human iPSC-derived cardiomyocytes 

using the XF24 Extracellular Flux Analyzer (Seahorse Bioscience) following the 

manufacturer's protocol as previously described (Baskin et al., 2014).  

 

In vitro transcription of LbCpf1 mRNA and gRNA 

Human codon-optimized LbCpf1 was PCR amplified from pLbCpf1-2A-GFP to include the 

T7 promoter sequence (Table 2.3). The PCR product was transcribed using mMESSAGE 

mMACHINE T7 transcription kit (ThermoFisher Scientific) according to manufacturer's 

protocol. Synthesized LbCpf1 mRNA were poly-A tailed with E. coli Poly(A) Polymerase 

(New England Biolabs) and purified using NucAway spin columns (ThermoFisher Scientific). 
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The template for LbCpf1 gRNA in vitro transcription was PCR amplified from pLbCpf1-2A-

GFP plasmid and purified using Wizard SV gel and PCR clean-up system (Promega). The 

LbCpf1 gRNA was synthesized using MEGAshortscript T7 transcription kit (ThermoFisher 

Scientific) according to manufacturer's protocol. Synthesized LbCpf1 gRNA were purified 

using NucAway spin columns (ThermoFisher Scientific). 

 

Single-stranded oligodeoxynucleotide (ssODN) 

ssODN was used as HDR template and synthesized by Integrated DNA Technologies as 4nM 

Ultramer Oligonucleotides. ssODN was mixed with LbCpf1 mRNA and gRNA directly 

without purification. The sequence of ssODN is: 

5’TGATATGAATGAAACTCATCAAATATGCGTGTTAGTGTAAATGAACTTC

TATTTAATTTTGAGGCTCTGCAAAGTTCTTTAAAGGAGCAGCAGAATGGCTTCAA

CTATCTGAGTGACACTGTGAAGGAGATGGCCAAGAAAGCACCTTCAGAAATATG

CCAGAAATATCTGTCAGAATTT-3’ 

 

CRISPR/Cpf1-mediated genome editing by one-cell embryo injection 

All animal procedures were approved by the Institutional Animal Care and Use Committee at 

the University of Texas Southwestern Medical Center. Detailed injection procedures were 

performed as described previously (Long et al., 2014). The only modification was replacing 

Cas9 mRNA and Cas9 gRNAs with LbCpf1 mRNA and LbCpf1 gRNAs. 
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Mouse forelimb grip strength test and serum creatine kinase (CK) measurement 

Grip strength test and serum CK measurement were performed as previously described (Long 

et al., 2014) by the by the Neuro-Models Core Facility and the Metabolic Phenotyping Core at 

UT Southwestern Medical Center, respectively. 

 

PCR amplification of genomic DNA, T7E1 assay, and TseI RFLP analysis 

All these protocols were performed as previously published (Long et al., 2014). 

 

Statistical analysis 

Statistical analysis was assessed by two-tailed Student’s t-test. Data are shown as mean ± SEM. 

A P<0.05 value was considered statistically significant 
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Table 2.3 Primers used in this study. 
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CHAPTER THREE 
 
 

ENHANCED CRISPR/CAS9 CORRECTION OF DUCHENNE MUSCULAR 

DYSTROPHY IN MICE BY A SELF-COMPLEMENTARY AAV DELIVERY 

SYSTEM 
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Abstract 

Duchenne muscular dystrophy (DMD) is a lethal neuromuscular disease, caused by mutations 

in the dystrophin gene (DMD).  Mutations that delete exon 44, thereby disrupting the DMD 

open reading frame, are one of the most common causes of DMD. We have previously applied 

CRISPR/Cas9-mediated “single-cut” gene editing to correct diverse genetic mutations in 

animal models of DMD. However, high doses of AAV are required for efficient in vivo 

genome editing, posing challenges for clinical application. In this study, we packaged Cas9 

nuclease in conventional single-stranded AAV (ssAAV) and CRISPR single guide RNAs in 

double-stranded self-complementary AAV (scAAV) and delivered this dual AAV system into 

a mouse model of DMD harboring an exon 44 deletion. The doses of scAAV required for 

efficient gene editing were at least 20-fold lower than with ssAAV. Mice receiving systemic 

treatment showed restoration of dystrophin expression in all skeletal muscle groups and the 

heart, reduced DMD pathological phenotypes, and improved muscle contractility. These 
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findings are the first to show that the efficiency of CRISPR/Cas9-mediated genome editing can 

be significantly improved by using the scAAV system and represent an important advancement 

toward therapeutic translation of genome editing for treating neuromuscular diseases. 

 

Introduction 

Duchenne muscular dystrophy (DMD) is an X-linked monogenic neuromuscular 

disease caused by mutations in the DMD gene, which encodes dystrophin (Hoffman et al., 

1987; Koenig et al., 1987). Dystrophin, together with dystroglycans and sarcoglycans, 

maintains sarcolemma integrity and stability by interacting with intracellular actin and 

extracellular laminin (Campbell and Kahl, 1989; Gao and McNally, 2015; Guiraud et al., 

2015). More than 7,000 mutations have been identified in DMD patients, including single- and 

multi-exon deletions or duplications, and small missense or nonsense substitutions (Aartsma-

Rus et al., 2006; Bladen et al., 2015). Patients with DMD manifest progressive muscle 

weakness and ultimately develop fatal respiratory and cardiac failure in their mid-20s.  

To date, two clinical therapies are available for DMD treatment, including steroid 

supplementation and morpholino antisense oligomer injection (Bushby et al., 2004; Charleston 

et al., 2018). Long-term corticosteroid supplement partially alleviates DMD pathological 

phenotypes but cannot restore dystrophin expression. Morpholino antisense oligomers allow 

skipping of mutant DMD exons, but less than 1% of normal levels of dystrophin protein can 

be restored by this treatment (Charleston et al., 2018). In addition, several clinical trials are 

currently evaluating the therapeutic benefits of truncated versions of dystrophin delivered by 

adeno-associated virus (AAV) (Duan, 2018). However, these gene replacement therapies 
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cannot restore the expression of endogenous dystrophin protein and are dependent on the 

expression pattern of the exogenous promoters within the AAV, as well as the longevity of 

AAV expression. Thus, developing a strategy for permanent and efficient correction of 

mutations in the endogenous DMD gene may provide an ultimate cure for this lethal 

neuromuscular disorder.  

Application of the CRISPR-Cas (clustered regularly interspaced short palindromic 

repeats and CRISPR-associated proteins) system for engineering site-specific DNA double-

stranded breaks (DSB) provides simplicity and precision in mammalian genome editing (Cong 

et al., 2013; Jinek et al., 2012; Mali et al., 2013b). We and others showed that the CRISPR-

Cas system can be used to efficiently correct missense mutations in mouse models of DMD by 

homology directed repair (HDR)-based germline editing or non-homologous end joining 

(NHEJ)-based postnatal editing (Bengtsson et al., 2017; Hakim et al., 2018; Long et al., 2016; 

Long et al., 2014; Nelson et al., 2016; Nelson et al., 2019; Tabebordbar et al., 2016; Zhang et 

al., 2017b; Zhu et al., 2017). While missense and nonsense substitutions only account for ~20% 

of DMD mutations, single- or multi-exon deletions are more prevalent (~68%) in DMD 

populations (Aartsma-Rus et al., 2006; Bladen et al., 2015). We recently reported the 

successful rescue of DMD phenotypes in mice and dogs harboring exon 44 or 50 deletions by 

injecting recombinant AAV9-packaged Cas9 nuclease and single guide RNAs (sgRNAs) 

(Amoasii et al., 2018; Amoasii et al., 2017; Min et al., 2019). These studies demonstrated that 

the CRISPR-Cas system can be deployed to correct diverse genetic mutations that cause DMD 

and offer the prospect of a potential gene therapy for the permanent correction of DMD. 
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Currently the most widely used delivery vector for gene therapy is recombinant AAV, 

which is a nonenveloped virus with a single-stranded linear DNA viral genome (Samulski and 

Muzyczka, 2014).  As the largest tissue in the human body, skeletal muscle accounts for ~40% 

of body weight. Therefore, a high dose of AAV (5.5 × 1014 to 1.8 × 1015 vg/kg) is required to 

achieve long-term, efficient genome editing in animal models of DMD (Bengtsson et al., 2017; 

Hakim et al., 2018; Min et al., 2019; Nelson et al., 2019). However, several studies in large 

animals reported that systemic administration of high doses of AAV (≥ 1.5 × 1014 vg/kg) may 

cause acute liver toxicity (Hinderer et al., 2018; Kornegay et al., 2010). In addition, in our 

previous study, we found that the efficiency of in vivo CRISPR/Cas9-mediated genome editing 

was highly dose-dependent, and that elevating the dose of sgRNA AAV relative to Cas9 AAV 

enhanced the efficiency of genome editing (Min et al., 2019). Moreover, it has been suggested 

that the sgRNA AAV genome is preferentially depleted after systemic delivery of CRISPR-

Cas9 genome editing components (Hakim et al., 2018). Therefore, systemic delivery of 

CRISPR-Cas9 genome editing components by a high dose of single-stranded AAV (ssAAV) 

for the treatment of DMD remains challenging. 

In order to reduce the viral dose used for gene therapy without compromising genome 

editing efficiency and to prevent preferential depletion of the sgRNA AAV genome, we 

packaged a CRISPR sgRNA expression cassette into a double-stranded AAV vector. A double-

stranded AAV genome can be generated by mutating the terminal resolution site sequence on 

one side of the inverted terminal repeats (ITR), leading to production of self-complementary 

AAV (scAAV) (McCarty et al., 2003; Wang et al., 2003). Unlike conventional ssAAV, scAAV 

can bypass the second-strand synthesis, which is a rate-limiting step for gene expression 
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(Ferrari et al., 1996; Fisher et al., 1996). Moreover, double-stranded scAAV is less prone to 

DNA degradation after viral transduction, thereby increasing the number of copies of stable 

episomes (McCarty, 2008; Ren et al., 2005). The scAAV system has been used in several gene 

replacement clinical trials for the treatment of spinal muscular atrophy and limb-girdle 

muscular dystrophy (Mendell et al., 2017; Pozsgai et al., 2017). 

In this study, we performed in vivo genome editing in mice with a deletion of Dmd 

exon 44 (∆Ex44) by coupling ssAAV-packaged SpCas9 nuclease with scAAV-expressed 

sgRNAs. This dual AAV delivery system provided significant improvements in viral 

transduction efficiency, genome editing, and functional recovery in skeletal muscles and heart. 

Of note, at least 20-fold less scAAV was required to achieve these improvements compared to 

the ssAAV treated cohort. Thus, the scAAV system represents a promising strategy for 

delivering CRISPR-Cas9 genome editing components and represents an important 

advancement toward potential therapeutic translation. 

 

Results 

 

Strategies for CRISPR/Cas9-mediated genome editing of Dmd exon 45 

Deletion of exon 44 of the human DMD gene generates a premature stop codon in exon 

45 and represents one of most common mutations of DMD.  As a strategy to correct exon 44 

out-of-frame deletion mutations, we designed a sgRNA to target the splice acceptor region of 

exon 45 (Figure 3.1, panel A). This sgRNA recognizes a 5’-TGG-3’ protospacer adjacent motif 

(PAM) in exon 45 and generates insertions and deletions (INDELs) 7 base pairs (bp) 
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downstream of the 5’-AG-3’ splice acceptor site (Figure 3.1, panel B). Depending on the size 

of INDELs, two types of NHEJ-mediated DNA repair events can restore the open reading 

frame (ORF) of the Dmd gene. These include exon 45 skipping, if the INDEL is large enough 

to delete the 5’-AG-3’ splice acceptor sequence in exon 45, or reframing of exon 45 through 

INDELs that either insert one nucleotide (3n+1) or delete two nucleotides (3n-2) (Figure 3.1, 

panel A). 

To test whether double-stranded scAAV is capable of packaging sgRNAs, we cloned 

the sgRNA expression cassette into a scAAV vector and the conventional ssAAV vector as a 

control (Figure 3.1, panel C). Alkaline denaturing gel electrophoresis was performed to 

confirm the integrity of both AAVs (Figure 3.1, panel D). The size of ssAAV-sgRNA is 3.9 

kilo-nucleotides (knt) and remains unchanged after alkaline gel electrophoresis. The size of 

scAAV-sgRNA is 1.4 kilo-base pairs and is doubled to 2.8 knts under denaturing conditions, 

indicative of the double-stranded viral genome. 
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Figure 3.1. Strategies for CRISPR/Cas9-mediated genome editing in Dmd ∆Ex44 mice. (A) An out-of-frame 

deletion of Dmd exon 44 results in splicing of exon 43 to 45, generating a premature stop codon in exon 45. A 

CRISPR/Cas9-mediated “single-cut” strategy was designed to restore the open reading frame (ORF) of the Dmd 

gene. If the genomic insertions and deletions (INDELs) result in one nucleotide insertion (3n+1) or two 

nucleotides deletion (3n-2), exon 45 will be reframed with adjacent exon 43 and 46. If the INDEL is large enough 

to delete the 5’-AG-3’ splice acceptor sequence, exon 45 will be skipped, resulting in splicing of exon 43 to exon 

46. (B) Illustration of sgRNA targeting Dmd exon 45. This sgRNA recognizes a 5’-TGG-3’ PAM in exon 45 and 

generates a cut 7 base pairs downstream of the 5’-AG-3’ splice acceptor site. (C) Illustration of AAV vectors 

used to deliver the sgRNA expression cassette. Three copies of the same sgRNA are driven by three RNA 

polymerase III promoters, U6, H1, and 7SK. The top vector produces ssAAV. A 2.3k stuffer sequence was cloned 

into the ssAAV vector for optimal packaging. The bottom vector produces double-stranded scAAV. (D) The viral 

genomes of the Cas9 vector and sgRNA vectors were analyzed by gel electrophoresis under alkaline denaturing 

conditions. The size of ssAAV-sgRNA and ssAAV-Cas9 is 3.9 and 5.1 knt, respectively, and remains unchanged 

after alkaline gel electrophoresis. The size of scAAV-sgRNA is 1.4 kilo-base pair and is doubled to 2.8 knts under 

denaturing conditions, indicating its double-stranded viral genome. M, marker; knt, kilo-nucleotides. 

 

In vitro genome editing using ssAAV or scAAV-packaged sgRNA 

To compare the efficiency of ssAAV and scAAV-packaged sgRNAs in vitro, we 

differentiated SpCas9-expressing C2C12 mouse myoblasts for 5 days to myotubes and 

transduced the myotubes with each of the AAVs. One week after viral transduction, we 

performed Tracking of INDELs by Decomposition (TIDE) analysis to detect INDELs within 

the Dmd exon 45 region. We found that the total INDELs exhibited a dose-dependent curve 

for both ssAAV and scAAV-expressed sgRNA after one week post viral transduction (Figure 

3.2, panel A). Specifically, to reach a level of 10% INDELs required 5 × 108 vg/mL of scAAV 

and 1 × 1010 vg/mL of ssAAV, representing a 20-fold increase in efficiency of scAAV. To 
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reach an intermediate level of INDELS of ~22%, 40-fold less scAAV (1.8 × 109 vg/mL) was 

required compared to ssAAV (7.8 × 1010 vg/mL).  

Furthermore, a high level of INDELs (over 40%) was achieved by 7.2 × 109 vg/mL of 

scAAV, whereas ssAAV required 5 × 1012 vg/mL, representing a 70-fold improvement in 

efficiency with scAAV. We also analyzed the INDEL composition in myotubes transduced 

with ssAAV or scAAV and found that ~50% of total INDEL events contained a +1 nt insertion, 

which can bring exon 45 in-frame with exon 43 (Figure 3.2, panel B). Therefore, scAAV-

expressed sgRNA demonstrated enhanced efficiency by in vitro genome editing at Dmd exon 

45 compared to the conventional ssAAV-expressed sgRNA. Moreover, the majority of the 

INDEL events (over 50%) contained a single nt insertion, which is able to restore the Dmd 

exon 45 ORF. 

 

Figure 3.2. In vitro genome editing using ssAAV or scAAV-packaged sgRNA. (A) Analysis of total INDEL 

event in 5-day differentiated myotubes transduced with scAAV or ssAAV-packaged sgRNA at multiple doses. 

Data are represented as mean ± SEM (n = 3). (B) Analysis of +1 nt insertion event in 5-day differentiated 

myotubes transduced with scAAV or ssAAV-packaged sgRNA at multiple doses. Data are represented as mean 

± SEM (n = 3). 
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Systemic delivery of scAAV-packaged sgRNAs restores dystrophin expression in ∆Ex44 mice 

To further evaluate the efficacy of the scAAV system by in vivo genome editing, we 

delivered ssAAV-packaged SpCas9 and scAAV or ssAAV-packaged sgRNA systemically in 

∆Ex44 mice through intraperitoneal (IP) injection. The AAV9 serotype was chosen because of 

its tropism to skeletal muscle and heart (Inagaki et al., 2006). Moreover, SpCas9 expression 

was driven by a muscle specific promoter containing key regulatory elements derived from 

creatine kinase promoter and enhancer, restricting its expression to striated muscles (Himeda 

et al., 2011). Recent studies demonstrate that AAV-packaged sgRNA is the rate limiting factor 

for in vivo genome editing in dystrophic mouse models (Hakim et al., 2018; Min et al., 2019). 

Therefore, we kept ssAAV-packaged SpCas9 at a constant dose of 8 × 1013 vg/kg while 

titrating scAAV or ssAAV-packaged sgRNA at multiple doses.  

Four weeks after systemic AAV delivery, skeletal muscles and heart of CRISPR/Cas9-

edited ∆Ex44 mice were harvested for analysis. By immunohistochemistry, we found that 

dystrophin restoration in skeletal muscles was dose-dependent (Figure 3.3, panel A and Figure 

3.4, panel A). Mice receiving the lowest dose of scAAV-packaged sgRNA (4 × 1012 vg/kg) 

showed 40% and 32% dystrophin-positive myofibers in tibialis anterior (TA) and triceps, 

respectively; diaphragm and heart showed higher percentages of dystrophin-positive 

myocytes, reaching 95% (Figure 3.3, panel A and Figure 3.4, panel A). In contrast to the 

scAAV-treated cohort, ∆Ex44 mice receiving lowest dose of ssAAV-packaged sgRNA (4 × 

1012 vg/kg) showed less than 5% dystrophin-positive myofibers in TA and triceps; diaphragm 

and heart showed 52% and 61% dystrophin-positive myocytes, respectively (Figure 3.3, panel 

B and Figure 3.4, panel B).  
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Figure 3.3 Systemic AAV delivery of CRISPR/Cas9 genome editing components to ∆Ex44 mice rescues 

dystrophin expression. (A and B) Immunohistochemistry shows restoration of dystrophin in tibialis anterior 

(TA), triceps, diaphragm, and heart of ∆Ex44 mice 4 weeks after systemic delivery of ssAAV-packaged SpCas9 

and scAAV-packaged sgRNA (A) or ssAAV-packaged sgRNA (B). SpCas9 vector was kept at constant dose of 

8 × 1013 vg/kg. The dose of sgRNA vector was shown in the figure. Dystrophin is shown in green. n = 5 for each 

muscle group. Scale bar, 100 μm.  

 

When the dose of scAAV-packaged sgRNA was increased to 1.6 × 1013 vg/kg, virtually 

all myofibers and cardiomyocytes were dystrophin-positive (Figure 3.3, panel A and Figure 

3.4, panel A). For the ssAAV-treated cohort (1.6 × 1013 vg/kg), diaphragm and heart showed 

over 75% of dystrophin-positive myocytes; however, dystrophin-positive myofibers in TA and 

triceps were still below 18% (Figure 3.3, panel B and Figure 3.4, panel B). 
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Figure 3.4 Whole muscle scanning of immunohistochemistry of TA, triceps, diaphragm, and heart of 

CRISPR/Cas9-corrected ∆Ex44 mice. (A and B) Whole muscle scanning of TA, triceps, diaphragm, and heart 

of ∆Ex44 mice 4 weeks after systemic delivery of ssAAV-packaged SpCas9 and scAAV-packaged sgRNA (A) 

or ssAAV-packaged sgRNA (B). SpCas9 vector was kept at constant dose of 8 × 1013 vg/kg. The dose of sgRNA 

vector was shown in the figure. Dystrophin is shown in green. n = 5 for each muscle group. Scale bar in TA, 

triceps, diaphragm is 500 μm, in heart is 1.5mm. 

Next, we performed Western blot analysis to quantitatively detect dystrophin 

restoration in skeletal muscles and heart after systematic delivery of scAAV or ssAAV-

packaged sgRNA. The lowest dose of scAAV-packaged sgRNA (4 × 1012 vg/kg) restored 18%, 

14% and 50% of dystrophin protein in TA, triceps and diaphragm, respectively (Figure 3.5, 

panel A and B). When the dose of scAAV-packaged sgRNA was increased to 1.6 × 1013 vg/kg, 

dystrophin protein restoration in each skeletal muscle group was greater than 50% (Figure 3.5, 

panel A and B). Of note, saturation was observed in heart because at every dose of scAAV 

tested, dystrophin protein restoration exceeded 70% (Figure 3.5, panel A and B). Interestingly, 

although ssAAV-packaged SpCas9 was injected at a constant dose (8 × 1013 vg/kg), ∆Ex44 

mice receiving a higher dose of scAAV-packaged sgRNA showed elevated Cas9 protein 

expression in skeletal muscles and heart (Figure 3.5, panel A and C). 
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Figure 3.5 Western blot analysis of skeletal muscles and heart of ∆Ex44 mice receiving systemic AAV 

delivery of CRISPR/Cas9 genome editing components. (A) Western blot analysis shows restoration of 

dystrophin expression in the TA, triceps, diaphragm, and heart of ∆Ex44 mice 4 weeks after systemic delivery of 

ssAAV-packaged SpCas9 and scAAV-packaged sgRNA. SpCas9 vector was kept at constant dose of 8 × 1013 

vg/kg. The dose of sgRNA vector was shown in the figure. Vinculin was used as the loading control (n = 3). (B) 

Quantification of dystrophin expression in TA, triceps, diaphragm, and heart. Relative dystrophin intensity was 

calibrated with vinculin internal control before normalizing to the WT control. Data are represented as mean ± 

SEM. One-way ANOVA was performed with post-hoc Tukey’s multiple comparisons test. **P<0.005, 

***P<0.001, ****P<0.0001 (n=3). (C) Quantification of Cas9 expression in TA, triceps, diaphragm, and heart. 

Relative Cas9 intensity was calibrated with vinculin internal control before normalizing to the group treated with 

lowest dose of scAAV-packaged sgRNA (4 × 1012 vg/kg). Data are represented as mean ± SEM. One-way 

ANOVA was performed with post-hoc Tukey’s multiple comparisons test. *P<0.05, **P<0.005 (n=3). 
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In contrast to the scAAV-treated cohort, ∆Ex44 mice receiving ssAAV-packaged 

sgRNA showed significant lower efficiency in dystrophin restoration by Western blot 

quantification (Figure 3.6). Specifically, mice receiving the highest dose of ssAAV (8 × 1013 

vg/kg) showed only 13%, 16% and 30% of normal dystrophin protein levels in TA, triceps and 

diaphragm, respectively (Figure 3.6). This was inadequate compared to mice treated with 

scAAV because more than 80% of dystrophin protein was restored after receiving the same 

dose of scAAV-packaged sgRNA (Figure 3.5, panel A and B). Therefore, scAAV-expressed 

sgRNA demonstrated greater efficiency in in vivo genome editing compared to the 

conventional ssAAV-expressed sgRNA. 
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Figure 3.6 Western blot analysis of skeletal muscles and heart of ∆Ex44 mice treated with ssAAV-packaged 

CRISPR/Cas9 genome editing components. (A) Western blot analysis shows restoration of dystrophin 

expression in the TA, triceps, diaphragm, and heart of ∆Ex44 mice 4 weeks after systemic delivery of ssAAV-

packaged SpCas9 and ssAAV-packaged sgRNA. SpCas9 vector was kept at constant dose of 8 × 1013 vg/kg. The 

dose of sgRNA vector was shown in the figure. Vinculin was used as the loading control (n = 3). Red asterisks 

indicates non-specific band. (B) Quantification of dystrophin expression in TA, triceps, diaphragm, and heart. 

Relative dystrophin intensity was calibrated with vinculin internal control before normalizing to the WT control. 

Data are represented as mean ± SEM. One-way ANOVA was performed with post-hoc Tukey’s multiple 

comparisons test. *P<0.05, **P<0.005, ***P<0.001, ****P<0.0001 (n=3). 

 

Systemic delivery of scAAV-packaged sgRNAs restores muscle integrity and improves 

muscle function in ∆Ex44 mice 

To evaluate whether systemic delivery of scAAV-packaged sgRNAs was able to rescue 

pathological hallmarks seen in dystrophic mice, we performed hematoxylin and eosin (H&E) 

staining of skeletal muscles and heart isolated from ∆Ex44 mice four weeks after 

CRISPR/Cas9-mediated genome editing. The percentage of regenerating myofibers with 

central nuclei declined as the dose of scAAV-packaged sgRNA increased (Figures 3.7 and 3.8). 

Less than 5% of myofibers showed central nuclei in TA and triceps in mice receiving 1.6 × 

1013 vg/kg of scAAV-packaged sgRNA (Figure 3.7, panel A and Figure 3.8, panel A).  

In contrast, mice receiving the same dose of ssAAV-packaged sgRNA still showed 

over 70% of regenerating myofibers with central nuclei, together with signs of muscle necrosis 

and inflammatory infiltration (Figure 3.7, panel B and Figure 3.8, panel B). In addition, skeletal 

muscles isolated from mice receiving the highest dose of scAAV-packaged sgRNA (8 × 1013 

vg/kg) were virtually indistinguishable from those of wild-type (WT) littermates, whereas the 
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ssAAV-treated cohort still showed 30% central nuclei in the TA and triceps (Figures 3.7 and 

3.8). 

 

Figure 3.7 Muscle histology of ΔEx44 mice after systemic delivery of AAV expressing CRISPR/Cas9 

genome editing components. (A and B) H&E staining of TA, triceps, diaphragm, and heart of ∆Ex44 mice 4 
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weeks after systemic delivery of ssAAV-packaged SpCas9 and scAAV-packaged sgRNA (A) or ssAAV-

packaged sgRNA (B). SpCas9 vector was kept at constant dose of 8 × 1013 vg/kg. The dose of sgRNA vector was 

shown in the figure. n = 5 for each muscle group. Scale bar, 100 μm. 

 

 

Figure 3.8 Whole muscle scanning of H&E staining of TA, triceps, diaphragm, and heart of CRISPR/Cas9-

corrected ∆Ex44 mice. (A and B) Whole muscle scanning of H&E staining of TA, triceps, diaphragm, and heart 

of ∆Ex44 mice 4 weeks after systemic delivery of ssAAV-packaged SpCas9 and scAAV-packaged sgRNA (A) 

or ssAAV-packaged sgRNA (B). SpCas9 vector was kept at constant dose of 8 × 1013 vg/kg. The dose of sgRNA 

vector was shown in the figure. n = 5 for each muscle group. Scale bar in TA, triceps, diaphragm is 500 μm, in 

heart is 1.5mm. 
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To examine the effect of dystrophin restoration on muscle function after systemic 

delivery of scAAV or ssAAV-packaged sgRNA, we performed electrophysiological analyses 

on extensor digitorum longus (EDL) and soleus muscles isolated from ∆Ex44 mice four weeks 

after receiving the middle dose of AAV-sgRNA (1.6 × 1013 vg/kg) or the high dose of AAV-

sgRNA (8 × 1013 vg/kg). Without CRISPR/Cas9 genome editing, muscle-specific force, which 

was calibrated by the muscle cross-sectional area, was reduced by 46% in fast-twitch EDL 

muscle and by 42% in slow-twitch soleus muscle (Figure 3.9, panel A and B). After systemic 

delivery of scAAV-packaged sgRNA, muscle-specific force of the EDL was increased from 

54% to 83% and to 82% for the middle and high doses; in contrast, for the ssAAV-treated 

cohort, muscle-specific force of the EDL was only increased from 54% to 62% and to 66% for 

the middle and high doses (Figure 3.9, panel A).  

For the slow-twitch soleus muscle, muscle-specific force was increased from 58% to 

93% and to 96% after receiving the middle and high doses of scAAV-packaged sgRNA; in 

contrast, for the ssAAV-treated cohort, only high dose treatment was able to improve muscle-

specific force of the soleus to 85%, while no improvement was observed with the middle dose 

(Figure 3.9, panel B).  The maximal tetanic force of the EDL and soleus followed a similar 

pattern to the muscle-specific force. Specifically, ∆Ex44 mice receiving the middle or high 

doses of scAAV-packaged sgRNA showed improved maximal tetanic force of the EDL muscle 

to over 80% of WT, whereas the ssAAV-treated cohort was only able to improve to 60% of 

WT (Figure 3.9, panel C).  

The maximal tetanic force of the soleus was improved to over 90% of WT after 

receiving the middle or high doses of scAAV-packaged sgRNA; high dose of ssAAV-
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packaged sgRNA improved maximal tetanic force of the soleus to 85% of WT, while the 

middle dose did not provide any improvement (Figure 3.9, panel D).  

 

 

 

Figure 3.9 Rescue of skeletal muscle function after systemic AAV delivery of CRISPR/Cas9 genome editing 

components. (A and B) Specific force (mN/mm2) of the extensor digitorum longus (EDL) (A) and soleus (B) 

muscles in WT, ∆Ex44 mice untreated, and ∆Ex44 mice treated with ssAAV-packaged SpCas9 and scAAV or 

ssAAV-packaged sgRNA. SpCas9 vector was kept at constant dose of 8 × 1013 vg/kg. The dose of sgRNA vector 

was shown in the figure. Data are represented as mean ± SEM. One-way ANOVA was performed with post-hoc 

Tukey’s multiple comparisons test. *P<0.05, **P<0.005, ***P<0.001, ****P<0.0001 (n=6). (C and D) Maximal 

tetanic force of the EDL (C) and soleus (D) muscles in WT, ∆Ex44 untreated mice, and ∆Ex44 mice treated with 

ssAAV-packaged SpCas9 and scAAV or ssAAV-packaged sgRNA. SpCas9 vector was kept at constant dose of 

8 × 1013 vg/kg. The dose of sgRNA vector was shown in the figure. (n=6). 
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After receiving the middle and high doses of scAAV-packaged sgRNA, serum creatine 

kinase (CK) levels in the ∆Ex44 mice were reduced by 87% and 95%, respectively, compared 

with ∆Ex44 mice without treatment (Figure 3.10). In contrast, serum CK levels in the ∆Ex44 

mice receiving the same doses of ssAAV-packaged sgRNA were still 18.6- and 8.5-fold higher, 

respectively, than the WT littermates (Figure 3.10). These findings indicate that the double-

stranded scAAV vector is highly efficient in in vivo gene therapy and can significantly improve 

muscle integrity and function. 

 

Figure 3.10 Serum creatine kinase (CK) analysis of CRISPR/Cas9-corrected ∆Ex44 mice. Serum CK was 

measured in WT, ∆Ex44 mice untreated, and ∆Ex44 mice 4 weeks after treatment with ssAAV-packaged SpCas9 

and scAAV or ssAAV-packaged sgRNA. SpCas9 vector was kept at constant dose of 8 × 1013 vg/kg. The dose of 

sgRNA vector was shown in the figure. Serum CK was normalized to WT mice and shown as fold expression. 

Data are represented as mean ± SEM. One-way ANOVA was performed with post-hoc Tukey’s multiple 

comparisons test. **P<0.005, ****P<0.0001 (n=5). 
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The scAAV system induces significant INDELs within Dmd exon 45 and maintains higher 

copies of the viral genome in vivo 

To determine the mechanism whereby the scAAV system significantly improves in 

vivo genome editing in ∆Ex44 mice, we performed deep sequencing analysis to determine the 

INDEL frequency at the genomic level (Figure 3.11 and Table 3.1). The percentage of total 

genomic INDELs and +1 nt insertions at exon 45 correlated with ascending doses of AAV-

sgRNA. ∆Ex44 mice receiving the high dose (8 × 1013 vg/kg) of scAAV-packaged sgRNA 

showed more than 28% and 30% of total NHEJ events in TA and triceps (Figure 3.11). Of note, 

over 60% of total NHEJ events were +1 nt insertions, which restores the Dmd exon 45 ORF. 

In contrast, TA and triceps from ∆Ex44 mice receiving the same dose of ssAAV-packaged 

sgRNA had only 10% and 11% of total NHEJ events (Figure 3.11). We did not observe a 

significant difference between scAAV and ssAAV in inducing total NHEJ and +1 nt insertion 

events in the diaphragm or heart (Figure 3.11). We observed a low percentage of AAV 

integration events at the sgRNA targeting site in ssAAV- and scAAV-treated mice (Table 3.1). 

 

Figure 3.11 scAAV vector induces significant INDELs at genomic level. Genomic INDEL analysis by deep 

sequencing of TA, triceps, diaphragm, and heart of ∆Ex44 mice 4 weeks after systemic delivery of ssAAV-

packaged SpCas9 and scAAV or ssAAV-packaged sgRNA. SpCas9 vector was kept at constant dose of 8 × 1013 

vg/kg. The dose of sgRNA vector was shown in the figure. Data are represented as mean ± SEM. Two-way 
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ANOVA was performed with post-hoc Tukey’s multiple comparisons test. **P<0.005, ***P<0.001, 

****P<0.0001 for total NHEJ event (n=3). ##P<0.005, ###P<0.001,  ####P<0.0001 for +1 nt insertion event 

(n=3). 

Table 3.1 Genomic INDEL analysis by deep sequencing of TA, triceps, diaphragm, and heart of ∆Ex44 

mice 4 weeks after AAV-CRISPR/Cas9 genome editing. 
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We also performed TIDE analysis on dystrophin cDNA transcripts isolated from 

skeletal muscles and heart. Total cDNA INDEL rate and +1 nt insertion events at exon 45 

followed similar ascending patterns seen in the genomic TIDE analysis while the absolute 

percentage increased significantly (Figure 3.12), indicating enrichment of the reframed cDNA 

transcript after nonsense-mediated decay of unedited transcript with a premature stop codon in 

exon 45. These findings indicate that the scAAV system is highly efficient in inducing INDELs 

at the targeted genomic locus, and the majority of the INDEL events contain +1 nt insertions, 

which is able to repair the out-of-frame mutation in Dmd exon 45. 

 

 

Figure 3.12 scAAV vector induces significant INDELs at cDNA level. Dystrophin cDNA INDEL analysis by 

TIDE analysis of TA, triceps, diaphragm, and heart of ∆Ex44 mice 4 weeks after systemic delivery of ssAAV-

packaged SpCas9 and scAAV or ssAAV-packaged sgRNA. SpCas9 vector was kept at constant dose of 8 × 1013 

vg/kg. The dose of sgRNA vector was shown in the figure. Data are represented as mean ± SEM. Two-way 

ANOVA was performed with post-hoc Tukey’s multiple comparisons test. *P<0.05, ****P<0.0001 for total 

NHEJ event (n=3). ###P<0.001,  ####P<0.0001 for +1 nt insertion event (n=3). 
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Next, we performed quantitative PCR analysis to detect viral genome copies in skeletal 

muscles and heart of ∆Ex44 mice four weeks after systemic delivery of AAV-CRISPR/Cas9 

genome editing components. Mice receiving scAAV treatment showed significantly higher 

copy numbers of sgRNA viral genomes than those receiving the same dose of ssAAV-

packaged sgRNA (Figure 3.13, panel A). Moreover, the sgRNA transcripts transcribed from 

the scAAV vector were also significantly higher than those transcribed from the ssAAV vector 

(Figure 3.13, panel B). These findings indicate that there is a significant depletion of ssAAV-

packaged sgRNA vector in skeletal muscles in vivo.  

Figure 3.13. ∆Ex44 mice sustain higher copies of scAAV-sgRNA viral genome and express more sgRNA 

transcripts after systemic delivery of scAAV-packaged sgRNA. (A and B) sgRNA viral genome copy number 

(A) and sgRNA transcript fold expression (B) from skeletal muscles and heart of ∆Ex44 mice 4 weeks after 

systemic delivery of ssAAV-packaged SpCas9 and scAAV or ssAAV-packaged sgRNA. SpCas9 vector was kept 

at constant dose of 8 × 1013 vg/kg. The dose of sgRNA vector was shown in the figure. Data are represented as 

mean ± SEM. One-way ANOVA was performed with post-hoc Tukey’s multiple comparisons test. *P<0.05, 

**P<0.005, ***P<0.001, ****P<0.0001 (n=3). 
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Interestingly, although the dose of Cas9 vector was kept constant at 8 × 1013 vg/kg 

during initial systemic injection, the viral genomes of Cas9 vector in TA and triceps persisted 

with higher copies from mice receiving scAAV-packaged sgRNA vector than those receiving 

same dose of ssAAV-packaged sgRNA vector (Figure 3.14, panel A). However, AAV-Cas9 

viral genomes showed relatively high copies in diaphragm and heart independent of the identity 

of AAV-sgRNA vector (Figure 3.14, panel A). These findings are consistent with Cas9 cDNA 

transcript analysis (Figure 3.14, panel B). Together, these data suggest that the high efficiency 

of scAAV-mediated in vivo genome editing is attributed to higher viral genome persistence of 

the sgRNA vector and Cas9 vector. 

Figure 3.14. ∆Ex44 mice sustain higher copies of ssAAV-SpCas9 viral genome and express more SpCas9 

transcripts after systemic delivery of scAAV-packaged sgRNA. (A and B) SpCas9 viral genome copy number 

(A) and SpCas9 transcript fold expression (B) from skeletal muscles and heart of ∆Ex44 mice 4 weeks after 

systemic delivery of ssAAV-packaged SpCas9 and scAAV or ssAAV-packaged sgRNA. SpCas9 vector was kept 

at constant dose of 8 × 1013 vg/kg. The dose of sgRNA vector was shown in the figure. Data are represented as 

mean ± SEM. One-way ANOVA was performed with post-hoc Tukey’s multiple comparisons test. *P<0.05, 

**P<0.005, ****P<0.0001 (n=3). 
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Discussion  

Owing to non-pathogenic and low-immunogenic characteristics, recombinant AAV has 

been chosen as a delivery vector for multiple gene therapy clinical trials and three have been 

approved for treating lipoprotein lipase deficiency, inherited retinal dystrophy, and spinal 

muscular atrophy (Dunbar et al., 2018). In this study, we developed a new genome editing 

strategy in which the Cas9 nuclease is encoded by conventional ssAAV while sgRNAs are 

expressed by double-stranded scAAV. After a single high dose systemic injection of this dual 

AAV system into ∆Ex44 mice (8 × 1013 vg/kg of Cas9 vector, 8 × 1013 vg/kg of sgRNA vector), 

dystrophin protein expression in multiple muscle groups was restored by ~80% and skeletal 

muscle function was improved by ~82% in fast-twitch EDL muscle and by ~96% in slow-

twitch soleus muscle. Importantly, a low dose of scAAV-expressed sgRNAs (4 × 1012 vg/kg) 

is sufficient to restore 18%, 14% and 50% of dystrophin protein in TA, triceps and diaphragm, 

respectively, representing a 20-fold improvement in efficiency compared with the ssAAV-

packaged sgRNA vector. Several potential explanations may account for these observations. 

First, it has been widely accepted that most recombinant AAV genomes persist as double-

stranded episomes in vivo, either in the form of circular or linear concatemers (Duan et al., 

1998; Miao et al., 1998; Nakai et al., 2001). During the concatemerization process, the double-

stranded DNA intermediate is an indispensable prerequisite. Thus, the scAAV undergoes 

concatemerization more rapidly than ssAAV because scAAV-based concatemerization 

bypasses second-strand synthesis, which is a rate-limiting step for ssAAV (Ferrari et al., 1996; 

Fisher et al., 1996). Second, it has been reported that monomeric viral genome degradation is 

significantly slower in scAAV transduced skeletal muscle compared with ssAAV (Ren et al., 
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2005). Therefore, scAAV is more stable than ssAAV during initial viral transduction, leading 

to higher episomal persistence in the long-term. Third, DNA DSBs in post-mitotic cells are 

repaired by the classical NHEJ pathway, which requires the catalytic subunit of DNA-

dependent protein kinase (DNA-PKcs) (Ciccia and Elledge, 2010). It is known that DNA-PKcs 

is required for AAV viral genome concatemerization in AAV transduced skeletal muscle 

(Duan et al., 2003). In this study, we found that scAAV-packaged sgRNA leads to a higher 

incidence of DNA DSB at the target site. This may induce higher DNA-PKcs expression, 

which in turn facilitates AAV concatemerization and long-term gene expression. Indeed, we 

found higher viral genome persistence of both sgRNA vector and Cas9 vector in mice treated 

with scAAV-packaged sgRNA. In summary, the scAAV-sgRNA delivery system has many 

appealing features, including stable persistence of AAV viral genomes, higher INDEL 

frequency at the targeted genomic locus, and highly efficient genome editing in vitro and in 

vivo at low viral dose. 

Initial studies of Cas9-induced DNA DSBs suggested that the breakage point was 

blunt-ended (Gasiunas et al., 2012; Jinek et al., 2012). However, molecular dynamics 

simulations of the SpCas9-sgRNA-dsDNA system suggest that SpCas9-induced cleavage 

generates a staggered cut, producing a single nucleotide 5’ overhang at the breakage point, 

which is prone to be filled with one additional nucleotide by the DNA polymerase, leading to 

a high frequency of +1 nt insertion after NHEJ-mediated repair (Lemos et al., 2018; Zuo and 

Liu, 2016). Based on this mechanism, our lab developed CRISPR/Cas9-mediated “single-cut” 

technology and successfully restored the ORF of exon 51 in mice and dogs with exon 50 

deletion, and exon 45 ORF in mice lacking exon 44 (Amoasii et al., 2018; Amoasii et al., 2017; 



96 

 

Min et al., 2019). This technology, in theory, can be applied to correct diverse mutations in 

any exon containing a single nucleotide out-of-frame deletion (Long et al., 2018). However, 

there remains another group of mutations in which the frameshift mutation needs to be 

reframed by 3n+2 insertions or 3n-1 deletion. In such cases, the CRISPR/Cas9-mediated 

“single-cut” repair strategy may be less efficient. Several studies have shown that it is possible 

to restore the Dmd ORF by removing one or multiple exons by using two sgRNAs (Bengtsson 

et al., 2017; Hakim et al., 2018; Long et al., 2016; Nelson et al., 2016; Nelson et al., 2019; 

Tabebordbar et al., 2016). However, this “double-cut” strategy is only effective when two 

cooperative DNA DSBs occur simultaneously. If the first DNA DSB is rapidly rejoined by 

NHEJ-mediated repair, the second DSB alone is not sufficient to excise the entire exon. 

Moreover, a high frequency of AAV ITR integration events is observed at the Cas9 target site 

when two sgRNAs are used to excise large genomic intervening regions (Maeder et al., 2019; 

Nelson et al., 2019). Therefore, the CRISPR/Cas9-mediated “single-cut” repair strategy has 

unique advantages, including predictable DNA repair outcome, minimum genomic 

modification at a precise location, and low frequency of off-target effects. 

Nevertheless, many questions remain unaddressed for AAV-delivered CRISPR/Cas9-

mediated therapeutic genome editing. The first concern is the potential for adaptive immune 

responses elicited by AAV capsid protein and Cas9 nuclease. It has been reported that AAV 

neutralizing antibodies, anti-SpCas9 antibodies, and SpCas9-specific T cells are found in the 

human population (Boutin et al., 2010; Calcedo et al., 2009; Charlesworth et al., 2019; Chew 

et al., 2016). While no apparent immune response to AAV or Cas9 was observed in neonatal 

mice, it remains unclear whether this observation also will also apply to humans. Potential 
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solutions to address these concerns include (i) large-scale functional variant profiling of AAV 

and SpCas9 for epitope mutagenesis to block antibody binding; (ii) plasmapheresis to reduce 

neutralizing antibody titer; and (iii) transient immunosuppression (Zhang et al., 2018). The 

second concern is durability of CRISPR/Cas9-mediated therapeutic genome editing. Our TIDE 

analysis in multiple skeletal muscle samples showed an average of 21% editing events at the 

genomic level, among which, 75% of editing events are effective and able to restore the Dmd 

ORF. Moreover, recent studies in the mdx mouse model of DMD showed that sustained 

genome editing and dystrophin expression can be observed for 12-18 months after single 

intravenous injection of AAV9 encoded SaCas9 (Cas9 derived from Staphylococcus aureus) 

(Hakim et al., 2018; Nelson et al., 2019). However, skeletal muscle contains stem cells capable 

of undergoing de novo myogenesis and contributing to pre-existing myofibers (Yin et al., 2013). 

Whether these events will gradually dilute out genome-edited, dystrophin-positive myofibers 

in the long-term remains to be determined. In this study, we were able to restore more than 70% 

of dystrophin expression in the heart. In addition, adult human cardiomyocytes have a very 

low turnover rate (1% at the age of 25 to 0.45% at the age of 75) (Bergmann et al., 2009; 

Bergmann et al., 2015). Thus, in theory, long-term clinical benefit by CRISPR/Cas9-mediated 

genome editing should be sustained in the human heart.  

In summary, a low dose of scAAV-delivered CRISPR-Cas genome editing components 

is sufficient to restore dystrophin protein expression, reduce DMD pathological phenotypes, 

and improve muscle function in a DMD mouse model. Therefore, this robust scAAV delivery 

system combined with the efficient CRISPR-Cas9 genome editing technology represents a 
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promising therapy for permanent correction of diverse genetic mutations in neuromuscular 

diseases. 

 

Materials and Methods 

 

Study design 

This study was designed with the primary aim to investigate the feasibility of using the scAAV 

system to deliver the CRISPR/Cas9 genome editing components for the correction of DMD 

mutations. The secondary objective was to compare the efficiency between the conventional 

ssAAV and scAAV in delivering CRISPR sgRNA for in vivo therapeutic genome editing. We 

did not use exclusion, randomization, or blind approaches to assign the animals for the 

experiments. For each experiment, sample size reflects the number of independent biological 

replicates and was provided in the figure legends. 

 

AAV vector cloning and viral production 

The sgRNA targeting mouse Dmd exon 45, listed in Table 3.2, was first cloned into TRISPR-

sgRNA-CK8e-GFP plasmid, a modified gift from D. Grimm, using Golden Gate Assembly 

(New England Biolabs). A detailed cloning protocol was previously described (Amoasii et al., 

2017). The sgRNA expression cassette containing three copies of same sgRNA driven by the 

U6, H1, and 7SK promoter was PCR amplified and subcloned into the pSJG self-

complementary AAV plasmid (scAAV plasmid), a gift from S. Gray, or into the pSSV9 single-

stranded AAV plasmid (ssAAV plasmid), using In-Fusion Cloning Kit (Takara Bio). A 2.3 kb 
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stuffer sequence was cloned into the ssAAV plasmid for optimal viral packaging. Both the 

scAAV and the ssAAV genome contain the same sgRNA expression cassette, consisting of 

three copies of sgRNA sequence driven by three RNA polymerase III promoters. Cloning 

primers are listed in Table 3.2. All AAV viral plasmids were column purified and digested 

with Sma I and Ahd I to check ITR integrity. AAVs were packaged by Boston Children’s 

Hospital Viral Core and serotype 9 was chosen for capsid assembly. AAV titers were 

determined by Droplet Digital PCR (ddCPR) (Bio-Rad Laboratories) according to the 

manufacturer’s protocol. Primers and probes used for titration were listed in Table 3.2. 

 

Alkaline agarose gel electrophoresis 

AAV virus (2 x 1011 vg) was equalized with water to 13 μl and digested with 10 μl DNase 

solution (10mM Tris-HCl, pH 7.5, 10mM CaCl2, 10mM MgCl2, 0.1mg/ml DNase) at 37 oC for 

1 hour, followed by chelating Mg2+ and Ca2+ with 5 μl 0.5M EDTA. Then the capsid was 

denatured by adding 2 μl 10% SDS. The reaction mixture was mixed with 6 ul 6X alkaline 

agarose gel loading dye (Alfa Aesar) and loaded into 1% alkaline agarose gel. Denaturing gel 

electrophoresis was performed in a cold room at 50 V for 15 hours. The gel was neutralized 

with neutralization buffer (0.5 M Tris-HCl pH 7.5, 1M NaCl) and stained with SYBR Gold 

(Thermo Fisher Scientific) for visualization. 

 

in vitro AAV viral transduction in C2C12 myotubes 

Cas9-expressing C2C12 myoblasts were cultured in 96-well dishes with growth medium 

(DMEM with 10% FBS) until reaching 90% confluency. Then the myoblasts were allowed to 
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differentiate in myotube in differentiation medium (DMEM with 2% horse serum) for 5 days. 

Two-hours before viral transduction, myotubes were treated with Vibrio cholerae 

Neuraminidase (50 mu/ml) (Sigma-Aldrich), followed by washing with differentiation 

medium twice (Shen et al., 2011). Myotubes were incubated with varying doses of scAAV or 

ssAAV and centrifuged at 1,000 xg at 4 oC for 1.5 hour. After spin transduction, the virus was 

aspirated and the myotubes were washed with differentiation medium three times. The 

myotubes were cultured in differentiation medium for an additional week prior genomic DNA 

isolation for INDEL analysis. 

 

in vivo AAV delivery into ∆Ex44 mice 

Postnatal day 4 (P4) ∆Ex44 mice were injected intraperitoneally with 80 μl of AAV9 viral 

mixture containing 8 × 1013 vg/kg AAV9-SpCas9 and varying doses of scAAV or ssAAV-

packaged sgRNA using an ultrafine BD insulin syringe (Becton Dickinson). The doses of 

scAAV or ssAAV-packaged sgRNA are indicated in the figure legends. Four weeks after 

systemic delivery, ∆Ex44 mice and WT littermates were dissected for physiological, 

biochemical and histological analysis. Animal work described in this manuscript has been 

approved and conducted under the oversight of the UT Southwestern Institutional Animal Care 

and Use Committee. 

 

Genomic DNA and RNA isolation, cDNA synthesis, and PCR amplification 

Genomic DNA of mouse C2C12 myotubes, skeletal muscles and heart was isolated using 

DirectPCR (cell) lysis reagent (Viagen Biotech) according to the manufacturer’s protocol. 
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Total RNA of skeletal muscles and heart was isolated using miRNeasy (QIAGEN) according 

to the manufacturer’s protocol. cDNA was reverse-transcribed from total RNA using 

SuperScript III First-Strand Synthesis SuperMix (Thermo Fisher Scientific) according to the 

manufacturer’s protocol. PCR amplification was performed as previously described (Min et 

al., 2019). Primer sequences were listed in Table 3.2. 

 

INDELs analysis of genomic DNA and cDNA 

INDELs in genomic DNA and cDNA were analyzed using Tracking of INDELs by 

Decomposition (TIDE) software package (https://tide.deskgen.com). Briefly, the sgRNA 

sequence targeting mouse Dmd exon 45 was first uploaded to the software to define SpCas9-

mediated DSB site. Then, the CRISPR/Cas9-edited sequence and non-edited control sequence 

were uploaded and aligned using Smith-Waterman local alignment algorithm. The percentage 

of INDELs was calculated based on the relative abundance of aberrant nucleotides over the 

length of the whole sequence trace.  

 

Amplicon deep sequencing analysis 

PCR of genomic DNA was performed using primers designed against the Dmd exon 45 region. 

A second round of PCR was performed to add Illumina flow cell binding sequence and 

barcodes. All primer sequences are listed in Table 3.2. Deep sequencing and data analysis were 

performed as previously described (Min et al., 2019). 
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AAV viral genome copy number quantification 

The AAV viral genome copy number was determined by quantitative PCR using custom-

designed primers (Table 3.2). The primer sets used in AAV-sgRNA and AAV-Cas9 viral 

genome quantification anneal to the 7SK promoter and Cas9 gene, respectively. The threshold 

cycle value of each reaction was converted to the viral genome copy number by measuring 

against the copy number standard curve of the AAV plasmids used for AAV packaging in this 

study. Mouse 18S ribosomal RNA gene was used as the reference gene to calibrate genomic 

DNA quantity. 

 

Dystrophin and SpCas9 Western blot analysis 

Heart and skeletal muscles were crushed and lysed with lysis buffer [10% SDS, 62.5 mM tris 

(pH 6.8), 1 mM EDTA, and protease inhibitor]. Total 50 μg of protein was loaded onto 4-20% 

Criterion™ TGX™ Precast Midi Protein Gel (Bio-Rad Laboratories). Details of Western blot 

running, transferring, and developing were previously described (Min et al., 2019). Primary 

antibodies used in Western blot were mouse anti-dystrophin antibody (MANDYS8, Sigma-

Aldrich, D8168), mouse anti-Cas9 antibody (Clone 7A9, Millipore, MAC133), mouse anti-

vinculin antibody (Sigma-Aldrich, V9131). Secondary antibodies used in Western blot were 

goat anti-mouse horseradish peroxidase (HRP) antibody or goat anti-rabbit HRP antibody 

(Bio-Rad Laboratories). 
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Histological analysis of skeletal muscle and heart 

Skeletal muscles and heart were cryosectioned into eight-micron transverse sections. 

Immunohistochemistry was performed as previously described (Min et al., 2019). Antibodies 

used in immunohistochemistry were mouse anti-dystrophin antibody (MANDYS8, Sigma-

Aldrich, D8168) and M.O.M. biotinylated anti-mouse IgG (BMK-2202, Vector Laboratories). 

 

Electrophysiological analysis of isolated EDL and soleus muscles 

Four weeks after systemic AAV-CRISPR/Cas9 genome editing, EDL and soleus muscles from 

∆Ex44 mice and WT littermates were isolated for electrophysiological analysis, as previously 

described (Min et al., 2019). Specific force (mN/mm2) was calculated by normalizing 

contraction force to muscle cross-sectional area. 

 

Statistics 

All data are shown as means ± SEM. One-way ANOVA or two-way ANOVA was performed 

with post-hoc Tukey’s multiple comparisons test. A P < 0.05 value was considered statistically 

significant. 
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Table 3.2 Primers used in this study. 
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CHAPTER FOUR 
 
 

CONCLUDING REMARKS AND FUTURE PERSPECTIVES 

 
Acknowledgement 

Parts of this chapter, including figures, have been reproduced, with or without modifications, 

from my previously published work (Zhang et al., 2018) 

 

Challenges of Therapeutic Genome Editing  

Immunogenicity 

One of the greatest challenges of using rAAV as a delivery system for CRISPR/Cas-

mediated therapeutic genome editing is the immune response to the vector. Potential 

immunogenicity elicited by rAAV-based delivery of the CRISPR/Cas system can be evoked 

by: i) the restored protein product; ii) the CRISPR/Cas system; and iii) capsid proteins on the 

surface of rAAV virus.  

Mutated genes in monogenic disorders encode abnormal proteins or cause a complete 

loss of protein. After CRISPR/Cas-mediated correction, epitopes derived from the newly 

restored protein may elicit immunogenicity. However, in the case of DMD, due to somatic 

mutation or alternative splicing, more than 50% of DMD patients display low level of 

dystrophin-positive revertant fibers (0.2 to 4%), which may mitigate a potential immune 

response (Burrow et al., 1991; Nicholson et al., 1989; Nicholson et al., 1993). Indeed, in a gene 

transfer study, expression of murine full-length or mini-dystrophin in mdx mice did not evoke 
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humoral or cytotoxic immune responses (Ferrer et al., 2000). Therefore, immunogenicity 

elicited by the rescued protein may not be a significant concern, at least in the case of DMD.  

In regard to immunogenicity elicited by the CRISPR/Cas system, it was demonstrated 

that Cas9 endonucleases delivered by rAAV did evoke a humoral immune response in mice 

(Chew et al., 2016). However, they did not observe significant muscle cell damage or a repair 

response at 2 weeks after rAAV administration. Another concern is if the rAAV needs to be 

re-administered since once the SpCas9-mediated humoral immunity is established in the host, 

further application of SpCas9 for therapeutic genome editing may no longer be effective. 

Several potential strategies could be applied to address this issue, including i) large-scale 

functional variant profiling of SpCas9 for epitope mutation, ii) replacing SpCas9 with other 

Cas endonucleases such as SaCas9, LbCpf1 and AsCpf1 after initial SpCas9 administration, 

and iii) performing plasmapheresis or transient immunosuppression to reduce the circulating 

antibody titer. 

In addition to the immunogenicity response elicited by the CRISPR/Cas system, the 

humoral immune response evoked by rAAV is another challenge for in vivo therapeutic 

genome editing. Several studies in non-human primates have shown that high incidence of 

neutralizing antibodies (NAbs) after initial exposure to AAV can block AAV transduction, 

rendering gene delivery ineffective (Jiang et al., 2006; Wang et al., 2010). Moreover, the 

prevalence of AAV NAbs in human populations is also relatively high, ranging from 30-60% 

to AAV2, to 15-30% to AAV7, AAV8, and AAV9 serotypes (Boutin et al., 2010; Calcedo et 

al., 2009). Several strategies have been developed to overcome AAV-induced humoral 

immune responses, including i) AAV capsid mutagenesis to alter NAb binding epitopes (Nance 
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and Duan, 2015), ii) plasmapheresis to reduce AAV NAb titer (Hurlbut et al., 2010; Monteilhet 

et al., 2011; Wang et al., 2011), and iii) transient immunosuppression (Mingozzi et al., 2013).  

 

Off-target effects 

Another concern around using programmable nucleases for therapeutic genome editing 

is the potential for mutagenesis caused by off-target effects. Initial programmable nuclease-

like TALENs generally show minimal off-target effects because TALEN-mediated DNA 

DSBs require dimerization of two TALEN monomers and the dimerized TALEN pairs can 

recognize 30-40 bp of DNA sequence (Kim and Kim, 2014). In contrast, DNA DSBs induced 

by SpCas9, currently the most prevalently used Cas endonuclease, only requires a 20-nt sgRNA 

forming DNA-RNA duplex with the target DNA strand, which may increase mismatching 

frequency. Indeed, several early studies about SpCas9 specificity have shown that high-

frequency mutagenesis caused by off-target effects is possible at mismatched sites (Fu et al., 

2013; Hsu et al., 2013; Lin et al., 2014b). For example, INDELs caused by SpCas9 off-target 

cleavage can be detected at certain sites with up to five mismatches relative to the on-target 

site (Fu et al., 2013; Hsu et al., 2013; Pattanayak et al., 2013). Several approaches can be used 

to evaluate potential CRISPR/Cas-induced off-target effects. Computational prediction of off-

target sites followed by DNA mismatch cleavage assay serves as a rapid and convenient 

method to evaluate sgRNA specificity. More recently, computational prediction of off-target 

sites followed by deep sequencing or unbiased whole-genome sequencing represents a more 

reliable method for systematic evaluation of CRISPR/Cas specificity (Tsai and Joung, 2016). 
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Many strategies have been developed to reduce off-target effects caused by 

CRISPR/Cas9 non-specific cleavage. Using truncated sgRNA with 2-3 nt deletion at the 5’-

end can reduce the off-target-induced mutagenesis by 5,000-fold or more, and reduce the 

genome-wide off-target sites by 2-5-fold (Fu et al., 2014; Tsai et al., 2015). Another strategy 

is to use a pair of Cas9 nickases to generate two DNA nicks in close proximity and this strategy 

has been shown to reduce off-target mutations by 50-1,500-fold (Mali et al., 2013a; Ran et al., 

2013; Shen et al., 2014). 

Resolving the crystal structure of SpCas9 in complex with sgRNA and target DNA 

provided many insights into the potential improvement of Cas9 specificity through logistic 

engineering (Nishimasu et al., 2014). The high-fidelity SpCas9 (SpCas9-HF1) was generated 

by alanine substitution to disrupt non-specific interaction with the target DNA strand 

(Kleinstiver et al., 2016). Recent structural analysis demonstrated that binding SpCas9-HF1 to 

a substrate with even a single bp mismatch at the PAM distal end completely abolishes stable 

docking of the HNH nuclease domain (Chen et al., 2017). In addition, enhanced SpCas9 

(eSpCas9 1.1) was developed by neutralizing positively-charged residues to weaken 

interactions with the non-target DNA strand (Slaymaker et al., 2016). Additionally, a hyper-

accurate Cas9 variant (HypaCas9) was developed in which the HNH nuclease activation is 

allosterically regulated by REC3, leading to high specificity of on-target cleavage (Chen et al., 

2017). All of these engineered SpCas9 variants have been shown to significantly reduce off-

target mutagenesis and have the potential to push therapeutic genome editing toward high 

specificity. 
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Long term effects and benefits of post-natal genome editing 

Post-natal genome editing can correct the genetic mutation in muscular dystrophies, 

and in the short term, leads to improved muscle function. It has been reported that AAV 

CRISPR/Cas9 genome edited mdx mice can sustain dystrophin protein expression for more 

than 1 year (Hakim et al., 2018; Nelson et al., 2019). However, it is unknown whether this long 

term efficacy seen in DMD mouse models can also be observed in humans. This is because 

DMD patients can live more than 20 years, it is uncertain whether genome-edited, dystrophin-

positive myofibers will be diluted out by dystrophin-negative myofibers generated from 

satellite cells carrying the DMD mutation. In contrast, cardiomyocytes in the adult human heart 

have a very low turnover rate (1% at the age of 25 to 0.45% at the age of 75) (Bergmann et al., 

2009; Bergmann et al., 2015). Therefore, therapeutic genome editing in the human heart should 

provide long-term clinical benefit. Indeed, several studies have demonstrated that 

CRISPR/Cas-mediated genome editing can restore cardiac function in dystrophic mice (El 

Refaey et al., 2017; Long et al., 2016). 

 

Conclusions and Future Perspectives 

The ultimate goal for therapeutic CRISPR/Cas-mediated genome editing is to 

permanently correct mutations contributing to human genetic diseases. Skeletal muscle is an 

ideal tissue for CRISPR/Cas9-mediated therapeutic genome editing because of the post-mitotic 

and multinucleation features. Studies have shown that genomic mutation correction in a subset 

population of muscle nuclei is sufficient to result in continued improvement of muscle function 

(Amoasii et al., 2018; Amoasii et al., 2019; Amoasii et al., 2017; Bengtsson et al., 2017; El 
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Refaey et al., 2017; Long et al., 2016; Long et al., 2014; Min et al., 2019; Nelson et al., 2016; 

Tabebordbar et al., 2016; Zhang et al., 2017b). In addition to genome editing in post-mitotic 

myofibers, mutation correction in skeletal muscle satellite cells should provide significant 

regeneration benefit in the long term, although it is still debatable whether rAAV can 

efficiently transduce satellite cells in vivo (Arnett et al., 2014; Tabebordbar et al., 2016). 

Recently, our lab discovered a new myogenic lineage, which is molecularly and anatomically 

distinct from satellite cells. These progenitor cells, expressing Twist2, are capable of 

contributing to type IIb/x myofibers by fusing to myofibers during adulthood and muscle 

regeneration (Liu et al., 2017). In the future, it would be interesting to test whether rAAV can 

efficiently transduce Twist2+ progenitor cells, leading to CRISPR/Cas-mediated genome 

editing in these progenitor cells.  

In addition to mutations in the nuclear genome, mutations in the mitochondrial genome 

also cause primary mitochondrial DNA (mtDNA)-related diseases. Mutations in mitochondrial 

tRNAs or protein-coding genes can lead to MELAS (mitochondrial myopathy, 

encephalopathy, lactic acidosis and stroke-like episodes) or MERRF (myoclonus epilepsy and 

ragged red fibers) (DiMauro, 2004; DiMauro and Hirano, 1993a, b; Schon et al., 2012). These 

genetic disorders not only affect muscle function but also result in pathogenesis in other 

systems, including brain, blood vessels and the endocrine system. Currently, mitochondrial 

replacement therapy (MRT) is used to treat genetic disorders caused by mtDNA mutations, in 

which the meiotic spindle apparatus with chromosomes from an unfertilized maternal oocyte 

is transferred into a donor oocyte cytoplasm containing healthy mtDNA (Wolf et al., 2017). 

However, healthy mtDNA replacement is not absolute and less than 1% carryover of mutant 
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mtDNA can be present after MRT. This carryover may lead to a gradual loss of healthy donor 

mtDNA and reversal to the maternal haplotype by genetic drift (Kang et al., 2016a; Yamada 

et al., 2016). This brings up an interesting question of whether programmable nucleases can be 

used to eliminate mutant mtDNA. Indeed, ZFNs and TALENs have been applied to selectively 

degrade pathogenic mitochondrial genomes (Bacman et al., 2014; Gammage et al., 2014; 

Reddy et al., 2015). Currently, efficient mitochondrial genome editing by the CRISPR/Cas 

system remains controversial (Gammage et al., 2017; Jo et al., 2015). Perhaps, efficient 

delivery of sgRNA into the mitochondrial matrix is an impediment for this application. We 

anticipate that in the near future, CRISPR/Cas-mediated genome editing can be further 

expanded to the mitochondrial genome. 

To date, there are 840 neuromuscular diseases known to be caused by mutations in 465 

different genes, with 72 mapped loci awaiting gene identification (Bonne et al., 2017). These 

debilitating diseases cause early death or significantly impair the quality of life. Currently, 

there is no effective treatment for these diseases since most therapies developed to date focus 

on alleviating the symptoms or targeting the secondary effects, while the source of mutations 

is still present in the human genome. The discovery and application of programmable nucleases 

for site-specific DNA DSBs provides a powerful tool for precise genome engineering. In 

particular, the CRISPR/Cas system has revolutionized the genome editing field and provides a 

new path for disease treatment that is beyond the reach of current therapies.  
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