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As the study of biological systems progresses from a molecular level to a systems 

level, the development of new methodology for efficient data acquisition has been 

a key challenge of biological research in recent years. While development of 

novel high throughput experimental platforms is essential for an accurate large-

scale data collection, novel theoretical methodology is indispensable for proper 

analysis and interpretation of these data. My projects aim at both, developing 

novel theoretic-analytical methodology for the analysis of functional patterns in 

biological networks, and also establishing a high throughput experimental 

platform for the study of signaling pathways. 
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I have developed a generalized method for the analysis of functional organization 

in complex networks. This method makes use of several novel metrics used to 

characterize a node’s status in the network. After the nodes are clustered 

according to their characteristics, statistically significant organizational patterns 

are revealed by random simulations of the network. Using this approach, I have 

found important characteristics of eukaryotic protein interaction networks that 

have direct implications in cellular phenomena like robustness and the efficiency 

of information processing. I have identified an entirely new class of functional 

modules with unique properties that contribute to the variability in cellular 

phenotypes. In addition, my analyses have uncovered a distinct pattern of 

organization in the protein network (called “rich club connectivity”) that provides 

mechanistic explanations for some cell biological phenomena. This work not only 

reveals a highly organized functional dynamic layout of the protein interaction 

network, but also refines and/or corrects several notions proposed by previous 

studies.  

 

Functional genomic screens are a powerful tool for finding novel components of 

biological networks. However, in order to make these screens effective for assays 

that may require multiple readouts, it is necessary to channel the assay to another 

high throughput platform. Here, I used high throughput RNAi as a loss-of-

function screen, and reverse-phase protein arrays as a high throughput readout 
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tool for the study of signal transduction downstream of the EGF receptor in 

human cells. I knocked down the expression of each human kinase in A431 cells, 

and measured the response of each perturbation to EGF stimulation by using 

reverse phase protein arrays. As readouts, I used phospho-STAT3 and phospho-

ERK, two important signaling molecules downstream of the EGF receptor. In 

addition to identifying some of the obligate as well as novel components of the 

EGF signaling network, the screen also revealed some novel global characteristics 

of EGF signaling. By using a network-based bioinformatics approach, I was able 

to extract some important relationships regarding the differential regulation of 

STAT3 and ERK pathways in response to EGF. This work shows a high promise 

of integration of genomics and proteomics platforms for the study of signal 

transduction. 
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CHAPTER 1 

Introduction 

1.1 FROM SYSTEMS TO MOLECULES AND BACK 

 

The second half of the past century has been a stage for major developments in 

biology. From the discovery of the DNA structure to the sequencing of the human 

genome, we have witnessed the evolution of biology from macro-scale studies, 

where only system-level observations could be made, to molecular biology, where 

we began unraveling the molecular bases of macroscopic biological phenomena. 

We came to appreciate the incredibly intricate mechanisms driving organismal 

development, very fine-tuned interplay of cell cycle and cell death pathways to 

govern the cell fate, and genetic mechanisms of many diseases like cancer.  

 

The advent of high throughput technologies in the past decade, and subsequent 

accumulation of biological data, has helped the next transition of biological 

research back to systems-level analyses. However unlike the initial years of 

biological research, systems-level analyses in so-called “Systems Biology” is a 

study of systems properties arising from a specific pattern of underlying 

molecular interactions. Therefore, Systems biology is a natural extension of 

molecular biology in a way where we first uncover the bits and pieces making up 
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the system (molecular biology), and then we put them back together to get a 

greater understanding of the system from a global perspective (systems biology). 

While molecular biology seeks to find the specific molecular mechanisms of the 

biological phenomena, systems biology is interested in the systems mechanisms 

that arise out of the collection of the molecular phenomena. 

 

1.1.1 The era of Genomics: rise of Systems Biology 

 

Perhaps the first systems-level analyses of the cell were made possible by the 

invention of cDNA microarrays, whereby the expression levels of every mRNA in 

the cell could be, in principle, measured. This led to the definition of so-called 

gene expression “patterns”, or “signatures” that are specific to a given cell type 

(DeRisi, et al., 1996). In their seminal study, Golub et al for the first time 

described the classification of acute leukemias into distinct classes based on their 

systems-level gene expression patterns (Golub, et al., 1999). Development of 

another technology, high throughput Yeast 2 Hybrid (Y2H), allowed for massive 

screening of proteins for their physical interactions with each other (Ito, et al., 

2001; Ito, et al., 2001; Uetz, et al., 2000), which opened the door for network 

analysts in other disciplines to flood into biology. Barabasi, a statistical physicist, 

first described some of the global properties of protein interaction networks that 

particularly make them robust to random mutations (Barabasi and Albert, 1999; 
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Jeong, et al., 2001; Jeong, et al., 2000). Shortly afterwards, analyses combining 

gene expression patterns with the protein interaction data emerged as an attempt 

to derive global properties of biological systems dynamics with implications in 

cellular robustness, evolvability and information processing (Bader, et al., 2004; 

Batada, et al., 2006; de Lichtenberg, et al., 2005; Han, et al., 2004; Harbison, et 

al., 2004; Ihmels, et al., 2002; Ihmels, et al., 2004; Komurov and White, 2007; 

Luscombe, et al., 2004). These pioneering studies were followed by many others 

utilizing various high throughput approaches to study cellular processes at a 

systems-level, and those utilizing novel theoretical tools for the interpretation of 

the increasingly accumulating data. This transition of molecular-level approach to 

a systems-level approach in biology has created a large necessity for the 

development of novel tools for systems biology analysis. 

 

1.2 METHODOLOGY OF SYSTEMS BIOLOGY 

 

A major shift in paradigm from a molecular-level research to a systems-level 

research (Hartwell, et al., 1999) has ushered a need for novel experimental tools 

for efficient and reliable large-scale data acquisition as well as theoretical tools 

for the analysis of the sea of biological data accumulated through these efforts. 

 

1.2.1 High throughput technology for efficient data acquisition 
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Large-scale data collection in an unbiased manner lies at the heart of systems 

biology. Recent advances in genomics and proteomics and their integration have 

radically transformed the process of data acquisition for systems-level analyses. 

Most experimental approaches in systems biology are aimed at identifying 

components of biological networks and the interactions between them. The 

process of identification of novel components of protein networks and their post-

translational modifications has been drastically accelerated thanks to the 

development of high throughput genetic screens, mass spectrometry-based 

methodology and protein arrays (Cho, et al., 2006). Each has been applied within 

various settings for successful elucidation of biological networks. 

 

RNAi screens 

Genetic screens are the most widely used tool for the identification of novel 

components of biological networks. These screens have been essential in the 

identification of key biological processes like cell cycle and apoptosis and of their 

components in model organisms. However approaches for routine large-scale 

genetic screens in mammalian cells were lacking. Perhaps the most popular 

genetic screen in mammalian cells in the recent years has been made possible by 

the development of high throughput RNA interference screens. The discovery that 

short double-strand RNA can silence the expression of specific genes through 
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RNA interference (RNAi) led to the extensive harnessing of this mechanism for 

functional analysis of genes in cultured cells (Hannon and Rossi, 2004). RNAi has 

become a primary genetic tool for loss-of-function approaches in mammalian 

cells, and even has the potential to be exploited therapeutically (Hannon and 

Rossi, 2004).  

 

High throughput RNAi libraries have generated a unique platform for functional 

genomics where each gene in the genome can be individually interrogated for its 

role in a given process (Silva, et al., 2004). RNAi molecules each targeting a 

specific gene are introduced into cells in mass or one by one, and the cells can be 

screened for a phenotype of interest to identify genes involved in the given 

process. Many studies have utilized this platform for genome-wide screens for 

successful identification of novel components of various cellular networks (Iorns, 

et al., 2008; MacKeigan, et al., 2005; Moffat and Sabatini, 2006; Whitehurst, et 

al., 2007). Most of these studies, however, utilized a simple phenotypic readout: 

cell death versus cell proliferation. The ability to assess more complex phenotypes 

in a high throughput platform will allow for the design of genome-wide screens 

with more potential information about the underlying cellular networks. Several 

emerging technologies in high throughput proteomics may offer a unique 

advantage towards achieving such a goal.  
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Protein arrays 

The progress in proteomic research giving insight into the organization of cellular 

networks has been enabled not only by the rapidly maturing mass spectrometry-

based methods (Cox and Mann, 2007), but also by protein arrays, which have 

progressed considerably over the past years (Liotta, et al., 2003). There are 

typically two types of protein arrays depending on whether the antigen is fixed or 

soluble, so-called forward phase protein arrays and reverse-phase protein arrays. 

In forward-phase arrays, also called antibody arrays, antibodies are arrayed on a 

slide and immobilized, and a cellular lysate is applied on top in order to detect the 

abundance of antigens in the lysate as reported by the antibodies on the array. In 

reverse-phase arrays, however, a large number of samples are arrayed and 

immobilized on a slide, and a specific antibody of interest is applied on top in 

order to detect the abundance of the antigen of interest in each of the samples. As 

opposed to forward-phase protein arrays, which are used to measure a multitude 

of antigens within a single sample, reverse-phase protein arrays measure a smaller 

number of antigens within a large number of samples (Liotta, et al., 2003). 

Reverse-phase protein arrays can uniquely quantify protein levels, post-

translational modifications and cleaved products from a limited amount of 

sample. As opposed to gene expression microarrays, which can only be used for 

cell samples, reverse-phase protein arrays have also been successfully applied for 

serum samples or body fluids for the identification of various biomarkers 
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(VanMeter, et al., 2007). The amenability of these arrays to high throughput 

formats makes them especially attractive for integrative approaches. 

 

1.2.2 Numerical methodology for multi-dimensional data analysis 

 

Accumulating body of biological data warrants automated computational 

techniques for their analysis, interpretation and model predictions. The prime goal 

of biological research is the understanding of biological systems. Although 

molecular biology has uncovered the multitude of biological facts, such as gene 

functions, protein properties and cellular processes, experimentation alone is not 

sufficient for understanding the complexity of biological systems. Due to the 

inherent complexity of biological systems, a combination of quantitative 

experimentation with proper computational tools is necessary to illuminate the 

principles underlying biology at genetic, molecular and cellular level. 

 

Computation is used to build mathematical models using the vast experimental 

data in order to make testable predictions as well as to gain more insight into the 

underlying biological system behavior. The most widely used application of 

computational biology is data mining, which aims at extracting hidden patterns 

with potential functional consequences from huge quantities of experimental data. 

Biological data mining usually involves the already existing analytical 
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methodology in other theoretical disciplines like computational chemistry, 

theoretical physics or computer science and most often contains a heavy statistical 

component. This sort of analyses is most useful for generating testable hypotheses 

about the nature of biological systems that are being analyzed.  

 

Some well-known examples to this class of techniques would include sequence 

analysis, protein structure prediction or gene finding. Perhaps the best known 

computational methodology in this class, however, would be microarray gene 

expression analysis techniques that are aimed at inferring gene regulatory 

networks out of high throughput microarray data (Allison, et al., 2006). Starting 

from techniques as simple as clustering (Eisen, et al., 1998), principal component 

analysis (Brown, et al., 2000) or linear modeling to more sophisticated 

methodology like probabilistic graphical modeling (Friedman, 2004), molecular 

concept maps (Tomlins, et al., 2007) or information-theoretic inference (Basso, et 

al., 2005), microarray gene expression analysis has evolved considerably during 

the past decade. Comprehensive microarray gene expression data have been used 

to reconstruct complex genetic regulatory networks and to extract systems-level 

properties of gene expression regulation under various conditions in yeast 

(Luscombe, et al., 2004; Segal, et al., 2003; Stuart, et al., 2003). Extensive 

analyses of microarray data from human cancer cell lines has also led to the 

identification of gene regulatory modules as well as gene expression networks 
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playing roles in cancer progression (Basso, et al., 2005; Segal, et al., 2005; 

Tomlins, et al., 2007). Recent extension of microarray technology to detect DNA 

copy number changes (CGH arrays) and single-nucleotide polymorphisms (SNP 

arrays) has enabled the analyses of human diseases yet at another dimension 

involving genetic alterations (Kallioniemi, 2008). 

 

Network biology 

It is becoming increasingly clear that biological functions are rarely a result of the 

action of a single molecule. Instead, biological behavior of a cell arises from the 

many interactions between its constituents like proteins, DNA, RNA, lipids and 

small molecules. Therefore, the study of the structure and dynamics of complex 

intracellular web of interactions between biological molecules is a key challenge 

for systems biology (Barabasi and Oltvai, 2004). 

 

Systems of interactions are represented by graphs in mathematics, where nodes 

(vertices) represent species, and edges (arcs) represent specific interactions 

between species. Although the term “network” traditionally only refers to a 

specific type of graphs, it has become a standard term for representing systems of 

complex interactions in various fields like physics, biology, computer science, 

social sciences and engineering (Wasserman and Faust, 1994). Bulk of work on 

the properties of complex networks and on data mining through networks has 
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been done under social network analysis. Many of the standard network 

characteristics like centrality, clustering, importance and network size and their 

functional implications have been laid out by social network analysts over the past 

few decades (Wasserman and Faust, 1994). With the recent advances in the study 

of complex networks towards uncovering the organizing principles that govern 

the formation and evolution of social and technological networks, we have gained 

a considerable understanding of general characteristics of complex networks. As 

the construction of biological networks became possible by the accumulation of 

high throughput biological interaction data, the already existing network analysis 

methodology from other disciplines was applied for the initial analyses of 

biological networks. Remarkably, it was found that many of the architectural 

features of biological networks are shared to a large degree by other complex 

systems, such as the Internet, food web and social networks (Barabasi and Oltvai, 

2004), thereby allowing for the network analysis expertise in other fields to be 

used in biology. 

 

Networks can be directed or undirected. In directed networks, the edges between 

nodes have directions thereby showing the direction of impact, whether it is a 

personal influence, signal flow or enzymatic catalysis. Undirected networks 

usually depict interactions that lack such a sense of directionality, such as a 

molecular interaction or a scientific collaboration. Networks can also be single 
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partite or bi-partite, depending on the nature of their nodes. Networks consisting 

of a single type of nodes are single-partite, and those with two types of nodes are 

bi-partite. Most of the current network theory is built on the study of simple 

networks with a single type of nodes and interactions. Although such networks, 

especially in case of biological networks, are far from faithfully encompassing the 

characteristics of most complex networks, much has been learnt from their studies 

in the past (Albert and Barabasi, 2002). In the case of biological networks, their 

integration with other data types has especially yielded useful insights into the 

organization and dynamics of biological networks. 

 

Perhaps one of the pioneering studies to integrate heterogeneous biological data 

into network analyses was that by Han et al, where they integrated gene 

expression information with the architectural characteristics in networks to 

uncover a highly specific dynamic organization pattern in the protein interaction 

network of yeast (Han, et al., 2004). Later, similar approaches with combining 

different datasets were taken to further analyze the complex dynamic properties of 

protein-protein interaction networks (Ihmels, et al., 2004; Kharchenko, et al., 

2005; Komurov and White, 2007) and to deduce sub-networks responsible for 

cancer progression (Boehm, et al., 2007; Chuang, et al., 2007; Rhodes, et al., 

2005; Tomlins, et al., 2007). Recently, more sophisticated approaches to 

biological network analysis have been taken by integrating a number of 
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heterogeneous biological data to reconstruct the behavior of simple bacterial 

organisms (Bonneau, et al., 2007; Ishii, et al., 2007). Further advancement of 

biological network theory will greatly aid in the quantitative modeling of 

biological systems. 

 

 

 

The work that will be presented in the following chapters deals with the two 

fundamental aspects of systems biology described above, namely development of 

computational analytical methodology for the analysis of cellular networks, and 

development of highly efficient integrated high throughput platform for the 

analysis of cellular processes. The computational methodology described in 

chapter 3 is aimed at detecting statistically significant patterns in the protein 

interaction networks, although it can be extended to other types of networks given 

the right input metrics. In chapter 4, I describe a pioneering study of integration of 

two high throughput platforms, a high throughput RNAi screen of the human 

kinome, and reverse-phase protein arrays for a large-scale detection of phospho-

signals within a signaling network. Future work to further integrate the 

computational framework with a multidimensional high throughput platform will 

no doubt be invaluable in terms of establishing standardized methodology for 

improved understanding of cellular systems.  
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CHAPTER 2 

Methods 

2.1 COMPUTATIONAL TOOLS FOR DECIPHERING PROTEIN 

NETWORK ORGANIZATION 

 

 

2.1.1. General methodology 

 

First, biological network metrics are constructed to measure a specific property of 

each node in the network. Biological network metrics (see below) are then used to 

assign a “dynamic profile” to each protein. Dynamic profile Di of a node xi based 

on n biological network metrics is defined as  

)}(),...,(),({ 21 iniii xfxfxfD =  

where fk corresponds to a kth metric (one of below). So a dynamic profile of a 

protein in the network is the set of its values as given by the biological network 

metrics. Next, proteins are clustered according to the similarity of their dynamic 

profiles into several distinct groups. The statistical significance of each group is 

tested by comparing the dynamic profiles of each group with that of randomly re-

wired networks. In detail: 
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1. A model to account for the dynamic profiles of the group i is created by 

calculating the means and standard deviations of each metric within the 

group, so that μi and σi correspond to the means and standard deviations of 

the metrics in the group i. 

2. The original network is permuted so that its node positions are randomly 

shuffled 

3. For each position in the randomized network, a dynamic profile is created 

4. The number of dynamic profiles in the randomized network with metrics 

corresponding to the interval (μi – σi, μi + σi) is calculated. 

After sufficiently large iterations (~100) of the above procedure, a null model for 

each group is created, which represents the chance of occurrence of the dynamic 

profile represented by the group in a randomly re-wired network. The statistical 

significance (P value) of the dynamic profile of the group is then given by the 

fraction of the observations in the null model that are greater or equal to the 

number of proteins corresponding to the interval (μi – σi, μi + σi) in the original 

network. The lower the P value the less likely that the dynamic profile is likely to 

occur by chance in the given network. 

 

2.1.2 Biological network metrics 
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First, we consider an |N| x |N| adjacency matrix A of the network with a node set 

N and an |N| x |N| expression correlation matrix C, constructed by calculating all 

pair-wise Pearson Correlation coefficients (PCC) of expression profiles of genes 

using our microarray compendium. A is such that Ai,j is 1 if proteins i and j 

interact, and 0 otherwise. C is such that Ci,j is the variance of the expression 

profile of gene i if i = j, otherwise it is the Pearson correlation coefficient of 

expression profiles of genes i and j. Variances of expression profiles of genes in 

the diagonal of C are normalized so that their values reflect their quantile in the 

whole distribution of variances (i.e. these values range from 0 to 1). 

 

The biological network metrics mentioned above can be divided into two 

categories; those that are node-based (i.e. inherent properties of a gene/protein 

that is not dependent on its connectivity properties in the network), and those that 

are network-based (i.e. properties that arise from the gene’s/protein’s properties 

that arise from its specific positioning in the network). 

 

Node-based metrics 

These can be any function that quantitatively describes a protein’s property, for 

example its domain composition or its size in kilo-Daltons. Since we are dealing 

with the dynamic behavior of the protein’s mRNA concentration in the cell, we 

defined two metrics that describe a protein’s inherent properties. 
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Expression Variance: Expression variance is a gene-specific property that 

describes overall tendency of a gene’s mRNA level to change in response to an 

external stimulus. This property can be useful in determining whether a gene’s 

activity is likely to be regulated at the mRNA level or not. We defined Expression 

Variance, or simply EV, to be the statistical variance of a gene’s expression levels 

across all the experimental conditions in our microarray compendium (see later), 

so that a low EV indicates that the gene has a static expression pattern and 

therefore its mRNA levels may not be regulated, while a high EV indicates a 

highly regulated expression pattern.  

iiii CEV ,==σ  

Dynamic degree:  Dynamic degree (yK) is a dynamic equivalent of node degree in 

social networks. It is defined as the sum of its absolute PCC values with all 

proteins in the network,  

∑
∈

=
Nj

jii CyK ,  

and reflects the number of proteins that it is co-regulated with. Formally, yK 

measures the size of the co-expression neighborhood of a protein, so that a protein 

with a high yK is probably a member of a gene expression program with many 

genes and therefore its expression may be tightly regulated, while a low yK would 

indicate that the protein’s expression is not coupled to the expressions of other 

proteins in the network. 
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Network-based metrics 

These metrics are the ones that are dependent on the local or global structural 

properties of the network. For the present moment, our network-based metrics 

take into account the local neighborhood structure of the protein. 

Neighborhood EV: Neighborhood EV (nEV) is the average EV in the immediate 

neighborhood of a protein and is defined as  

∑
∑
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Neighborhood EV reflects the expression variances of a protein’s neighbors in the 

network. We will show that nEV can be particularly informative about a protein’s 

location in the network; low nEV of proteins being a strong indicator that the 

protein is located within densely connected modules in the network (i.e. set of 

proteins dedicated to a specific cellular process) (see next chapter).  

Variance in neighborhood EV (vEV): This is variance of EV values in the 

neighborhood and is defined as: 

∑
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where nEVi is the neighborhood EV of gene i. This function describes how 

variable the neighborhood of a protein is in terms of their EV, so that a 
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neighborhood with high vEV would suggest that the neighborhood of the protein is 

composed of proteins with non-similar expression variances and may indicate that 

the protein is not located within a module.  

Neighborhood Pearson correlation coefficient (nPCC): This is the average 

expression correlation between neighbors of a protein and is defined as: 

2
,

,

n

C
nPCC nkj

kj

i

∑
∈=  

where n is the set of neighbors of protein i. nPCC is a dynamic equivalent of the 

clustering coefficient in social networks, and as opposed to connectivity 

coherence in social networks, it shows the extent of expression coherence in a 

protein’s neighborhood. High nPCC indicates that the neighbors of the protein are 

highly co-regulated and we will show that these proteins are located within a 

dynamically regulated module (dynamic module) whose protein constituents are 

highly co-expressed.  

2nd neighborhood Pearson Correlation Coefficient (nPCC2): This is the average 

nPCC among neighbors of a protein. nPCC2 reflects the extent of co-regulation in 

the second neighborhood of a protein. A protein with high nPCC2 but low nPCC 

is most likely to be located “just outside” of a dynamic module and interacting 

with one or more proteins inside the module.  

Variance in the neighborhood Pearson Correlation Coefficient (vPCC): This is 

variance in correlation between neighbors of a protein and is defined as: 
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PCC variance (vPCC), reflects the variation in the co-regulation of proteins in the 

neighborhood. Like vEV, vPCC shows how variable the neighborhood is, but unlike 

vEV, vPCC also reports how similar or dissimilar the expression profiles of the 

neighbors are. 

 
 

2.1.3 Ancillary materials and methods 

 

Datasets 

Microarray datasets: The microarray gene expression datasets from various 

conditions (Cell Cycle, Sporulation, Stress Response, Unfolded Protein Response 

and Diauxic Shift) were obtained from the Saccharomyces Genome Database 

(ftp://ftp.yeastgenome.org/yeast/). In order for the data to account for true fold 

differences in the expression of genes relative to the control (i.e. 0’ time point), 0’ 

time points were removed from the datasets, and the corresponding later time 

points were zero-transformed by subtracting the expression values at these time 

points from those at the 0 time point. 
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Protein-protein interaction dataset: Protein interaction network was compiled 

from studies of Krogan et al (2006) (high quality binary interaction data) and 

Bader et al (2004) (high quality interactions with a confidence cut-off of 0.65).  

Protein expression noise values: For protein expression noise values, we used the 

values derived by a large-scale single cell proteomic analysis of Newman et al 

(2006). They defined protein expression noise as coefficients of variation 

(standard deviation divided by mean expression) of protein expression between 

cells in a population. 

 

Neighborhood function homology 

Let Gi be the set of Gene Ontology (GO) terms assigned to protein i that has a 

node degree of k. Neighborhood function homology Fi of the protein i is defined 

as  

i

k
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⋅

∩
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where Gj is the set of GO terms assigned to the jth neighbor of protein i. Fi ranges 

from 0, where there are no shared GO terms between protein i and its neighbors, 

to 1, where all GO terms assigned to the protein i are also present in all of its 

neighbors. 
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In silico loss of function method for network connectivity analysis 

D is an |N| x |N| matrix of shortest path distances (see Appendix) between all node 

pairs in the network, where N is the set of nodes. Let Dx be the distance matrix of 

a network formed by the deletion of a set x  of nodes from the original 

network. A difference matrix  is such that  if and only if D

N⊆

kΔ jiji
k

ji DD ,,, −=Δ x
i.j ≤ 

k, and 0 otherwise. Value k denotes the distance of interest. For example if k = 2 

(our case), differences in distances between node pairs that are 1 node apart in the 

original network are considered, so that if > 0, we conclude that some node(s) 

in x are directly linking nodes i and j in the original network. If all distances are to 

be considered, k = ∞ should be chosen. 

k
ji,Δ

 

We consider a null model for matrix , by performing 20 random deletions of |x| 

number of proteins with node degrees similar to x.  is such that  

kΔ

k
nullΔ

ji
null

ji
k

jinull DD ,,,_ −=Δ , 

where  is the distance matrix of network formed by a random deletion of |x| 

number of nodes, of which there are 20. Normalized form of the difference matrix 

therefore becomes  

nullD

⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛

Δ

Δ
=Δ k

jinull

k
jik

jinorm
,_

,
,_ log  

 36



 

where each i, j position gives the amount of impact on the path length between 

nodes i and j relative to what would be expected by chance. 

 

Rich club coefficients 

Rich club coefficient (φ) is defined as the density of interactions between nodes 

having node degrees larger than a specific value,  
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where E>k is the number of edges between, and n>k is the number of, nodes that 

have node degrees higher than k. We define rich club coefficient within the group 

as  
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where ES is the number of edges between, and nS is the number of, nodes in group 

S. A null model is considered by randomly shuffling the positions of nodes at one 

side of the adjacency matrix 100 times (equivalent to random rewiring of each 

node’s connections), and calculating the corresponding rich club coefficients at 

each time. Normalization of the within-group rich club coefficients against null 

model is performed by  

null

nullS
S σ

μφ
φ

−
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where μnull is the mean and σnull is the standard deviation of the distribution of the 

null model. 

 

Network modularity  

First, a function similarity matrix was constructed by measuring all pair-wise 

function similarities between proteins in the network. The pair-wise function 

similarity between proteins i and j was defined as 

ji

ji
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S

∪

∩
=,  

where Gi and Gj are the sets of GO terms assigned to proteins i and j, respectively. 

For a network of n proteins, the function similarity matrix S would be a matrix of 

dimensions n x n. The network modularity M is calculated by summing the pair-

wise function similarities between every interacting pair of proteins in this 

network and dividing by the total number of interactions in the same network.  
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where A is the adjacency matrix of the network and has the same dimensions as S. 

A is boolean, Ai,j being 1 only if proteins i and j interact, and 0 otherwise. 

 

Partial correlation analysis 
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 Linear correlation between two variables a and b is given by  
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where cov(a,b) is covariance between a and b, and var(a) is variance of a. Partial 

correlation between a and b while controlling for a variable c is given by  

)1)(1( 2
~

2
~

~~~
,~

cbca

cbcaba
cba

rr

rrr
r

−−

−
=

 39



 

 

2.2. HIGH THROUGHPUT SCREEN FOR STUDYING SIGNAL 

TRANSDUCTION 

2.2.1 General scheme 

 

The general format of our screen is given in Figure 2.1. Briefly, cells are 

transfected in 96-well plates and after 3 days of incubation they are stimulated 

and lysed. Lysates are printed onto nitrocellulose-coated slides and blotted with 

pERK, pSTAT3 and Actin antibodies, imaged and analyzed. 

 

2.2.2 High throughput reverse transfection 

 

Reverse Transfection: For transfections, we used the kinome siRNA library from 

Dharmacon, which consists of 10 96-well plates. Each well in this library contains 

a pool of 4 oligos targeting one specific gene and the kinome library targets a total 

of 672 distinct genes in the human kinome. In each well of our 96-well assay 

plates, 5 microliters of 2 micromolar siRNA (10 picomoles) from the library 

plates was mixed with 30 microliters of the Dharmacon Cell Culture Reagent 

(DCCR) and incubated for 5 minutes to make our siRNA solution. As a 

transfection reagent, we used DharmaFECT 3 transfection reagent (DF3) from 

Dharmacon. For each well, 0.3 microlitters of DF3 was diluted in 10 microliters 
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of DCCR and mixed with the siRNA solution prepared earlier. After letting the 

mixture sit for 30 minutes, 160 microliters of the cell solution is added. The cell 

solution is prepared by resuspending cells in DMEM supplemented with 10%  

 

 

 

 

Figure 2.1. General scheme of our screen. 

 

Fetal Bovine Serum (no antibiotics) to make the final concentration of 50,000 

cells per milliliter. Therefore, each well was seeded with 8,000 cells during the 

transfection. Each plate was transfected in triplicate for biological reproducibility. 

 

For our primary screen, preparation of siRNA solutions was performed with a 

high throughput liquid handling platform Biomek FX robotic liquid handler 
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(Beckman Coulter), while all the other high throughput dispensions were 

performed with TiterTek Multidrop.  

Stimulation and lysis: After 3 days of incubation, 50 microliters of 250 ng/ml 

EGF (Sigma) in DMEM (final concentration of 50 ng/ml EGF) is added into each 

well and incubated for 5 minutes. Then, the cell media is dumped and 100 

microliters of the 2% SDS lysis buffer (2% SDS, 5% Glycerol, 1% beta-mercapto 

ethanol, 68 mM Tris pH 6.8) is added into each well. Plates are immediately taken 

into -80C until the spotting procedure. 

 

2.2.3 Reverse-phase protein microarrays 

 

Plate pre-processing: To facilitate lysis and eliminate viscosity, plates are 

incubated at 80C for 45 minutes and briefly spinned to collect the drops. Lysates 

are then filtered using 96-well 0.7 micron filter plates. 

Slide printing: For the primary screen, we used nitrocellulose-coated FAST slides 

from Whattman. Printing was performed in SpotArray 24 (PerkinElmer) using 4 

pins. Slides were spotted 9 plates per slide, each plate in single column, each well 

was spotted in triplicate. In total, per each slide, we had 9 x 96 x 3 = 2592 spots. 

Slides are dried for 2 hours at room temperature or at 4C overnight before 

processing.  
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Reverse-phase protein arrays: After slides are dried, they are incubated in 1x Re-

blot Plus Mild (Chemicon) for 7 minutes, and washed 3 times in 1x TBST (Dako 

Cytomation). Then, slides are blocked in SEA BLOCK (Pierce) for 2 hours at 

room temperature or at 4C overnight. The next incubation steps are carried in the 

following order: 5 minutes in 0.03% Hydrogen Peroxide (Dako Cytomation), 10 

minutes in Avidin block (Dako Cytomation), 10 minutes in Biotin block (Dako 

Cytomation), 15 minutes in Protein block (Dako Cytomation), 45 minutes in 

primary antibody (pERK (Cell signaling), pSTAT3 (Cell signaling), Actin 

(Sigma)) diluted 1:1000 in Antibody diluent (Dako Cytomation), 20 minutes in 

respective secondary antibody at 1:5000 in Antibody diluent (Dako Cytomation), 

15 minutes Streptavidin complex (Dako Cytomation, prepared exactly as 

described in the kit manual), 15 minutes Amplification Reagent (Dako 

Cytomation), 15 minutes Streptavidin-conjugated 655 nm Quantum-dots 

(Invitrogen) after which slides are washed in PBS. Between each step above, 

slides were washed 3 times in TBS supplemented with 0.1% Tween for 5 minutes 

each. Finally, slides are briefly rinsed in milli-Q water and dried by 

centrifugation.  

Imaging: Slides are scanned with a 480nm laser in ProScanArray microarray 

scanner (PerkinElmer) and quantified using ProScanArray Express software 

(PerkinElmer). 

 43



 

Data processing: First, the triplicate spots are averaged for each well. 

Normalization of the data points are carried out by dividing each data point (i.e. 

averaged triplicate spot) by the average of the data points 3 above and 3 below on 

the slide (see Figure 4.3). Then, the biological triplicates are averaged for each 

gene. Those genes with discordant values across the 3 replicates were discarded 

from further analyses.  

 

2.2.4 Ancillary materials and methods 

 

Cell culture: A431 cells are grown in DMEM supplemented with 10% Fetal 

Bovine Serum and 1x Antibiotic/antimycotic, at 37C, 5% CO2.  

Tools for computational network analysis: The protein-protein interaction 

network of human proteins was obtained from HPRD, MINT, BIND, Entrez-Gene 

and INTACT. Cancer mutation data was obtained from COSMIC and from 

Vogelstein et al. Enrichment analyses were performed using the hypergeometric 

distribution equation. 

Network connectivity analysis of hits: Each protein in the network is assigned a p-

value for their enrichment of the hits using hypergeometric distribution. A cut-off 

p-value is determined by Benjamini-Hochberg transformation of the p-values at q 

= 0.01. Initially, the target network only contains hits, then other proteins are 

added into this network one by one starting with the lowest p-value. At each step, 
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the new network is evaluated based on whether any previously disconnected 

components in the network from the previous step have been connected to each 

other by the addition of the protein. If addition of the protein connects any new 

components to each other the protein is retained in the network, otherwise not. 

This is determined by calculating the all-pair shortest distance matrix of the 

network at each run, and subtracting it from the distance matrix of the network 

from the previous run. If the sum of the difference is greater than zero, it is an 

indication that some previously disconnected nodes have been connected to each 

other by the addition of the new node. This continues till the specified p-value at 

q=0.01 is reached. The resultant network contains hits and proteins with q-values 

smaller than 0.01. 
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CHAPTER 3 

Fine-scale dissection of organizational principles in the protein 

interaction networks 

 

3.1 INTRODUCTION 

 

3.1.1 Problems with the conventional methodology 

 

Despite major advancements in the development of analytical techniques for the 

analysis of networks in graph theory and statistical physics, there is no established 

standard methodology for the analysis of protein networks. This is largely due to 

the incredible complexity of protein interaction networks that makes their study 

using conventional methodology less useful when it comes to extracting 

biologically meaningful information from these networks. Networks studied in 

physics are usually relatively simple both in terms of the types of nodes and the 

types of connections between nodes (typical networks are composed of nodes and 

edges between these nodes), whereas in biological networks, each protein and 

interaction between proteins possess specific properties that distinguish them 

from other proteins/interactions in the network. This highly heterogeneous nature 

of the composition of protein networks prevents their representations and analyses 
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within a conventional framework where proteins are denoted by nodes and their 

interactions are depicted by edges. For example, if a kinase and a scaffolding 

protein are represented by the same type of node in the network, an ambiguity 

will arise regarding their roles in their network localities as the biological 

significance of interactions of a kinase can be entirely different from that of a 

scaffolding protein. Connections between nodes are not of trivial nature either, 

and can be highly heterogeneous in their biological functions. A connection 

between two proteins can mean a catalytic reaction, formation of an active 

complex, formation of an inactive complex, scaffolding, tethering…; each having 

a distinct biological function. As if this is not complicated enough, both the 

protein properties and the connection properties are highly dynamic and can 

depend on the specific biological context. For example, a given protein can 

assume several functional states depending on, just to name a few, its subcellular 

localization, post-translational modifications or its expression level. Similarly, a 

connection between two proteins can highly depend on factors like local ion 

concentrations or presence of scaffolding proteins. Conventional network analysis 

methodology developed for the analysis of social networks is far from 

encompassing the above-mentioned aspects of protein interaction networks.  

 

Nevertheless, a significant effort has been spent in the past on characterizing 

complex properties of biological networks through analyses of connectivity 
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patterns of gene and protein networks, some even resulting in major observations 

regarding the structure-function relationships in these networks (Albert, et al., 

2000; Ihmels, 2002; Jeong, et al., 2001; Jeong, et al., 2000; Klemm and 

Bornholdt, 2005; Maslov and Sneppen, 2002; Milo, 2002; Yu, et al., 2007). 

Perhaps the most prominent finding is the observation that protein interaction 

networks display a type of node degree (i.e. number of interactions) distribution 

where the network is dominated by few proteins with a high number of 

connections whereas the majority of proteins have low node degrees (Jeong, et al., 

2001; Jeong, et al., 2000). This so-called “scale-free” distribution of node degrees 

has been implemented in various cell biological phenomena like robustness and 

lethality in single-gene knock-outs (Jeong, et al., 2001; Jeong, et al., 2000). In an 

attempt to address more complex characteristics of protein networks, Han et al 

have incorporated gene expression data into their analyses of protein interaction 

networks and have found intriguing relationships regarding specific positioning of 

proteins in the network and their co-regulation with proteins in their network 

neighborhood (Han, et al., 2004). However, despite providing elegant hypotheses 

regarding some of the important cell biological phenomena, most of these studies 

have been met with criticisms in the field (Batada, et al., 2006; Batada, et al., 

2007; Colizza, et al., 2006; Komurov and White, 2007; Nunes Amaral and 

Guimera, 2006; Przulj, et al., 2004). It has been suggested that the distribution of 

node degrees in a cellular protein interaction network may not be scale-free 
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(Przulj, et al., 2004), and moreover, centrality in biological networks may not at 

all correlate with essentiality in terms of cellular survival (Komurov and White, 

2007). Similarly, the type of network organization suggested by Han et al in their 

seminal work has been suggested to be an artifact of their particular methodology 

and/or datasets (Batada, et al., 2006; Batada, et al., 2007). This controversy 

regarding global properties of protein interaction networks underlines the 

complexity of biological networks and the need for more rigorous and more 

comprehensive approaches towards analyzing biological networks. In our opinion, 

sensitivity of the observations to data handling and also on slight variations in the 

methodology is a consequence of an inappropriately focused approach, and that a 

more comprehensive rigorous approach would be robust to these variations in 

terms of the results. Our method defining central network characteristics stems 

from this need of a multidimensional analysis and, importantly, it can detect 

biologically significant patterns using multiple available datasets where other 

approaches fail. 

 

3.1.2 Our Methodology 

 

Our methodology is flexible enough to incorporate any desired number of data 

dimensions in the form of biological metrics (see Methods). Biological metrics 

are functions describing a specific property of each protein in the protein 
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interaction network, like expression variance, expression similarity with its 

neighbors, etc… It can also be a function describing the protein’s molecular 

properties or its molecular relationship with its interactors. As a proof of principle 

analysis, we incorporated mRNA expression information together with the protein 

interaction data for an initial test of our method. In our method, proteins are 

assigned a profile based on the metrics, and the significance of each profile is 

evaluated using a large number of randomized instances of the underlying protein 

interaction network. Significance profiles are then identified and analyzed in more 

detail. 

 

Derivation of network metrics: The structure of the protein interaction network 

can be defined by its adjacency matrix, while the dynamic properties of individual 

proteins can be captured by an mRNA expression correlation matrix created using 

a compendium of microarray data (see previous chapter). In order to account for 

the dynamic properties of proteins as well as their dynamic relationship with their 

neighbors in the network, we used the network architectural and expression 

information of proteins from these two matrices to derive 9 biological network 

metrics that describe the dynamic behavior of a protein and of its neighborhood in 

the network (see previous chapter). Briefly, we defined expression variance (EV) 

in order to capture the variability of a protein’s expression across multiple 

conditions, neighborhood EV in order to describe the neighborhood of a protein in 
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terms of their EV,  neighborhood EV variance (vEV) to account for variability of 

EVs of neighbors of a protein, average interactor Pearson correlation coefficient 

(avPCC) to describe how a protein is co-regulated with its neighbors, 

neighborhood PCC (nPCC) to ask if the neighbors of a protein are co-expressed 

with each other, nPCC2 to describe co-expression of proteins in the second 

neighborhood of a protein,  neighborhood PCC variance (vPCC) to account for 

variability of expression profiles of proteins in the neighborhood, dynamic degree 

(yK) to ask if a protein is co-regulated with other proteins in the network, and 

neighborhood yK (nyK) to account for average yK in the neighborhood. These 

metrics are explained in detail in the Methods section of the previous chapter. 

 

 

3.2 REVEALING STATIC AND DYNAMIC MODULES 

 

3.2.1 Initial clustering of dynamic profiles 

 

First, a dynamic profile (see Methods) was assigned to each protein in the 

network based on these metrics. Then, we performed a hierarchical clustering of 

proteins in order to identify distinct classes of dynamic profiles in the network 

and to test if they represent specific functions of proteins in the network. We only 
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evaluated highly connected proteins (i.e. those that have >6 interaction partners, 

which is the upper 30th percentile of the node degree distribution), as they  

 

Figure 3.1. Dissection of proteins into dynamical classes. Hierarchical clustering of proteins by their dynamic profiles 
(upper panel) and the interaction matrix showing the protein-protein interaction patterns between different dynamic profiles 
(lower panel). In order to make clustering possible, we normalized each row to have a mean of 0 and a variance of 1. For 
the lower panel, proteins were binned into 114 bins with the exact ordering as in the clustering in the upper panel. Each 
square in the matrix represents the number of interactions between respective bins. 
 
 

produced best clustering with these values when compared to the clustering 

performed by proteins having lower node degrees (not shown). From the 

graphical representation of the clustering, it is possible to dissect three main 

groups of proteins (Fig. 3.1). Group S1 is characterized by the highest nPCC, 

avPCC, nEV and EV values, while S2 has the lowest values in these categories. 
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An obvious distinguishing feature of S1 and S2 from the group S3 is their lower 

vEV values, indicating that S1 and S2 proteins are located in neighborhoods with 

homogeneous expression profiles. Despite having higher variation in terms of 

most values, S3 proteins consistently have higher vEV values, suggesting that these 

proteins are located within highly variable neighborhoods. Although the dynamic 

profiles of S3 as a whole are likely to be found in a randomized network, the 

profiles of S1 and S2 are significantly overrepresented in our original network as 

compared with randomly rewired networks, indicating that these groups represent 

biologically significant populations of proteins. 

 

In order to get a first impression about the connectivity profiles of these groups in 

the network, we examined the protein-protein interactions of these groups within 

and between each other. For this purpose, we binned the proteins into 114 bins of 

10 proteins, respecting the order of proteins in the clustering in Figure 1a, and 

calculated the number of interactions between every bin pair. Strikingly, we see a 

significant interaction density within the S1 and S2 groups, but not in S3 or 

between S1 and S2, immediately suggesting the existence of densely connected 

clusters in these groups (Figure 3.1, lower panel). Indeed, a network plot of these 

groups reveals densely connected clusters of high and low EVs respectively 

(Figure 3.1), indicating that the groups S1 and S2 are mainly composed of highly 
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co-regulated dynamic and non-variant static densely connected clusters of 

proteins.  

 

Densely connected clusters are likely to represent specialized modules in the cell 

(Spirin and Mirny, 2003). Indeed, S1 proteins have significantly higher nPCC and 

nPCC2 values, which indicate that S1 proteins represent dynamically expressed 

modules. In addition, these proteins have higher nEV and EV values, pointing to 

their highly dynamic expression pattern. S2 proteins, on the other hand, have the 

lowest EV, nEV, vEV, vPCC, nPCC and nPCC2 values, which strongly suggests that 

these proteins are located in neighborhoods with non-variant expression patterns. 

We hypothesized that these two groups of densely connected proteins may 

represent two distinct types of biologically significant functional modules and 

therefore performed further analysis on them. 

 

3.2.2  Functional specialization of static and dynamic neighborhoods 

 

The current notion of functional modules predicts that a set of interacting proteins 

that are highly co-expressed is likely to be specialized to a specific process, and 

some studies suggest that the protein interaction network is enriched for 

interactions between co-regulated proteins (Ge, et al., 2001; Ihmels, et al., 2004). 

We show that sets of interacting static proteins, which are supposedly 
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constitutively present in the cell but do not have high statistical correlation in their 

expressions, also may represent specialized functional modules, and that they are 

at least as abundant in the cell as the sets of interacting dynamic proteins that are 

highly co-expressed. In order to test this hypothesis, a simple function that 

compares a protein’s Gene Ontology (Ashburner, et al., 2000) (GO) annotations 

with that of its neighbors, was derived to quantitate the functional specialization 

of a protein’s neighborhood. This function, “neighborhood function homology” 

(see Methods), generates values in the range from 0 (no shared GO terms between 

a protein and its neighbors) to 1 (all of GO terms assigned to a protein are shared 

with its neighbors).  

 

Neighborhood function homology of static proteins (EV < 0.25, i.e. lower quartile 

of genomic distribution) in the network negatively correlates with their 

neighborhood EV with a high significance (Spearman’s ρ = -0.41, p = 1.8x10-18), 

suggesting that static proteins interacting with other static proteins are found in 

functionally specialized neighborhoods. On the other hand, neighborhood 

function homology of dynamic proteins (EV > 0.75, higher quartile of EV 

distribution) positively correlates with their neighborhood EV (Spearman’s ρ = 

0.40, p = 1.5x10-12). This indicates that dynamic proteins, in contrast to static 

proteins, are more functionally homologous to their neighbors when they are in 

dynamic neighborhoods. Neighborhood function homology of dynamic proteins 
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correlates even more significantly with their average interactor Pearson 

Correlation Coefficients (avPCC) (Spearman’s ρ = 0.57, p = 8x10-27), a measure 

of how well a protein is co-expressed with its neighbors (Han, et al., 2004), (see 

Methods). Together, these observations suggest that network neighborhoods 

composed of constitutively expressed proteins (static neighborhoods) are highly 

specialized modules, much like the neighborhoods of highly co-expressed 

proteins (dynamic neighborhoods). 

 

3.2.3 Identification of static and dynamic modules and their functions 

 

Past studies have measured statistical correlation of gene expression in order to 

assign proteins to specific modules and also to assign new functions to previously 

uncharacterized proteins (Ihmels, et al., 2002; Segal, et al., 2003; Segal, et al., 

2003). Since static neighborhoods also seem to be functionally coherent, it should 

be possible to assign proteins to specific modules by the virtue of their 

associations with static neighborhoods. To this end, all static neighborhoods in 

our network were identified by compiling all the interactions between static 

proteins in the network (static network, 491 proteins connected by 897 

interactions). The static network consists of 82 distinct disconnected sub-networks 

 56



 

ranging in size from 2 to 86 proteins (see Table 3.11).  The functional annotations 

associated with these static sub-networks appear to be functionally coherent, 

representing various functions including mRNA transcription and splicing, vesicle 

transport and cell cycle regulation (see Table 3.1). This apparent functional 

coherence suggests that the static network is enriched for functional modules. In 

order to test the significance of modular composition of the static network and to 

see if it is possible to achieve a similar level of functional coherence in a network 

generated by random draws of interactions, a network modularity metric was 

defined to measure functional specialization of the interactions in a network (see 

Methods). The static network shows significantly higher network modularity than 

what would be expected by random draws of interactions from the large network 

(Figure 3.2), suggesting that the association of functionally coherent sets of 

proteins with each other within static neighborhoods reflects a biological 

phenomenon. We compared the static network modularity with that of the 

network formed by highly co-expressed proteins, which is expected to be enriched 

for functional modules, in agreement with the previous studies showing 

modularity of co-expressed proteins (Han, et al., 2004; Segal, et al., 2003). We 

identified the dynamic network by taking all interacting pairs of proteins that also 

have pair-wise Pearson correlation coefficients of at least 0.65 (383 proteins 

connected by 777 interactions). This dynamic network, therefore, contains 
                                                 
1 For Tables 3.1, 3.2 and 3.3 see 
http://www.nature.com/msb/journal/v3/n1/suppinfo/msb4100149_S1.html 
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interactions only between proteins that are also highly transcriptionally co-

regulated. The dynamic network consists of 77 sub-networks mainly composed of 

dynamic proteins (not shown) and, as expected from previous publications, the 

dynamic sub-networks are highly functionally coherent (Table 3.2). The dynamic 

network also shows a significantly high network modularity that is comparable to  

 

Figure 3.2. Functional specialization in the static and dynamic networks. Comparison of network modularity in the static 
and dynamic networks with that of 100 networks formed by random draws of interactions from the original network. The 
plot shows the distributions of network modularity values for random draws of 897 (left, for comparison with the static 
network) and 777 (right, for comparison with the dynamic network) protein-protein interactions out of the original 
network. Arrows show the actual network modularity values of the static and dynamic networks (P < 0.01 in both cases). 
 

 

that of the static network (Figure 3.2). This indicates that both networks are 

enriched for functional modules. The fact that only 15 proteins and 6 interactions 

are common to both networks indicates that the modules in the two networks are 

distinct, and that the high modularity of the static network is not a consequence of 

a significant overlap with the dynamic network. These observations argue that the 

static protein neighborhoods represent functional modules, and it should be 
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possible to assign proteins to functional modules by virtue of their association 

with static proteins. 

 

In order to see if either network is specifically enriched for certain cellular 

functions, we performed enrichment analyses of the two networks for over-

representations of MIPS functional categories (Mewes, et al., 2004). Interestingly, 

the most significant relative enrichment is seen in the functional categories related 

to mRNA transcription and processing (static network) and rRNA transcription 

and processing as well as translation (dynamic network) (Table 3.3). The static 

network is enriched for general mRNA transcription (RNA Polymerase II 

holoenzyme complexes), splicing (the pre-mRNA splicing complex) and 

processing (CPF and CCR4-NOT) as well as co-regulator complexes like the 

chromatin remodeling complexes (SWI/SNF and INO80), histone acetyl-

transferase complexes (SAGA and NuA4), histone methylase (COMPASS) as 

well as mRNA nuclear export (TREX) (see Table 3.1). The dynamic network, in 

addition to RNA Polymerase I and III components, contains modules like the SSU 

processome, involved in rRNA processing, and translation initiation factor 

complexes (see Table 3.2), which is consistent with studies reporting extensive 

regulation of these modules under various stress conditions (Gasch, et al., 2000; 

Warner, 1999). In addition, the dynamic network contains most of the 
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proteasomal proteins, while the static network also contains many of the 

mitochondrial ribosomal proteins. 

 

There are many modules in the two networks that also seem to perform similar 

functions. For example, components of the mitotic cohesin complex, which holds 

sister chromatids together, and the septin ring complex, which is required for 

cytokinesis, are in the dynamic network (sub-networks 63 and 55, Table 3.2) 

while the DASH complex, which plays a role in chromosome segregation, and the 

COMA complex, which is involved in the kinetochore assembly, are in the static 

network (sub-networks 51 and 58, Table 3.1). Components of the Anaphase 

Promoting Complex (APC) are also static (sub-network 4), as also reported 

previously (de Lichtenberg, et al., 2005). These complexes are all involved in the 

final stages of cell division, yet their regulation is markedly different. Another 

potentially interesting correlation relates to vesicle trafficking, where proteins 

associated with clathrin-coated vesicles (AP-1 and AP-3 complex proteins) seem 

to be static (sub-networks 9 and 69), while those associated with coatomer 

protein-coated vesicles that are involved in vesicle transport between Golgi and 

ER (COPI and COPII complex proteins) are dynamic (sub-networks 10, 45 and 

76). The dynamic expression pattern of the latter may stem from the involvement 

of the early secretory pathway in various stress responses like unfolded protein 

response or osmotic stress (Higashio and Kohno, 2002; Lee and Linstedt, 1999; 
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Sato, et al., 2002), whereas clathrin-coated vesicles may play role in constitutive 

transport. These examples suggest that although some functions in the cell can be 

classified as static or dynamic (like mRNA and rRNA synthesis, respectively), 

many others are carried out through dynamic interplay between distinct static and 

dynamic modules. A closer analysis of expression dynamics of functional 

modules under various conditions may provide an in-depth insight into the 

regulation of cellular behavior by transcriptional programs. 

 

In their study, Han et al (2004) defined hubs that are highly co-expressed with 

their neighbors as “party” hubs, which are modular, and those that are not co-

expressed with their neighbors as “date” hubs, which they reported as central. 

However, the set of date hubs also contains hubs that are found within static 

modules (where there is also no statistical correlation of expression among 

neighbors). Therefore based on our findings, we propose that static hubs 

interacting with static proteins within static modules be excluded from date hubs 

and, in analogy to the party-date hub terminology, be named “family” hubs, as 

they are always present in the network and interact with their neighbors 

constitutively. Therefore, family hubs and party hubs form static and dynamic 

modules, respectively, while date hubs (family hubs excluded) organize the 

network. 
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3.2.4 Protein expression noise and evolutionary rate in the static and 

dynamic networks 

 

Based on the classification of hubs by Han et al (2004), it was suggested that 

centrally positioned hubs in the network evolve faster than hubs in modules, and 

that modularity imposes a constraint on the evolvability of proteins, suggesting an 

evolutionary scenario where protein networks evolve mainly by modifying their 

central coordinators (Fraser, 2005). We examined this hypothesis in the context of 

our modified hub classification, and also find that party hubs evolve at a 

significantly slower rate than other hubs (Figure 3.3a). However, surprisingly, 

family hubs do not evolve slower than date hubs (Figure 3.3a).  By extrapolation, 

this suggests that hubs present in dynamic modules are evolutionarily constrained, 

while those present in static modules are not. Accordingly, proteins in the 

dynamic network have significantly lower evolutionary rates than proteins in the 

static network (p < 1x10-16, Wilcoxon test), and there is a significant negative 

correlation between EV values of proteins and their rates of evolution 

(Spearman’s ρ = -0.21, p = 4.5x10-15). These results suggest that proteins in static 

modules have more freedom of variation than proteins within dynamic modules.  

 

Less evolutionary constraint of static modules may indicate that proteins in these 

modules are largely dispensable for the module function due to compensation in 
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the network. A prediction of this hypothesis is that proteins in static modules are 

less likely to be essential for cell survival, perhaps due to their functional 

redundancy. Indeed, proteins in dynamic modules are almost twice as likely to be 

essential as proteins in static modules (Figure 3.3b), which is also true for party 

hubs when compared to family hubs (not shown), indicating that the cell is highly 

tolerant of the loss of proteins in static modules, a property which may allow them 

to evolve at a faster rate than proteins in dynamic modules.  

 

 

 

Figure 3.3. Evolutionary rate and expression noise of the static and dynamic modules. Evolutionary rates of yeast proteins 
derived by Hirsh et al (2005) (Hirsh, et al., 2005) were used. A) Boxplot of evolutionary rates of family, party and date 
hubs. Family hubs are static hubs with neighborhood EVs of <0.3, party hubs are hubs with avPCC > 0.45, and date hubs 
are those with neighborhood EV>0.3 and avPCC < 0.45. B) Fractions of proteins in the static and dynamic networks whose 
gene deletion is lethal to yeast. C) Boxplot of protein expression noise in the different hub classes. 
 
 

The significant correlation of protein EVs with their evolutionary rates suggest 

that the static network may be a buffer of evolutionary variations in the protein 

interaction network, granting static proteins a role as evolutionary modifiers of 
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cell behavior. We reasoned that if the cell is more tolerant of genetic variations in 

the components of static modules, then the cell may also be more tolerant of 

variations in the expression of these proteins within a cell population. Expression 

variation of proteins between cells within a population, or protein expression 

noise, is a major factor contributing to the variations of cell behavior among cells 

within a cell population (Blake, et al., 2003; Raser and O'Shea, 2005). Therefore, 

we compared the expression noise of proteins in static modules with that of 

proteins in dynamic modules. Using the coefficients of variation of protein 

expression levels (CV values) within a clonal cell population derived by a recent 

study (Newman, et al., 2006), we find that proteins in dynamic modules are 

significantly less noisy in their expression when compared to proteins in static 

modules (p = 3x10-15, Wilcoxon test), indicating that the expression levels of 

static proteins are the ones that show most cell-to-cell variations within a 

population. Accordingly, family hubs have significantly higher CV values than 

other hubs (Figure 3.3c). It is surprising to find that proteins with least variable 

mRNA expression patterns are most variable between cells and during evolution. 

These observations argue that static components of the eukaryotic protein 

interaction network are a source of robustness in cell regulatory networks that 

allows for evolutionary as well as populational variations in cell behavior (see 

Discussion). 
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3.2.5 Expression levels of static and dynamic modules 

 

Expression variance of genes positively correlates with their mRNA abundance 

(Spearman’s ρ = 0.21, p < 1x10-16), and accordingly, proteins in static modules 

are expressed at a significantly lower level than those in dynamic modules 

(Wilcoxon test, p < 1x10-16). This may suggest that the correlation of EV with the 

organizational layout in the protein interaction network may be a reflection of the 

effect of expression levels of proteins rather than their EV. The expression levels 

of proteins does seem to contribute to the protein network layout, as there is a 

high positive correlation between mRNA abundance values of hub proteins and 

that of their neighbors in the network (i.e. average neighborhood mRNA 

abundance, Spearman’s ρ = 0.43), although the correlation is significantly less 

than that between EV and neighborhood EV (Spearman’s ρ= 0.61). This 

correlation is not surprising given that the expression levels of proteins 

participating in the same protein complex are generally similar (Papp, et al., 

2003). The relatively low correlation between EV and mRNA abundance and the 

fact that the correlation of mRNA abundance between neighboring proteins is less 

than that of EV suggests that our observations with EV above are not an artifact 

of the underlying mRNA abundance values. In order to rule out the possibility 

that our observations with EV values of proteins presented above are an artifact of 

their expression levels, we performed partial correlation analyses (see Methods) 
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between EV, neighborhood EV, neighborhood function homology and mRNA 

abundance values of proteins. Partial correlation between EV and neighborhood 

EV while controlling for mRNA abundance is almost as high (rEV~neigh.EV, mRNA = 

0.66) as their normal correlation (rEV~neigh.EV = 0.67). Similarly, partial correlation 

between neighborhood function homologies of static proteins with their 

neighborhood EV while controlling for mRNA abundance or average 

neighborhood mRNA abundance is almost as high as their normal correlations 

(not shown). These observations argue that the observed effects of EV on the 

organizational layout of the protein interaction network are not an artifact of 

expression levels of proteins, and that proteins segregate into different modules 

according to their expression variances. 

 

 

3.3 FUNCTIONAL ANALYSIS OF PROTEIN NETWORK 

ORGANIZATION 

 

 

Of S1, S2 and S3, dynamic profiles of S3 proteins are the most disparate. The 

only common characteristic of proteins in this group seems to be the almost 

invariant high vEV or vPCC values, which excludes these proteins from modules, 

where expression properties of proteins are similar. The disparity of the dynamic 
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profiles of these proteins may stem from the versatility of their functions, as they 

are located more centrally in the network (as judged from their betweenness 

centrality scores, not shown) and therefore may have functions in multiple 

processes. However, a close analysis of the clusters generated by hierarchical 

clustering of S3 reveals subgroups of proteins with distinct dynamic profiles (see 

below). We hypothesized that these different dynamic profiles may correspond to 

different functional classes of S3 proteins and therefore analyzed them in more 

depth. 

 

3.3.1 Dynamic classes have distinct roles in network connectivity 

 

In order to analyze if the dynamic profiles have distinct roles in network 

connectivity, we separated S1 and S3 groups into more subgroups based on their 

dynamic profiles. These classes are distinguished from each other by one or more 

characteristics that give insights about the dynamic nature of their neighborhood 

and suggest specific functions that these proteins may be performing in their 

respective localities in the network. 

 

Clustering of S1 into 3 subgroups 

In order to get a higher resolution clustering of proteins according to their 

dynamic profiles, we performed further clustering of each of the groups. Group 
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S2 did not show any further significant clustering (not shown), but group S1 has 

three subgroups distinguished by their EV, vEV and nEV values (Figure 3.4a). 

Based on their network plots and interaction profiles in Figure 3.1, subgroups 

S1.1 and S1.3 seem to be distinct densely connected highly co-expressed 

modules; one subgroup with lower EV and the other with higher EV values (see 

Figure 3.4a). Interestingly, the higher EV subgroup is almost exclusively 

composed of modules involved in rRNA synthesis/processing and protein 

translation, while those with moderate EV values are mainly proteasomal proteins 

as well as some other small dynamic modules (not shown). This indicates that 

genes involved in ribosome biogenesis and protein synthesis constitute a distinct 

subclass of modules that are more robustly regulated when compared to other 

dynamically expressed modules. These genes have been shown to be extensively 

regulated as a cellular energy-saving mechanism during stress, which probably 

contributes to their high EV when compared to genes in other dynamically 

expressed modules. The S1.2 proteins have more variable neighborhoods as 

evidenced by their high vEV and vPCC and low nPCC, indicating they are not found 

within modules like proteins in S1.1 and S1.3. An interaction pattern of the S1 

proteins with each other shows a significant interaction density among proteins of 

S1.1 and S1.2 (Figure 3.4b), indicating that S1.2 proteins are preferentially 

interacting with S1.1 proteins, and therefore may be located outside the modules 
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formed by S1.1 proteins. This may also suggest a function for S1.2 proteins as 

coordinators of S1.1 proteins in the network (see below). 

 

 

Figure 3.4. Characterization of S1. A) Hierarchical clustering of S1 into 3 subgroups. B) Interaction matrix of subgroups 
in S1. 
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Figure 3.5. Dynamic profiles of each S3 subgroup. Y axes represent normalized values of each metric (see Methods). 
 

 

 

Clustering of S3 into 7 subgroups 

Detailed dynamic profiles of each subgroup are seen in Figure 3.5. 

 

S3.1: This subgroup has most of its values low just like S2, with the exception 

that it has relatively high vEV and vPCC (shown as varEV and varPC in the figure). 

Low nEV of this group indicates that proteins in this group are surrounded mostly 

by static (low EV) proteins, however their high vEV and vPCC suggest that their 

neighbors in the network have variable EV values and dissimilar expression 

profiles. This dynamic profile suggests that these proteins may be located at the 

boundaries of static modules. A network plot of a representative S3.1 protein 
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(IES1, a subunit of the INO80 chromatin remodeling complex) shows that this 

protein links the module constituents to other proteins in the network (Figure 

3.6a). 

 

S3.2: This subgroup has relatively higher nEV values, but low vEV, suggesting that 

these proteins are mostly interacting with high-EV (dynamic) proteins. However 

their relatively higher vPCC also shows that neighbors of these proteins have 

dissimilar expression profiles, therefore indicating that S3.2 proteins are not found 

within modules. It follows that S3.2 proteins are coordinating functions of various 

dynamic proteins. An example to this subgroup is RHO1, a small GTPase 

involved in cytoskeleton signaling. This protein is mainly surrounded by dynamic 

proteins of various functions (Figure 3.6B). 

 

S3.3: Dynamic profile of this subgroup is very similar to that of S3.1, with a 

subtle difference that this subgroup has higher yK and lower vPCC values (Fig. S1). 

Higher yK values indicate that, unlike S3.1, proteins in this group may be co-

expressed with other proteins in the network and thus may be a part of cellular 

gene expression programs. An example to this subgroup of proteins is KIN2, a 

protein kinase involved in the regulation of exocytosis (Figure 3.6C). 
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S3.4: The most striking feature of proteins in this subgroup is their high nPCC2 

but low nPCC (Fig. S1), indicating that neighbors of these proteins have high 

nPCC values but low PCC with each other. This profile suggests that S3.4 

proteins are found outside dynamic modules, perhaps bridging them. An example 

to this subgroup is SBA1, a co-chaperone that binds and regulates Hsp90 family 

chaperones. Its network plot shows that this protein is interacting with 

UFD1/NPL4/CDC48 complex involved in protein transport from ER to the 

cytosol, and also with a nuclear pre-ribosomal complex containing NUG1, NOG1, 

RIX1, etc… (Figure 3.6D). 

 

S3.5: The most obvious feature of this subgroup is its highest vPCC values. This 

indicates that neighbors of these proteins have highly dissimilar expression 

profiles, with probably negative co-expressions. Therefore, these proteins interact 

with some of their neighbors under one condition, and with the others under 

another condition, but never with both sets at the same time. A representative of 

this subgroup is BCY1, a regulatory subunit of cAMP-dependent protein kinase 

(PKA) (Figure 3.6E). It associates with either of the three catalytic subunits of 

PKA: TPK1, TPK2 or TPK3. TPK3 is negatively co-expressed with the other two 

subunits, indicating that TPK3 may have an opposing function to the other 

kinases (Figure 3.6E). Indeed, TPK3 has been shown to inhibit pseudohyphal 

growth in yeast whereas TPK2 promotes it(Robertson and Fink, 1998).  
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S3.6: Proteins in this subgroup have high EVs, high vEV and high yK and avPCC 

(Fig. S1). Therefore, these proteins are dynamic, are co-regulated with other 

proteins in the network, they may also be co-regulated with their neighbors. 

However unlike dynamic modules, these proteins have high vEV values, indicating 

that these proteins interact with proteins of various expression patterns. Proteins  

 

Figure 3.6. Representatives of each dynamic class. A-G show representative protein neighborhoods from subgroups S3.1 
through S3.7, respectively. Heatmaps in E and F show expression correlation matrices of the neighbors of the respective 
proteins, where shades of green indicate strength of negative correlation while shades of red indicate strength of positive 
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correlation. Nodes in the network plots are colored according to their EV (color key shown); nodes of interest (center 
nodes) are colored in black for convenience. 
 
 

in this subgroup may be located at the boundaries of small dynamic modules. An 

example to this subgroup is MMS2, a protein involved in post-replication DNA 

repair (Figure 3.6F). The co-expression profile of its neighbors suggests that 

MMS2 is co-expressed with UBC13, RCN2 and SIP5. MMS2 is known to form a 

complex with UBC13, however the functional significance of its interactions with 

the RCN2 and SIP5 are not yet known.  

 

S3.7: Proteins in this subgroup have high EV and vEV values and moderate nEV 

values; the rest of its values are relatively low. This is the only subgroup where 

EV and yK values do not correlate (see Figure 3.5). EV highly correlates with yK 

(Spearman’s ρ = 0.68, P < 1x10-16), which is not surprising as highly regulated 

proteins are more likely to be co-regulated with other proteins in the network. 

This high correlation is not a consequence of high variance per se, as Pearson 

correlation coefficient is defined as the ratio of covariance of two variables to 

their individual variances. The fact that S3.7 proteins are highly regulated but still 

are not co-regulated with many proteins in the network suggests that the 

expression profiles of these proteins are highly specific, which may be the case 

for master regulators of cellular processes in the cell. Accordingly, S3.7 contains 
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proteins like FUS3 and SWI5, master regulators of pheromone response and cell 

cycle, respectively (Figure 3.6G). 

 

Deletion analyses 

In order to analyze the specific roles of these dynamic classes in the organization 

of the protein network, we undertook an in silico loss-of-function approach where 

we remove the desired set of proteins from the network and observe where the 

connectivity has been perturbed in the network (see Methods). We removed each 

dynamic class of proteins from our network, and measured where the network 

path lengths of proteins has increased. An increase in the path length between two 

nodes a and b upon removal of a node c indicates that the node c lies on the path 

between nodes a and b. Here, we only measured changes in path lengths between 

proteins that are separated by one node in the original network (path length = 2). 

Thus, when we remove a group c of proteins from the network and see that the 

network paths from a group a of proteins to another group b of proteins has been 

increased, we conclude that the group c proteins are directly linking proteins of 

groups a and b.  

 

Figure 3.7A shows the results for the removal of each dynamical class from the 

network as compared to the removal of the same number of randomly selected 

proteins of similar node degrees. The removal of subgroup S1.1, which mainly 
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contains ribosome biosynthesis dynamic modules, impairs the connection 

between S1.2 proteins as well as the connection of other proteins to S1.2. 

Removal of S1.2 has an even stronger impact on the connectivity of S1.1 proteins 

to each other as well as to most of the rest of the network. These results indicate 

that S1.2 and S1.1 proteins are inter-linked to each other. However, since S1.2 

proteins are not densely connected to each other and are not modular in terms of 

their neighborhoods (not shown), it can be concluded that S1.2 proteins are 

mainly found outside S1.1 modules and they have a major role in connecting 

these modules to the rest of the network and to each other. 

 

Removal of subgroups S1.3 and S2 does not seem to impact the connectivity of 

the network, corroborating with the idea that these proteins are isolated modules 

with highly specialized functions. Connections of S2 to S3.6 and S3.7 are 

however impaired by the removal of S3.1, which is in accordance with the 

dynamic profile of this subgroup, which shows that although these proteins are 

mainly surrounded by static proteins, they are also interacting with dynamic 

proteins (see Appendix). An important role of S3.1 proteins in the network may 

be in connecting the static modules to the rest of the network. 

 

The dynamic profile of S3.2 suggests that these proteins interact with dynamic 

proteins that are not modular (see above). Figure 3.7A shows that their removal 
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has the most significant impact on the connection of S1.2 to the proteins of S3.6 

and S3.7, indicating that S3.2 proteins are coordinating the connections between 

proteins in S1.2 and proteins in S3.6 and S3.7. 

 

The most significant feature of proteins in S3.4 is their high nPCC2 but low nPCC 

values, which suggest that these proteins are found “just outside” of dynamic 

modules (see above). Accordingly, their removal from the network results in an 

impaired connectivity between dynamic modules of S1.3 and the proteins in S3.6 

and S3.7. Therefore, it can be concluded that S3.4 proteins are playing a role as 

coordinators of dynamic modules in S1.3. 

 

Although the overall betweenness centrality values of groups S3.5 through S3.7 

are not significantly different from each other (not shown), removal of each has 

markedly different effects on the network connectivity. While removal of S3.5 

does not significantly affect the network connectivity when compared to 

randomly selected proteins, removal of S3.6 proteins seems to affect the 

connectivity of most of S3 proteins to each other as well as to S1.1 and S1.2 

(Figure 3.7A). However the most potent effect on the network connectivity is seen 
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Figure 3.7. Characterization of roles of subgroups in the network connectivity. a) Deletion profiles of select subgroups. 
White stripes in the heatmaps indicate the deleted group. Please see Methods for a detailed description of the deletion 
profiles. b) Normalized rich club coefficients (see Methods) of each group. 
 
 

with the removal of S3.7, where connections within and between almost every 

group of proteins becomes impaired (Figure 3.7A). This observation argues that 

S3.7 proteins may be the most centrally located proteins in the network as their 
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deletion results in a severe network disorganization. Since our in silico loss-of-

function approach only takes into account node pairs that are only 1 node apart in 

the original network (see above and Methods), the profile of S3.7 deletion may 

indicate that these proteins are highly dispersed throughout the network as 

opposed to more localized positioning of other groups. Given its significantly 

higher impact on the network connectivity as compared to other groups, we 

hypothesized that S3.7 may contain proteins that play roles as the central 

coordinators of cellular events, and therefore analyzed this group in more depth. 

 

3.3.2 S3.7: a “rich club” of central organizers in the network 

 

Although deletion of S3.7 from the network results in a significantly greater 

disintegration of connectivity among other groups, S3.7 proteins are not 

significantly more centrally located in the network as judged from their 

betweenness, degree or closeness centralities (three metrics commonly used to 

measure a node’s centrality in the network(Wasserman and Faust, 1994)) (not 

shown). This is surprising at first sight, because betweenness centrality of a node 

measures the frequency of paths between all node pairs that pass through that 

node, and Figure 3.7A shows that the paths between most node pairs get impaired 

upon removal of S3.7 proteins. It is conceivable, therefore, that S3.7 proteins may 

not be as central individually as they are as a group. In order to test this, we 
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calculated group betweenness values (measures the centrality of a group of 

proteins) of all groups, and find that S3.7 proteins have a more significant group 

betweenness than other S3 groups (not shown). However surprisingly, S2 has as 

high group betweenness as S3.7, although their individual betweenness values are 

the lowest among all (not shown), suggesting that static modules may also play 

central roles in the regulation of cellular processes (see below).  

 

An observation that a group of nodes are significantly central as a group but not 

as individuals suggests that there is some redundancy among group members 

regarding connectivity of the network. This notion requires that the group 

members are tightly connected to each other so that the absence of one node 

would be compensated by another in the network. Indeed, a network plot of the 

dynamic classes shows that S3.7 has a considerable within-group interaction 

density as compared to others (Figure 3.8), which corroborates with a possibility 

of a within-group redundancy in terms of connectivity. Interestingly, among the 

S3 groups, only S3.7 seemed to be displaying significant within-group 

connectivity (Figure 3.8). In order to test if the observed density of interactions 

among S3.7 proteins is expected by chance, we compared within-group 

interaction densities of the dynamical groups with those in 100 randomized 

instances of the network, and find that S3.7 proteins are significantly more inter-

connected than what would be expected by chance (Figure 3.7B). Only S3.1 and 
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S3.3 groups have within-group interaction densities close to that of S3.7. 

However unlike S3.7, where proteins are inter-linked to each other predominantly 

in a single connected web, S3.1 and S3.3 groups contain some proteins that form 

small dense clusters with each other, thus contributing to their high densities of 

within-group interactions (Figure 3.8). Therefore, it follows that S3.7 proteins  

 

 

Figure 3.8. Network plots of S3 groups. 
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form an inter-connected web at the core of the cellular network thereby regulating 

the connectivity among different classes of proteins. This specific connectivity 

pattern, where instead of being dispersed in the network, central proteins are 

tightly inter-connected in a web, resembles so-called “rich-club” connectivity 

pattern in social networks and may have important implications about the cellular 

mechanisms of regulating information flow within the protein network (see 

Discussion). 

 

Another striking feature of S3.7 is that proteins in this group are highly regulated 

as evidenced from their high EV, but nevertheless are not subject to a significant 

co-regulation with other genes in the network as evidenced from their low yK (see 

above). This indicates that S3.7 proteins are not likely to be a part of cellular gene 

expression programs and therefore have less constraint in their expression when  

high EV proteins (compare to S1, S3.5 and S3.6). This property may corroborate 

with the notion that these proteins are the central regulators of cellular processes 

(see above).  

 

3.3.3 Static modules function as the central phenotypic enhancers 

 

Our observations so far have shown that proteins with different dynamical 

properties have distinct roles in the network connectivity. Next, we wanted to see 
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if different dynamic classes have different roles in the regulation of cell behavior. 

First, we wanted to check which of the dynamic classes are involved in the cell-

to-cell variability of cell behavior, which has been mainly attributed to gene 

expression noise (Blake, et al., 2003; Raser and O'Shea, 2005). We reasoned that 

proteins with most “noise” or variability in their expressions from cell-to-cell 

would also be most responsible for the cell-to-cell variations in cell behavior. For 

this purpose, we used the protein expression variation values from the extensive 

study of Newman et al (2006)(Newman, et al., 2006) and compared these values 

in the dynamic classes. We see that the most variable group in terms of their 

protein expression is S2 or static modules (Figure 3.3). This indicates that most of 

the cell-to-cell variations in cell behavior are due to the variations in the 

expression levels of static modules. This is particularly interesting given that  

static modules are the ones that are subject to the least amount of transcriptional 

regulation in response to an external stimulus. 

 

Static modules are primarily those involved in the regulation of mRNA synthesis, 

splicing and/or transport (see above). A recent study in C. elegans has suggested a 

role for co-regulators of transcription as common modifiers of cell behavior as 

these proteins were involved in genetic interactions within diverse signaling 

pathways (Lehner, et al., 2006). We wanted to check the genetic interactions in  
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Figure 3.9. Genetic interaction matrix of proteins with different dynamic profiles. Each square i, j in the matrix was 
normalized to the total number of genetic interactions of proteins in bins i and j.  

 

 
yeast and see if the same pattern as in worm can be reproduced. For this purpose, 

we compiled all the genetic interaction data from the BioGRID database (Stark, et 

al., 2006) and constructed a genetic interaction matrix conserving the ordering of 

proteins in the clustering in Figure 3.1. Most of the genetic interactions observed 

are among the proteins of S2, even after normalizing for the total number of 

genetic interactions (Figure 3.9), indicating that S2 proteins are the hubs of the 

genetic interaction network. This observation corroborates with the study in C. 

elegans (Lehner, et al., 2006), and together with the observation that S2 is one of 
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two most central groups in the protein interaction network (see above), shows that 

static modules are the common modifiers of cell behavior (see Discussion). 

 

 

3.3.4 The dynamic organization pattern is reproducible across different 

datasets 

 

An important factor to be considered in protein network studies is the high rate of 

false positives in high throughput protein-protein interaction data. Even though 

our dataset contains only high quality data(Bader, et al., 2004; Krogan, et al., 

2006), we wanted to check if the dynamic profiles in this study and their 

interaction profiles can be reproduced using other high quality datasets. For this 

purpose, we used high quality datasets from two recent studies that reported 

contradictory findings with respect to each other about network modularity 

(Batada, et al., 2007; Bertin, et al., 2007). A clear separation of S1 and of its 

subgroups, S2 and S3 groups as well as their interaction patterns very similar to 

the one in Figure 3.1 can be seen in both datasets (Figure 3.10A). Out of each 

dataset, we extracted a cluster that most resembled S3.7 according to their 

dynamic profiles. Our criterion for S3.7 was that the cluster must have a high EV, 

low yK, low nPCC and avPCC, moderate nEV and high vEV or vPCC, in accordance 

with Figure 3.1. In both datasets, the cluster we extracted had a significantly 
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higher within-group density of interactions than what would be expected by 

chance (not shown), supporting our observations above. 

 

In addition, the genetic interaction pattern in Figure 3.7 can also be seen in both 

datasets with some differences (Figure 3.10B). These observations show that the 

dynamic organization pattern identified in this study is likely to reflect true 

biology rather than some artifact in the interaction data. Although S2 and 

subgroups of S1 can be clearly distinguished from the profiles in these datasets, 

not all of the subgroups of S3 may be readily distinguishable. We suggest that, in 

addition to the obvious differences between datasets, this is because dynamic 

profiles of S3 are most subtle and may be more difficult to capture than in the 

case with S1 and S2. 

 

Using their high quality dataset, Batada et al (2007) argued against the model of 

organized modularity in the protein interaction network(Batada, et al., 2006; 

Batada, et al., 2007) that was proposed earlier(Han, et al., 2004). Interestingly, 

using our approach, we show that their dataset in fact supports the model of 

organized dynamic modularity. We suggest that our multi-dimensional approach 

can resolve the discrepancy in literature by providing a more comprehensive view 

of the protein network characteristics.  
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3.4 DISCUSSION AND FUTURE PERSPECTIVES 

 
 
In this work, we first derived several novel graph theoretical metrics to explain 

the dynamic behavior of a protein and of its neighborhoods in the network, then 

out of a global distribution of dynamic profiles of proteins we identified 

dynamical classes with distinct dynamic profiles, then we characterized some of 

the important properties of these classes, and finally proposed a functional 

dynamic layout model of the protein network. 

 
 
3.4.1 Static and dynamic modules 

 

A proper stoichiometry in the expression levels of components of a module is 

essential as an imbalance in the levels of the module constituents can be 

deleterious (balance hypothesis) (Papp, et al., 2003). A priori, there are two 

simple ways to control stoichiometry of module components at the level of 

transcription: by maintaining constant expression, or by co-regulated expression 

of all components. Both mechanisms are apparently employed for the design of 

cellular modules, leading to an organizational model of the network resembling a 

circuit board with integrated “built-in” as well as removable “plug-and-play” 

components.  For example, the functionally ubiquitous process of mRNA 
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synthesis and splicing is carried out by proteins organized in modules with 

apparent invariant expression.  The highly dynamic nature of ribosome biogenesis 

modules, on the other hand, has been suggested to be a mechanism of energy 

preservation for the cell under stress, as transcription of ribosomal genes accounts 

for around 80% of all RNA synthesis in the cell (Warner, 1999).  

 

 

Figure 3.10. Heatmaps for the dynamic profiles of proteins in two independent datasets and their protein-protein 
interaction profiles. a) High confidence dataset from Bertins et al (2006). b) High confidence dataset from Batada et al 
(2006). Ordering of proteins in bins of the interaction matrices are exactly like in the heatmaps above each matrix. 
Clustering was done the same way as for our dataset (see text). 
 

While the expression variations of modular proteins are constrained by those of 

their neighbors, central proteins, which are versatile in their functions, are also 

more versatile in their expression patterns. The existence of both static and 
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dynamic central hubs, which are presumably the coordinators of cellular 

processes, suggests that some connections between processes in the cell are “hard-

wired”, while some are adjustable depending on the cellular requirements. For 

example, the sub-network 2 in our static network (Table 3.1) indicates that the 

TFIID/SAGA complex is hard-wired to the nuclear proteasomal complex, 

suggesting an integral function of the proteasome in sequence-specific 

transcription, consistent with previous reports (Auld, et al., 2006; Lee, et al., 

2005). This sub-network also indicates an integral connection of vesicle 

trafficking with general mRNA synthesis, a relationship that to our knowledge has 

not yet been explored. Therefore, in addition to revealing some novel architectural 

characteristics of the protein network, the analysis employed in this study also 

helps reveal how local dynamics of the network architecture may shape cell 

behavior.  

 

The faster evolutionary rate and higher expression noise in static modules 

suggests that robustness to variations in these modules may be a selected trait 

during evolution. Since expression noise may contribute to population fitness of 

unicellular organisms (Kaern, et al., 2005; Raser and O'Shea, 2005), localization 

of noise to static modules may reflect a specific fitness advantage to the 

population. An interesting observation consistent with this hypothesis is that 

proteins functioning in the regulation of mRNA synthesis, which are mostly static 

 89



 

in yeast, have been found to be phenotypic enhancers of genetic mutations in 

worm as well as of oncogenic mutations in human cancers (Lehner, et al., 2006). 

High variability in the levels of common modifiers of cell behavior is of particular 

importance. Cell-to-cell variations in these modules would enhance or dampen the 

phenotypes of other specific expression variations in the cell. This would 

invariably lead to a wider and a more robust distribution of cellular phenotypes 

within a clonal cell population. Similarly, genetic variations in static modules 

during evolution may result in the phenotypic enhancement of other mutations in 

the cell, which may facilitate adaptation. Since mRNA abundance is a major 

factor contributing to protein expression noise (Newman, et al., 2006) and 

evolutionary rate (Pal, et al., 2001), it is conceivable that relatively lower 

expression levels of static modules is an evolutionarily selected trait to maximize 

variations in these modules. 

 

3.4.2 The Rich Club phenomenon in protein interaction networks 

 

We have found that the most central organizers of the protein interaction network 

have a high preference of interactions for each other and therefore form a highly 

connected web at the core of the network. This connectivity pattern is reminiscent 

of the “rich club” phenomenon in complex networks, which is characterized by a 

significant connection density among “important” hubs (i.e. “rich” nodes) in the 
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network (hence “rich club”), and has implications in the network routing 

efficiency, redundancy and/or robustness (Colizza, et al., 2006; Zhou and 

Mondragon, 2004). The rich-club in the internet network has been suggested to 

serve as a super traffic hub and provide a large selection of shortcuts for a greater 

efficiency and flexibility of the traffic routing (Zhou and Mondragon, 2004). In 

the case of protein interaction networks, dense connectivity between central 

proteins indicates fast communication between different parts of the network, 

which may be necessary for an efficient coordination of cellular processes carried 

out by modules that can be far apart in the network. 

 

Another dimension to this intriguing scenario is added by the consideration of 

highly regulated expression pattern of S3.7 proteins, as evidenced from their high 

EV (see Appendix). While allowing for fast information flow within the network, 

the pattern of signal transduction between different parts of the network may be 

regulated by modulating the expression levels of central proteins, thereby fine-

tuning network behavior according to the conditions at hand. Therefore, it is 

tempting to speculate that the presence of rich clubs among highly dynamic 

proteins in the protein interaction networks of eukaryotes may be an 

evolutionarily selected mechanism of highly efficient yet regulated signal 

propagation across the network. 
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3.4.6 Emerging and disappearing paradigms 

 

Since the initial observation of differential positioning of proteins in the network 

according to their expression profile based on a single metric (avPCC)(Han, et al., 

2004), there has been some debate regarding whether the original observations by 

Han et al (2004) reflected an artifact of the specific network they used for their 

study (Batada, et al., 2006; Batada, et al., 2007). By utilizing a more 

comprehensive survey of expression characteristics of proteins as well as of their 

immediate network localities in several datasets, our study confirms the notion of 

dynamic modularity in the eukaryotic protein interaction network. We propose 

that the discrepancy in the literature is due to a relatively narrow view of the 

network characteristics that was offered by the analyses of respective groups in 

their studies. We show that a more comprehensive analysis can resolve the 

discrepancy between these studies by offering a higher resolution view of the 

dynamic network organization. For example, the initial proposition of so-called 

“date” hubs to be central proteins by Han et al is refined in this study by showing 

that date hubs also contain highly modular static proteins as well as non-central 

organizer proteins. Moreover, most of the characteristics attributed to date hubs 

(like higher evolutionary rate, higher synthetic lethality rate, higher density of 

genetic interactions) turn out to be the characteristics of proteins in static 

modules, which, importantly, logically dissociates the notion of centrality from 
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the variability in protein networks suggested earlier(Fraser, 2005). In addition, 

suggestion that the protein network lacks an organized pattern(Batada, et al., 

2006; Batada, et al., 2007) (and hence displays a disorganized highly inter-

connected “stratus” pattern) is shown to be incorrect in this study by using a more 

comprehensive approach, even using the same dataset as in the original study of 

Batada et al(Batada, et al., 2007).  

 

Extrapolating from notions in social networks (Wasserman and Faust, 1994), 

centrality in biological networks has been linked with “importance”, or 

essentiality, of genes in yeast (Albert, et al., 2000; Jeong, et al., 2001; Yu, et al., 

2007). Most of these studies used node degrees of proteins (i.e. number of 

interactions) to infer centrality in protein networks, which is not informative about 

the true centrality of proteins, as highly connected proteins can also be in modules 

((Han, et al., 2004) and this study). Here, by using a relatively unbiased approach, 

we identify true central hubs of protein networks and show that these proteins, 

which appear to link most classes of proteins to each other, are not more 

important (if not less important) for the survival of yeast than other highly 

connected proteins. In fact, the group that is least central both individually and as 

a group is most enriched for essential genes. We propose that this observation 

dissociates the previously proposed connection between topological centrality and 

biological importance.  
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Most importantly, our study emphasizes the complexity of biological networks 

and suggests that the complex network characteristics ought to be addressed by 

analyses that take this fact into account. Although several previous studies have 

addressed the issue of developing proper methodology for better computational 

analysis of biological data(Breitkreutz, et al., 2003; Demir, 2004; Endy and Brent, 

2001; Hu, et al., 2007; Shannon, 2003), most of these efforts have been towards 

better graphical representation of biological networks rather than for better 

computational data mining. To our knowledge, this study is the first to develop 

novel theoretical formalisms for studying protein network dynamics. We believe 

that further development of novel methodology for the analysis of biological 

networks is crucial for systems biology to be successful in discovering the 

complex fabric of life.  
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CHAPTER 4 

High throughput siRNA screen to identify components of EGF 

signaling 

 

 

4.1 COMBINING LOSS-OF-FUNCTION GENOMICS WITH 

PROTEOMICS 

 

Our understanding of signal transduction has evolved based on thousands of 

studies over the last couple of decades. The picture of the resultant network of 

signaling proteins is significantly large as many of the mechanisms of signaling 

that give rise to diverse cellular phenotypes have been elucidated at the molecular 

level, creating opportunities for developing strategies for targeted therapeutic 

interventions. However, despite this progress, the signaling network generated 

through these efforts is far from including the whole repertoire of signaling 

molecules involved in signal transduction, and is also far from encompassing the 

myriad of intricate relationships giving rise to the network’s complex behavior, 

which underline the need for more comprehensive studies. Moreover, our notions 

of mechanisms of signaling have been mainly derived from low-throughput 

biochemistry experiments with a limited focus, which despite their experimental 
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accuracy, are inherently biased towards the specific approach taken. As a result, 

much of our current knowledge in the field reflects a large historical bias.  

 

With the goal of taking an unbiased global approach to the identification of 

signaling components in the signal transduction network, we sought to undertake 

a large-scale genetic screen where we could interrogate a large number of genes 

individually for their roles in signaling processes. Genetic loss-of-function assays 

have been widely employed in the signal transduction field to successfully study 

the mechanisms of action of genes in signaling processes, but a large-scale assay 

in this direction has never been done, probably owing to the difficulty of 

measuring multidimensional readouts in a large-scale platform. Here, we 

overcome this difficulty by coupling our high throughput genetic screen to 

reverse-phase protein arrays (RPPAs) where a large-scale readout becomes 

practical while preserving accuracy. While high throughput siRNA screen allows 

for a massive parallel knock-down of genes each one at a time, RPPAs can offer a 

quantitative measurement of the signaling changes in response to each of the 

genetic perturbations in a highly reproducible and sensitive manner. 

 

 4.1.1 Use of RNAi screens in functional genomics 
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Genome-wide RNAi offers a unique advantage of an unbiased interrogation of 

each gene in the human genome for their role in a given biological process. 

Several studies in the recent past have made an extensive use of this powerful 

platform for tackling biologically as well as clinically relevant problems. Using 

large-scale RNAi, Whitehurst et al and Iorns et al have identified several genes 

that are important for the resistance of lung and breast cancers to 

chemotherapeutic agents, respectively (Iorns, et al., 2008; Whitehurst, et al., 

2007). Several others have used genome-wide RNAi to study cell biological 

processes like cell division, cell death and endocytosis (Kittler, et al., 2007; 

MacKeigan, et al., 2005; Pelkmans, et al., 2005). The specificity and high 

throughput offered by RNAi screens has made them a primary tool for large-scale 

loss-of-function screens in culture cells. 

 

For our study, we employed the kinome siRNA library from Dharmacon, which is 

a collection of all human kinases (human kinome set) and some of the associated 

canonical proteins, like some phosphatases and small GTPases. Each well of 96-

well plates in this library contains pools of 4 oligos targeting a specific gene. In 

order to control for plate-to-plate differences in transfection efficiency, each plate 

contains positive and negative controls for transfection. Overall, the library targets 

772 genes. 
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 4.1.2 Reverse-phase protein arrays for quantitative large-scale profiling 

 

As opposed to forward-phase protein arrays, where antibodies are arrayed on a 

glass-supported nitrocellulose slide, and cell lysates are applied on top, in reverse-

phase protein arrays (RPPA), cell lysates are arrayed on a slide and assayed with a 

specific antibody of interest. While the former is mainly useful for a low 

throughput assaying of a large number of antigens, the latter is ideal for a large-

scale assaying of relatively few number of antigens.  In RPPA, the basic principle 

is very much like that in western blotting, where immobilized proteins from a 

sample are assayed with a primary antibody followed by secondary and then a 

fluorophore for signal detection, the main difference being a large number of 

samples in RPPA instead of a few in western (Liotta, et al., 2003).  

 

Traditionally, reverse-phase protein arrays have been used in proteomic profiling 

of large number of samples obtained from clinical specimens. RPPA offers a high 

sensitivity through signal amplification, and a large dynamic range. Only a few 

nanoliters of the sample is required for array printing, which is especially 

important when the samples are limited. RPPA is a novel rising technology with 

an increasing popularity in functional proteomics (Liotta, et al., 2003). 

 

 4.1.3 Our strategy 
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Our protocol combines kinome-wide RNAi with RPPA in a high throughput 

platform. As our target network for the development and validation of our 

platform, we chose the EGF signaling network. EGF (Epidermal Growth Factor) 

is a growth factor that activates several signaling pathways through its receptor, 

EGFR (EGF Receptor). EGF signaling has become popular in the cancer 

community because of the frequent genetic alterations found in pathway  

 

 

Figure 4.1. Work scheme for the RNAi screen for regulators of EGF signaling. 
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components of this network in many cancers that lead to their hyper-activations. 

Consequently, the EGF signaling network is arguably the best-studied signaling 

  

 

Figure 4.2. Platform optimizations. A) Transfection optimization using RalA and Sur8 knock-down. Sur8 knock-down 
blocks signal propagation from EGF to MEK. B) Optimization of RPPA protocols for a reproducible spotting and imaging. 
Upper panel, pERK dilutions showing the dynamic range of the pERK antibody in our platform. Upper band in the pERK 
plot is ERK1 (MAPK3), and the lower band is ERK2 (MAPK1). Bottom panel, dilution curve and dynamic range for 
pSTAT3.  
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network, which makes it an especially attractive target for a pilot study using a 

novel experimental platform. Therefore, we chose to study signaling downstream 

of EGF with our combined platform of high throughput RNAi and RPPAs. The 

work-scheme for the screen is depicted in Figure 4.1 and experimental details are 

explained in the Methods in Chapter 2. Briefly, we make transfections in triplicate 

for biological reproducibility, and after 72 hours of transfection, cells are 

stimulated with 50 ng/ml EGF for 5 minutes. After cells are lysed and processed, 

lysates are printed onto nitrocellulose-coated slides for RPPA. Slides are 

processed according to the RPPA procedure and blotted either with pERK, 

pSTAT3 or Actin antibody and imaged. Spot intensities in the resultant images 

are quantified, and the data are analyzed as described below.  

 

In this screen, we are expecting to find genes whose deletion affects EGF-

dependent signaling to STAT3 or ERK. However, we are also aware that these 

genes may either be direct modulators of signaling (signal transduction kinases), 

or those that affect signaling indirectly, may be by the virtue of their role in the 

transcriptional regulation of some important signaling proteins. Keeping in mind 

that the potential hits from the screen may be of either type (i.e. direct or indirect 

modulators of signaling) will help in the interpretation of results.  
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4.2 RESULTS 

 

 4.2.1 Platform validations 

 

We optimized our transfection procedure for a reproducible knock-down that was 

efficient in eliciting a signaling phenotype using a previously identified obligate 

component of the EGF signaling pathway (Figure 4.2a). Lysis, pre-spotting and  

 

 

Figure 4.3. Normalization of slides for position-specific effects on the slide. The heatmap on the left shows raw signal 
distribution across one of the slides for pERK. Yellow and white colors indicate missed spots (no signal). The plot below 
the heatmap shows distribution density of raw pERK signal. Normalization is carried out as described in Methods in 
Chapter 2. Briefly, each signal (Si) is divided by the average of 6 neighboring spots (3 signals below, and 3 signals above 
Si). The heatmap on the right shows the distribution of normalized signal intensities across the same slide. The “bumps” on 
the plots of density distributions are missing values (those around zero) or samples that were stimulated with EGF.  
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spotting protocols were also optimized to achieve a reproducible wide dynamic 

range close to 2 logs with both pERK and pSTAT3 antibodies (Figure 4.2b). 

Importantly, the coefficient of variation between replicate spots was on average 

5% for both antibodies, showing high technical accuracy. 

 

Transfections: Transfections of A431 cells were performed as described in 

Methods (Chapter 2). After 72 hours of incubation, cells were stimulated with 50 

ng/ml EGF for 5 minutes, and lysed. In order to minimize handling errors when 

dealing with a large number of plates, we did not starve cells in a serum-free 

media before stimulation with EGF as we found no difference in the dynamic 

range of stimulation with or without starvation, possibly due to substantial serum-

depletion of the media by cells during 3 days of transfection (not shown).  

 

Data processing: In order to eliminate the position-specific differences in the 

signal intensities on the slide, we normalized each signal to the neighboring spots 

on the slide (see Methods in Chapter 2 and Figure 4.3), where an assumption was 

made that the majority of the neighboring samples can be regarded as functionally 

unrelated. This assumption is not far-fetched in our case as two neighboring 

samples on a slide are those that are 4 wells away from each other on the assay 

plate due to the array printing protocol. Accordingly, normalized value 

distributions for pERK, pSTAT3 and Actin are centered around 1 with a relatively 
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narrow overall variance with position-specific effects on the slide minimized 

(Figure 4.3). Samples that did not reproduce in at least 2 of 3 biological replicates, 

or those with dubious spots were excluded from further analyses. Finally, the 

biological replicates were averaged to get a single value for each sample for each 

antibody. 

 

 

 

Figure 4.4. Observations for some of the canonical components of the EGF signaling network. A) Heatmap for the 
normalized signals for the genes from the screen. Results for all three biological replicates are shown for each gene. B) 
Differential response of ERK and STAT3 phosphorylation in A431 cells to increasing concentrations of EGF at 5 minutes 
after stimulation. C) Differential sensitivity of ERK and STAT3 phosphorylation to specific EGFR inhibitor Tarceva® at 5 
minutes after stimulation with 100ng/ml EGF. 
 

 

Transfection validation: Each of our assay plates contains internal positive and 

negative controls for transfection. PLK1 is included in each plate, and has 
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significant toxicity to A431 cells upon successful transfection (not shown). In all 

of our assay plates, we observed a significant reduction in the Actin levels of 

PLK1 wells (Figure 4.4A), indicating a successful transfection. In addition, some 

of the canonical members of the EGF signaling network like the EGF receptor 

(EGFR), ERK2 (MAPK1) and ERK1 (MAPK3) had significant effects on 

pSTAT3 or pERK levels (Figure 4.4A). MAPK3 did not have a significant effect 

on pERK levels. We suggest that this is due to the large bias of the pERK 

antibody towards ERK2 (see Figure 4.2). Surprisingly, EGFR knock-down had no 

effect on pERK levels, despite its substantial effect on pSTAT3 levels, an effect 

that can also be seen on western blot (not shown). We hypothesized that this 

reflects the differential sensitivity of ERK and STAT3 pathways to EGFR 

depletion. In order to test this hypothesis, we checked how ERK and STAT3 

respond to increasing concentrations of EGF, which reflects increasing 

concentrations of active EGFR. We found that ERK displays a hypersensitivity to 

EGF, showing near maximal activation at 10 ng/ml EGF at 5 minutes, whereas 

STAT3 phosphorylation above baseline is undetectable at 10 ng/ml EGF at 5 

minutes (Figure 4.4B). Moreover, there is at least 100-fold difference in the 

sensitivity of ERK and STAT3 pathways to the inhibition of EGFR activity, as 

shown by their responses to specific EGFR inhibitory drug Tarceva® (Figure 

4.4C). STAT3 tyrosine phosphorylation is completely inhibited at 0.1μM 

concentration of the drug, while ERK phosphorylation is only inhibited at 10μM 
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concentration. This differential sensitivity of the two pathways to EGFR 

activation/inhibition not only provides an explanation to why EGFR knock-down 

(which presumably does not completely eliminate EGFR protein levels despite a 

considerable reduction) only affects STAT3, but also may give some insight into 

the modes of regulation of the two pathways by EGFR (see below). Interestingly, 

although STAT3 phosphorylation correlates with EGFR auto-phosphorylation 

(Y1173 site), ERK phosphorylation does not seem to (see Figure 4.4B-C). 

 

 4.2.2 Revealing potential regulators of EGF signaling 

 

In order analyze genes that potentially play roles in the signal propagation 

downstream of EGF to STAT3 or ERK, we identified genes whose knock-downs 

reproducibly had at least 20% effect on pSTAT3 or pERK levels after having 

controlled for Actin levels (see Methods in Chapter 2, Figure 4.5). The resultant 

51-gene list contains several known components of the EGF network other than 

those mentioned above, like phospho-inositol pathway components (PIK3C2A, 

PIK3C2B, PIP5K1A, PKN3), MAP3 Kinases (MAP3K2, MAP3K3, MAP3K7, 

MAP3K13), MAP kinases (MAPK4, MAPK12), MAP kinase phosphatases 

(PTPRR, DUSP1), a small GTPase and a GEF (RAC1, RAPGEF3), and a 

scaffolding protein (CNKSR1). In addition, other than EGFR, there are other 

receptor tyrosine kinases, FGFR1, MERTK, CSF1R, EPHA3 and EPHA7. Also, 
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there are kinases with little or no known function in human cells, like 

MGC16169, LRRK1, TNK1, HUNK and NYD-SP25.  

 

Interestingly, none of the central Ras/ERK pathway components, such as Raf and 

MEK family members, made it into the list. This is not surprising as we have 

shown that no single Raf family member RNAi knock-down affects activation of 

ERK by EGF in HeLa cells (unpublished data). In addition, none of the Janus 

kinases (JAKs), canonical STAT tyrosine kinases in cytokine signaling, appeared 

to have a significant effect on STAT3 tyrosine phosphorylation in response to 

EGF. This is not surprising either, as activation  

 

 

Figure 4.5. Heatmap of the final list of 51 candidate genes selected from the screen. Data are normalized to actin. White 
color for pERK in ILK column reflects a missing value (i.e. experimental error). 
 
 

 107



 

of STAT3 by EGF has been shown to be independent of JAK activity, although it 

is highly dependent on the EGFR tyrosine kinase activity (Leaman, et al., 1996), 

in accordance with our primary screen data. 

 

Surprisingly, the list of 51 genes seems to contain more than twice as many genes 

that affect only STAT3 as there are genes that affect only ERK (see Figure 4.5), 

suggesting that STAT3 pathway is more sensitive to perturbations. Also, pSTAT3 

signal has significantly more variance between samples than pERK signal (not  

 

Genes 
Number of 

cases pERK value pSTAT3 value 
MAP3K13 1 0.73 0.80 
NPR1 2 0.68 0.61 
PNKP 1 0.84 0.64 
TTBK2 2 0.90 0.79 
MGC16169 3 0.84 1.36 
FGR 1 0.78 0.90 
AKAP13 3 1.22 1.03 
CHUK 5 0.70 0.59 
FGFR1 5 0.75 0.74 
MAP3K2 3 0.97 0.75 
MAP3K3 1 0.80 0.70 
NEK8 3 1.11 0.73 
TEX14 8 0.91 0.55 
TNK1 1 0.92 0.75 
CSF1R 41 0.99 0.70 
DGKB 8 0.86 0.60 
DYRK4 1 1.01 0.66 
EGFR 2783 0.82 0.39 
EPHA3 8 0.89 0.48 
LRRK1 4 1.04 1.29 
CSNK1A1L 1 1.10 1.24 
NEK4 1 1.04 1.22 
PIK3C2B 1 0.92 1.33 
DAPK3 3 1.16 1.55 
DGKD 2 1.18 1.34 
DMPK 1 1.11 1.38 
EPHA7 4 1.00 1.26 
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MERTK 2 0.91 0.76 
Table 4.1. Genes found mutated in cancers as reported in the COSMIC database and in the recent large-scale studies (see 
text). 
 

shown). Enrichment of STAT3 hits over ERK hits is not likely to be an artifact of 

antibody sensitivity, as pERK antibody has more dynamic range than pSTAT3 

(see Figure 4.2b). This observation may be consistent with the above-proposed 

notion that the ERK pathway may be less sensitive to upstream perturbations than 

the STAT3 pathway. 

 

Candidate hits mutated in cancers 

EGF-activated pathways play an important role in cancer progression. We asked 

whether our candidate hit list contains genes that are mutated in cancers and 

whether their ERK or STAT3 signaling phenotype is informative of their role in 

cancers. We derived a list of cancer-mutated genes from COSMIC database 

(Forbes, et al., 2008) (see Methods in Chapter 2) and from a recent large-scale 

sequencing analysis (Sjoblom, et al., 2006). We find that 28 of 51 candidate hits 

are also found mutated in various cancers (Table 4.1). Of these, EGFR and 

CSF1R are known proto-oncogenes frequently mutated in many cancers, and 

accordingly, they seem to be required for STAT3 signaling by EGF. EPHA3 has 

also been reported to be frequently activated in breast and colorectal cancers, and 

the expression of EPHA7 has been found to be frequently suppressed by promoter 

hyper-methylation. Intriguingly, EPHA3 knock-down reduces STAT3 activation 
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by EGFR, while EPHA7 knock-down causes an increase in STAT3 tyrosine 

phosphorylation in response to EGF, which is in accordance with their proposed 

roles as an oncogene and a tumor suppressor, respectively. Although DAPK3 has 

not been explicitly reported to be mutated in cancers, its ortholog DAPK1 is a 

known tumor suppressor in some tumor types (Simpson, et al., 2002; Tada, et al., 

2002), and DAPK3 knock-down causes a significant increase in STAT3 activity 

in response to EGF. Some of the kinases with no known function in human cells, 

TNK1, MGC16169 and TEX14, are also in the list. 

 

 4.2.3 Network analysis of hits 

  

Next, we wanted to analyze our potential hits in the context of their network 

neighborhoods in the protein interaction network. This would enable us to deduce 

functional relationships between hits as well as to derive hypotheses about the 

possible mechanism of their action in the regulation of ERK and/or STAT3 

pathways. For this purpose, we compiled a large protein-protein interaction 

network from different public databases. Our network mostly contains previously 

reported interactions in the literature for human, inferred interactions from other 

species as well as some primary Yeast 2 Hybrid data (see Methods in Chapter 2).  

Overall, our protein-protein interaction network consists of 12396 proteins 

connected by ~ 60,000 interactions. 
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Although 47 out of 51 hits are represented in our network, only 13 are involved in 

interactions with each other (Figure 4.6A). MAP3K2 (MEKK2), MAP3K3 

(MEKK3), MAP3K7 (TAK1) and CHUK (IKKα) are known to cooperate in the 

activation of NF-κB in response to some stimuli, and here, we find that they have 

some role in EGF signaling, particularly in the activation of STAT3. A more 

obvious subnetwork is the one formed by ILK (integrin-linked kinase), COPB2 

(coatomer protein B2) and CSNK2A2 (casein kinase 2), all three of which have a 

profound effect on STAT3 activation. Interactions of COPB2 with ILK and 

CSNK2A2 are derived from high throughput studies and therefore no information 

exists about the functional significance of these interactions. Therefore, a direct 

implication of these interactions in the regulation of STAT3 activation constitutes 

a novel relationship. The third subnetwork is composed of EGFR, MAPK1, two 

phospho-inositide 3-kinase II catalytic subunits PIK3C2A and PIK3C2B, and two 

MAPK phosphatases PTPRR and DUSP1. Interestingly, DUSP1, dual-specificity 

phosphatase that has been implicated in ERK dephosphorylation, only seems to 

affect STAT3. PTPRR is a tyrosine phosphatase that also has been implicated in 

the regulation of MAP kinase signaling. Here, as in the case of DUSP1, we see 

that it only affects STAT3 and not ERK, suggesting some role for these 

phosphatases in the regulation of STAT3 signaling.  
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The subnetworks we derived here only consist of direct interactions between hits. 

However, the hits may be involved in common pathways through intermediary 

proteins that are not represented in the screen. In order to examine what common 

processes our hits may be involved in, we first identified most common proteins 

that the hits for ERK or STAT3 interact with. We did this by calculating the 

enrichment of interactions of each protein in the network with hits from the screen  

 

Figure 4.6. Network analysis of pathways regulating EGF signaling. A) Network connecting hits directly to each other. B) 
STAT3 network formed by including most significant interactors of hits. C) ERK network formed in the same as for 
STAT3 network. 
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by using hypergeometric formula (see Methods in Chapter 2). Then, we selected 

the most significant interactors (q < 0.05, see Methods in Chapter 2) and 

constructed a common network that connects most of these hits to each other 

through these significant intermediary proteins (see Methods in Chapter 2). We 

constructed a network that connects hits that affected STAT3 phosphorylation or 

those that had effects on pERK, so that we could do a comparative analysis of two 

pathways (Figure 4.6B-C).  

 

STAT3 network 

The STAT3 network seems to have several hubs that connect other hits to 

themselves through intermediary proteins and a dense cluster of interactions 

around EGFR (see Figure 4.6B). These hubs and their network vicinities seem to 

reflect distinct branches of signaling pathways; NF-κB pathway 

(MAP3K3/CHUK/MAP3K2/MAP3K7), Cytoskeleton/Vesicle trafficking 

(COPB2/ILK/DMPK/PPP1R12A), MAPK1/2 signaling 

(CNKSR1/MAP2K2/DUSP1/MAPK1/PTPRR) and EGFR signaling. NF-κB 

pathway may be involved in the regulation of STAT3 signaling by the virtue of 

transcriptional regulation of some signaling components, as has been shown 

previously for NF-κB-dependent activation of STAT3 through transcriptional 

activation of IL-6 (Squarize, et al., 2006). Regulation of cytoskeleton and 

endocytosis are intimately coupled and are crucial in modulation of EGFR 
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signaling (Wiley, 2003). Also, ERK1/2 signaling has long been known to be a 

critical negative feedback regulator of EGF signaling in general (Buday, et al., 

1995; Rozakis-Adcock, et al., 1995) or of STAT3 activation directly (Jain, et al., 

1998). The dense cluster of interactions around EGFR may indicate that most of 

the hits in our screen may be affecting STAT3 phosphorylation by modulation of 

EGFR activity, which would be consistent with the EGFR knock-down phenotype 

above. Some of the interactions within these pathways revealed by our network 

analysis are consistent with their STAT3 phenotypes within this hypothesis. 

GRB14, a GRB7 family member, has been shown to be a negative regulator of 

several Receptor Tyrosine Kinases (Cariou, et al., 2004) and DAPK3 (ZIP) has 

been shown to facilitate its inhibitory activity (Cariou, et al., 2002). We show that 

DAPK3 knock-down causes an elevation of STAT3 phosphorylation, which is 

concordant with its possible inhibitory role on EGFR activity. MAPK1 can 

downregulate EGFR signaling in a negative-feedback loop involving 

phosphorylation-dependent dissociation of SOS1 from EGFR (Buday, et al., 

1995; Rozakis-Adcock, et al., 1995), and accordingly, MAPK1 knock-down 

causes a slight elevation in STAT3 activity in response to EGF. 

 

Another intriguing observation is the existence of 4 receptor tyrosine kinases 

other than EGFR in this network, EPHA3, MERTK, CSF1R, FGFR1, all of which 

appear to negatively affect STAT3 phosphorylation upon their knock-down. 
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Concomitant co-activation of multiple RTKs in tumors and the need for combined 

inhibition of multiple RTKs for effective inhibition of oncogenic signaling has 

been reported (Stommel, et al., 2007). However in our case, inhibition of any one 

of the given RTKs seems to effectively reduce STAT3 activation in response to 

EGF, although none seems to significantly affect ERK activation.  

 

A rather unexpected observation is that knock-down of a MAP kinase 

phosphatase DUSP1 (dual-specificity phosphatase 1) does not affect pERK levels, 

but causes an increase in pSTAT3 levels. PTPRR (a protein tyrosine phosphatase) 

also can act as a MAPK phosphatase; however its knock-down gives a similar 

phenotype to that of DUSP1. Reduction of MAPK1 leads to an increased STAT3 

phosphorylation similar to that of DUSP1 and PTPRR, which suggests that the 

phenotype of DUSP1 and PTPRR knock-down is not a consequence of increased 

MAPK activity that may result from the depletion of these phosphatases. 

Therefore, it is possible that the knock-down of DUSP1 and PTPRR leads to an 

increase in STAT3 phosphorylation through a different effector pathway than the 

ERK pathway. This would suggest additional roles for DUSP1 and PTPRR as 

possible modulators of STAT3 signaling independent of their roles in ERK 

signaling. Indeed, a close homolog of PTPRR, PTPRT, a frequently mutated 

oncogene in human cancers, has been shown to be a tyrosine phosphatase for 

STAT3 (Zhang, et al., 2007). 
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Some of the interactions shown in the STAT3 network are either novel or have 

not been studied for their functional significance. TNK1-PLCG1 interaction has 

been reported in mouse cells, but functional implications of this interaction have 

not been investigated (Felschow, et al., 2000). Similarly, UCK1-PLCG2 

interaction is derived from a high throughput Yeast 2 hybrid screen and has not 

been validated. TNK1 is a non-receptor tyrosine kinase of ACK family, and 

UCK1 is a uridine/cytidine kinase with no known function in signal transduction. 

Intriguingly, knock-down of TNK1 or UCK1 causes a reduction of STAT3 

phosphorylation in response to EGF, implying a positive role for these kinases in 

STAT3 signaling. TNK2 (ACK1), a close homolog of TNK1, is known for its role 

in EGF signaling through its direct association with the EGFR (Shen, et al., 

2007). However, TNK1 has not been implicated in EGF signaling. Our network 

suggests that TNK1 and UCK1 may be employing a common mechanism in the 

regulation of STAT3 signaling.  

 

Not represented in the network is MGC16169, a novel protein kinase with an 

unknown function. MGC16169 RNAi causes an increase in STAT3 

phosphorylation and a reduction in ERK phosphorylation, suggesting a dual role 

for MGC16169 as a negative regulator of STAT3 but a positive regulator of ERK 

activation. In addition to its dual specificity kinase domain, this protein contains a 
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TBC domain, a domain with Rab GTPase activator function, which may implicate 

MGC16169 in vesicle trafficking. Rab5 is an essential mediator of EGFR 

endocytosis after EGF stimulation (Barbieri, et al., 2000), and it has been shown 

to be required for EGFR signaling (Barbieri, et al., 2004). Therefore, the role of 

MGC16169 in STAT3 and ERK signaling revealed in our screen may reflect its 

role in EGFR internalization through its TBC domain. 

 

Another protein not represented in the network is HUNK (hormonally upregulated 

Neu-associated kinase), a serine-threonine kinase with little known function. 

Interestingly, HUNK has also been implicated in endocytosis through its 

interaction with Rabaptin-5 (Korobko, et al., 2000), a Rab GTPase effector 

protein involved in endocytosis. HUNK knock-down causes a reduction in both 

pSTAT3 and pERK levels. Therefore, HUNK and MGC16169 may be kinases 

involved in the regulation of EGF signaling at the level of regulation of 

endocytosis.  

 

ERK network 

Next, we constructed a network based on hits that had effects on pERK levels 

using the same method as above (Figure 4.6C). This network is considerably 

smaller compared to that of STAT3, reflecting less number of hits associated with 

pERK (see above). The most central proteins in this network are MAPK1 and 
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SNCA (synuclein α). SNCA is a gene that is involved in synaptic vesicle 

trafficking and its accumulation plays an important role in the pathogenesis of 

Parkinson’s disease and Lewy body disease. SNCA has been reported to regulate 

ERK signaling by modulation of caveolin levels (Hashimoto, et al., 2003). SNCA 

can also inhibit phospholipase D activity (Ahn, et al., 2002), which is crucial for 

EGF-dependent recruitment of Sos1 and subsequent activation of Ras (Zhao, et 

al., 2007). FGR is a non-receptor tyrosine kinase of SRC family, which can 

phosphorylate SNCA at Y125 (Ellis, et al., 2001). Tyrosine phosphorylation of 

SNCA has been shown to prevent its self-oligomerization, a key event in its 

pathogenicity (Negro, et al., 2002). Our finding of reduced ERK activity in 

response to FGR knock-down may be in agreement with a negative regulatory 

role of SNCA on ERK signaling. Therefore, SNCA may be a modulator of ERK 

activity. 

 

Among the ERK hits that are not represented in the network is PFKFB1 

(phospho-fructokinase bisphosphatase), an apical component of the glycolytic 

pathway. PFKFB family of enzymes (PFKFB1-4) control the rate of glycolysis by 

modulating the concentrations of Fructose-2,6-bisphosphate, a potent allosteric 

activator of the key glycolytic enzyme, PFK (phosphofructokinase). Increased 

rate of glycolysis is considered a hallmark of cancer (Warburg effect), and is 

important for cancer cell survival during energy deprivation due to hypoxia. 
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Accordingly, some of PFKFB genes are frequently upregulated in tumors 

(Bartrons and Caro, 2007). As another explanation of selective advantage of the 

Warburg effect, where tumors maintain a high glycolysis rate regardless of 

oxygen levels, has been provided by the demonstration of activation of the Akt 

pathway by NADH, a product of glycolytic pathway (Pelicano, et al., 2006), 

suggesting that the glycolytic pathway can directly interact with the signal 

transduction machinery and modulate its activity. Therefore, our finding that 

PFKFB1 seems to be important for the activation of ERK by EGF may reflect an 

important mechanism of PFKFB action in tumors. 

 

 

Figure 4.7. Time course of 100 ng/ml EGF stimulation with potential hits from the screen. White square for 
pERK/UCK1 is a sample with missing spots. 
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 4.2.4 Analysis of time-course of ERK and STAT3 signaling 

 

Our hits from the primary screen reveal genes that have potential impacts on 

signal transduction downstream of EGF at an early timepoint. However, we do 

not know how these genes might be regulating the kinetics of signaling by EGF. 

For example, a gene may be affecting the amplitude, duration or the shape of the 

signaling curve in an EGF-dependent of independent manner. Knowing how our 

hits are impacting signaling by EGF will have important mechanistic 

implications. In order to get an insight into how our hits may be modulating the 

kinetics of signaling, we performed another screen using only 16 genes from our 

51 list that had most profound effects on STAT3 or ERK. For our secondary 

analysis, we chose to check ERK and STAT3 signaling activity at 0, 5, 30 and 60 

minutes in response to 100ng/ml EGF. At this concentration, ERK 

phosphorylation levels peak at 5 minutes of stimulation, and gradually go down at 

30 and 60 minutes. STAT3 phosphorylation however, increases at 5 minutes, goes 

down at 30 and then rises again at 60 minutes of EGF stimulation (see Figure 

4.7). Interestingly, while the largest dynamic range of ERK phosphorylation 

between different knock-downs is seen at 5 minutes of stimulation, the largest 

dynamic range between pSTAT3 signals among the hits is seen at 60 minutes, 
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possibly reflecting the different kinetics of regulation of signaling in the two 

pathways. 

 

As expected, knock-down of Sur8, an adaptor protein essential for ERK activation 

by EGF, blocks activation of ERK by EGF, indicative of successful transfection 

and assay execution. PFKFB1 and HUNK knock-down had the most significant 

negative effects on ERK activation in response to EGF, while NYD-SP25 knock-

down caused an increase in ERK phosphorylation. The most potent negative 

effect on STAT3 phosphorylation was observed with TNK1, UCK1, MERTK and 

CSNK2A2, while the knock-down of DAPK3, MGC16169, PTPRR and DGKD 

caused an increase in STAT3 phosphorylation.  

 

Although TNK1, UCK1 and MERTK do not seem to affect background levels of 

STAT3 phosphorylation, DGKD and DAPK3 seem to significantly increase 

STAT3 phosphorylation in the absence of EGF. MGC16169, HUNK and 

CSNK2A2 also seem to affect background phospho-STAT3 levels to a lesser 

degree. These observations suggest that TNK1, UCK1 and MERTK are 

specifically blocking the ability of EGF to activate STAT3, rather than reducing 

the overall phospho-STAT3 levels. In contrast, DGKD and DAPK3 seem to cause 

a hyper-activation of STAT3 even in the absence of EGF, implying that their 

effect on STAT3 may be EGF-independent. A notable observation here is that  
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Figure 4.8 Off – target effect validation of hits using 4 independent oligos for each. Only results 
for DAPK3, UCK1, NYD-SP25, HUNK and PFKFB1 are shown. 
 

 

most of variation in STAT3 signaling between STAT3 hits is seen not early 

during EGF response, but late as shown by the 60 minutes time point. Although 

STAT3 hits that were causing increased STAT3 activity upon their knock-down 

do not significantly affect STAT3 phosphorylation as compared to the control at 5 

minutes of stimulation, there is a significant difference at 60 minutes. This may 

indicate that STAT3 activation may be near peak at its early time points making it 

more difficult to hyperactivate it, while the later time points are significantly more 
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sensitive to activating perturbations. A similar scenario is seen with the effect of 

NYD-SP25 on ERK phosphorylation. Although the effect of NYD-SP25 cannot 

be clearly seen at 5 minutes, it can clearly be seen at 30 and 60 minutes of 

stimulation, again implying a relative saturation of ERK phosphorylation at early 

time points. Effects of inactivating perturbations on both pathways, as seen with 

TNK1, UCK1, MERTK, PFKFB1, HUNK and CSNK2A2 can be seen at all time 

points. 

 

 4.2.5 Controlling for off-target effects 

 

The main potential problem of large-scale RNAi screens is their susceptibility to 

off-target effects of knock-downs. Although oligos in our RNAi library have been 

optimized to minimize off-target effects, it is necessary to check if our 

observations with the screen hits may be constituting off-target effects. In order to 

check for off-target effects of our hits, we tested 4 independent oligos for each of 

8 genes from our primary screen that gave most potent phenotypes both in the 

primary screen as well as with the different time points discussed above. Using 

RPPAs, we measured pERK and pSTAT3 levels in response to EGF at 5 minutes 

in each case. Importantly, in 7 out of 8 genes, we got expected results with at least 

2 independent oligos, and in one case (TNK1), only one oligo reproduced the 

primary screen phenotype (Figure 4.8). 
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4.2.6 Involvement of STAT3 hits in the regulation of EGFR
 

Differential sensitivity of STAT3 and ERK pathways to the perturbations in the 

EGFR signaling as we have shown above with different doses of EGF as well as 

EGFR inhibitors (Figure 4.4B), suggests that STAT3 signaling can be specifically 

modulated by regulating EGFR activity. Moreover, our network plot of STAT3 

hits (Figure 4.6) shows that many of STAT3 hits are clustered around EGFR 

through either direct interactions or indirect interactions. Given these 

observations, we hypothesized that some of our hits may be regulating EGFR 

activity thereby affecting STAT3 or ERK signaling. In order to check this 

hypothesis, we checked if any of our hits may have a role in regulating EGFR 

activity by testing EGFR tyrosine phosphorylation at some functionally important 

sites in response to EGF. We tested EGFR phosphorylation at Y1173: an EGFR 

autophosphorylation site, Y1045: the binding site for the c-Cbl ubiquitin kinase, 

and Y845: a c-Src target site. Interestingly, the most obvious observation is that 

the knock-down of UCK1 and MERTK leads to a significant reduction in EGFR 

protein levels, which results in a reduced STAT3 activation in response to EGF 

while having no effect on ERK (Figure 4.9). TNK1 seems to be required for Y845 

and Y1045 phosphorylation, while HUNK also seems to be required for Y845 

phosphorylation. Interestingly, knock-down of DGKD, DAPK3 and MGC16169, 
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three kinases whose knock-down causes increased STAT3 activation, leads to 

elevated EGFR Y1045 phosphorylation at 5 minutes of EGF stimulation, 

suggesting that these kinases may be suppressing the phosphorylation of this site 

under normal conditions. Based on these observations, we suggest that tyrosine 

phosphorylation of EGFR at 845 and 1045 may be required for STAT3 activation 

by EGFR. 

 

 

Figure 4.9.  Effect of knock-down of some hits on EGFR tyrosine phosphorylation. 
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4.3 DISCUSSION 

 

In this work, we combined a functional genomics screen with functional 

proteomics for the identification of novel regulatory components of the EGF 

signaling network. In addition, by using a computational systems biology tool that 

we developed, we were able to extract novel relationships regarding the regulation 

of STAT3 and ERK pathways by EGF. This work shows high promise of 

integrating high throughput genomics and proteomics for studying signaling 

networks. 

 

 4.3.1 Revealing essential regulators of STAT3 and ERK signaling 

 

Out of 772 genes that we screened in this work, we found that 51 genes have an 

effect on STAT3 or ERK signaling upon their knock-down. Although there are 

genes whose knock-down affects both ERK and STAT3 phosphorylation, 

majority of hits affect only one of them. This may be an indication that the two 

signaling pathways diverge at a very early step in the EGF signal transduction 

process, so that there are relatively few genes involved in the signaling processes 

that are common to both pathways. Divergence of some signaling pathways 

downstream of EGFR as early as at the level of EGF receptor phosphorylation or 

endocytosis have been reported. Interestingly, phosphorylation of Y845 on EGFR 
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has been shown to be essential for EGF-dependent STAT3 activation in A431 

cells, but not for activation of ERK (Sato, et al., 2003), suggesting that STAT3 

and ERK pathways may diverge at the level of EGFR phosphorylation. In 

addition, GRB2, an adaptor protein that binds to the EGFR and initiates Ras/ERK 

signaling, has been shown to compete with STAT3 for the same site on activated 

EGFR, thereby potentiating ERK pathway activation while suppressing STAT3 

tyrosine phosphorylation (Zhang, et al., 2003). The latter observation suggests 

that ERK and STAT3 signaling can be mutually exclusive on an EGFR molecule, 

thereby implying that ERK and STAT3 signaling may initiate from different EGF 

receptor pools on the cell membrane. This hypothesis may not be far-fetched, as 

EGFR has been reported to be found in both clathrin-coated pits and caveolae, 

two distinct endocytosis-competent membrane microdomains (Xiao, et al., 2008). 

Moreover, differential signaling from the two membrane microdomains has been 

reported, with PLCγ activity being primarily localized to caveolae (Jang, et al., 

2001), and ERK signaling to clathrin-dependent endocytosis (Carpenter, 2000). 

Overall, these observations suggest that different EGF receptor pools may be 

responsible for the activation of STAT3 and ERK pathways, and that some of the 

hits from our screen affecting ERK, STAT3 or both signaling pathways may be 

functioning at the level of EGFR phosphorylation, localization and/or 

endocytosis.  

 

 127



 

One interesting observation to support this hypothesis is the differential sensitivity 

of ERK and STAT3 pathways to EGF doses. ERK can be activated at very low 

EGF doses, while STAT3 activation requires high EGF concentrations (see 

above). The same conclusion can be obtained retrospectively with specific EGFR 

inhibitors, where very low doses of EGFR inhibitors can inhibit STAT3 signaling, 

while high doses of inhibitors are required to inhibit ERK signaling (see above). 

These observations suggest that high concentrations of activated EGFR are 

required to activate STAT3 in response to EGF. Remarkably, high doses of EGF 

have also been shown to specifically cause relocation of activated EGFR 

molecules into caveolae, while low EGF doses cause relocation of EGFR 

molecules into clathrin pits (Sigismund, et al., 2005; Xiao, et al., 2008), which 

may strongly implicate caveolae in STAT3 signaling, and clathrin-coated pits in 

ERK signaling.  

 

Potential regulators of endocytosis 

Interestingly, several of our hits either have been implicated in endocytosis or are 

likely to be involved in it. Genes that seemed to affect STAT3 or ERK signaling 

in response to EGF like HUNK and DGKD have been shown to be required for 

endocytosis (Kawasaki, et al., 2008; Korobko, et al., 2000). In addition, some of 

the intermediary proteins that preferentially interact with the hits from our screen 

(see above), such as PLCγ1-2, PLD1-2, GRB2 or SOS1, have also been 
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implicated in endocytosis of the EGFR in response to EGF stimulation 

(Carpenter, 2000). Furthermore, still some other hits from the screen have been 

found to be involved in clathrin- or caveolae/raft-mediated endocytosis in a recent 

large-scale screen of human kinases for regulators of endocytosis (Pelkmans, et 

al., 2005) (see Table 4.2). Importantly, there seems to be some correlation 

between the direction of impact on ERK/STAT3 signaling and the direction of 

impact on the efficiency of endocytosis with some of the hits (see Table 4.2). For 

example, DGKD (diacyl-glycerol kinase delta) is required for caveolae/raft-

mediated endocytosis, while DGKB (diacyl-glycerol kinase beta) suppresses it. 

Accordingly, DGKD and DGKB have opposing roles in STAT3 phosphorylation 

in response to EGF. Since endocytosis is an important component of EGF 

signaling (Carpenter, 2000), it is reasonable to suggest that many genes affect 

EGF signaling by the virtue of their involvement in an endocytic process. 

 

This hypothesis is further supported by our finding that several of our hits may be  

affecting EGFR Y1045 and Y845 phosphorylation, both  of which have been 

implicated in lipid raft-dependent endocytosis (Jang, et al., 2001; Sigismund, et 

al., 2005). Phosphorylation of EGFR at Y1045, the binding cite for Cbl ubiquiting 

kinase, has been shown to be required for lipid raft-mediated EGFR 

internalization (Sigismund, et al., 2005), and we have shown above that TNK1 is 

required for Y1045 phosphorylation, while DGKD, DAPK3 and MGC16169 are 
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inhibiting the phosphorylation of Y1045. These observations implicate Cbl 

binding, EGFR ubiquitination and endocytosis in STAT3 signaling (see Figure 

4.10).  

 

 

Figure 4.10 A model of EGFR signaling at low and high EGF concentrations. A) At low EGF concentrations, only ERK 
pathway is activated. B) At high concentrations, STAT3 is also activated, which strongly correlates with the tyrosine 
phosphorylation of EGFR at 1173, 1045 and 845 residues. Y1045 is a binding cite for Cbl, and it also seems to be the site 
of action of at least a few of our hits. Y845 is required for PLCγ activation by EGFR, which only occurs in caveolae (Jang, 
et al., 2001), and TNK1 seems to be required for Y845 phosphorylation, thereby implicating this site in STAT3 activation 
by EGFR. 
 

  

 4.3.2 Experimental platform 

 

We have presented a pioneering study of combination of functional genomics 

screen with a functional proteomics platform for an efficient high throughput 

interrogation of human genes for their roles in signal transduction. As our tools, 

we chose human kinome siRNA library and reverse-phase protein arrays with 
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three readouts, phosphorylated ERK, phosphorylated STAT3 and Actin. We also 

developed a computational data mining strategy based on the protein interaction 

data from literature to infer functional relationships between our candidate hits 

from the screen. 

 

Although kinases are bona fide signal transducers, our experience shows that 

kinases are less likely to produce significant signal transduction phenotypes in 

RNAi screens. This may be due to a high redundancy between kinases, or due to 

the difficulty in achieving a knock-down level by RNAi that is sufficient to obtain 

a loss-of-function phenotype with many kinases. This can be observed in the 

RNAi-mediated knock-down of ERK pathway components in response to EGF, 

very few of which seem to affect ERK activation in response to EGF. In this 

study, we show that even the knock-down of the signal source, EGFR, does not 

affect ERK activation, although a high concentration of a small molecule inhibitor 

of EGFR does. In contrast, even a partial knock-down of SUR8, an essential 

scaffolding protein in Raf/ERK pathway, can cause a complete block of ERK 

activation in response to EGF. Therefore, it is possible that many of the essential  

kinases playing roles in EGF signal transduction have not been revealed in this 

study, and that the repertoire of kinases involved in the process of STAT3 and 

ERK signaling may be much wider than what has been shown here. An extension 

of our screen to include more gene families (like GTPases, scaffolding proteins, 
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etc…) may provide a significantly larger collection of potential regulators of 

EGF-mediated signal transduction. 

  CME C/R-E pERK pSTAT3 

MAP3K13 2.36 0.59 0.77 0.85 

MAP3K7 2.34 1.68 1.16 0.77 

MVK 0.86 2.97 1.50 1.27 

NPR1 0.08 0.92 0.79 0.71 

PNKP 0.85 0.46 1.25 0.96 

TTBK2 0.78 5.19 0.73 0.64 

MGC16169 0.93 1.17 0.80 1.29 

NYD-SP25 1.14 0.55 1.29 1.29 

FGR 0.65 0.58 0.72 0.83 

MAPK1 1.84 0.55 0.65 1.29 

MAPK4 0.62 2.25 0.59 0.89 

PFKFB1 2.33 1.01 0.77 1.03 

CHUK 0.33 0.62 0.93 0.78 

FGFR1 2.8 1.68 0.82 0.80 

HUNK 0.66 1.61 0.85 0.78 

ILK 1.66 2.11 NaN 0.58 

MAP3K2 0.98 0.1 0.92 0.71 

MAP3K3 1.83 0.49 0.88 0.77 

NEK8 0.51 3.28 1.03 0.68 

TEX14 0.56 2.5 0.81 0.50 

TNK1 0.51 0.53 0.92 0.75 

UCK1 1.02 1.7 0.89 0.71 

CSF1R 0.08 0.18 1.04 0.74 

CSNK2A2 0.49 0.6 1.09 0.65 

DGKB 1.1 0.11 0.96 0.67 

DYRK4 1.03 0.71 1.18 0.77 

EGFR 1.86 1 1.14 0.54 

EPHA3 0.77 0.94 1.17 0.63 

NEK4 0.98 1.24 1.13 1.33 

PSKH1 0.55 0.43 1.06 1.28 

VRK2 0.84 2.28 1.06 1.24 

VRK3 0.48 0.66 1.15 1.36 

DAPK3 1.11 1.1 1.16 1.50 

DGKD 0.13 3.55 1.09 1.23 

DMPK 0.45 1.27 1.02 1.28 

EPHA7 3.39 1.46 1.06 1.34 

MERTK 1.94 0.62 0.88 0.74 
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Table 4.2. Endocytosis data for our hits from Pelkmans et al (2005). CME indicates clathrin-mediated endocytosis, C/R-E 
indicates caveolae-raft mediated endocytosis. Values smaller than 0.33 here indicates required for endocytosis, while larger 
than 3 indicate suppresses endocytosis.  pERK and pSTAT3 are final neighbor and actin-normalized values from our 
screen.  
 

 

Our high density reverse phase protein arrays have made a high throughput 

profiling of large numbers of screen samples possible in a highly reproducible and 

quantitative manner. We addressed a problem of position-specific effects on the 

slide by applying a “smoothing” algorithm where we normalize each spot to its 

neighboring spots on the array, thereby essentially comparing each sample to its 

surrounding samples on the array. While this can open doors to other potential 

problems, such as false positives or negatives due to the nature of neighboring 

samples, we have obtained data that are biologically meaningful and reproducible 

within different experimental setups. Probably an ideal control, however, would 

be a multiplex measurement of slides with at least two antibodies, one of which 

will be a control for protein load like actin. In this way, each phospho-signal can 

be normalized to its actin signal without the need for complicated procedures of 

controlling for position-specific effects on the slide. A limiting factor to this 

approach is the tyramide-mediated signal amplification step in the staining 

procedure for reverse arrays (see Chapter 2). The use of two different signal 

amplification agents (like tyramide conjugated to biotin or fluorescein) can make 

multiplexing possible.  
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In order to get insights into potential mechanisms of action of our hits in the 

screen, we employed a network-based approach where we examined our hits 

within their context in the protein-protein interaction network. By extracting the 

most significant intermediary proteins that link hits to each other in the network, 

we were able to propose some hypotheses regarding the mechanistic and 

functional distinction of STAT3 and ERK pathway activations in response to 

EGF. To construct our network, we compiled protein-protein interaction data 

from many databases, most of which comes from literature-based curation. 

Perhaps the most obvious limitation in these data is the absence of information 

about the direction of impact in protein-protein interactions. For example, an 

interaction between a kinase and another protein can mean a phosphorylation, 

scaffolding or inhibition, each having an entirely different biological significance. 

Incorporating these data into our platform would greatly aid in the hypothesis 

generation about the possible mechanisms of action of hits. Another important 

addition to this platform would be incorporation of additional heterogeneous 

datasets for an improved data mining. Integration of gene expression data, other 

functional genomics data, sequence data, protein domain composition data and 

alike will no doubt expand the field of view offered by this type of network 

approach. 
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Our network-based method for extracting functional relationships between 

potential hits heavily relies on the existing information on protein interactions in 

the literature as well as the databases that compile these data. The existing 

information in the literature is likely to be biased towards the history of research 

interests in biology. Moreover, it is likely that many interactions reported in the 

literature are cell type or condition-specific, and therefore may not be applicable 

to the conditions in a given screen. A more ideal situation would be to be able to 

compile biological information about the relevant processes in an unbiased 

manner and that also will be compatible with the screen conditions at hand. A 

particularly exciting approach in this direction is offered by the recently 

developed mass spectrometry-based proteomics tools that have been extensively 

used for extracting condition-specific protein interactions (Blagoev, et al., 2003; 

Blagoev, et al., 2004; Cox and Mann, 2007; Dengjel, et al., 2007). A preliminary 

“screen” using these technologies about the biological processes of interest to the 

RNAi screen at hand would greatly aid in the interpretation of the subsequent data 

as well as in designing more effective experimental strategies for the screen. 

 

 4.3.3 Future work 

 

In this study, we were able to identify several potential novel regulators of the 

EGF signal transduction pathway like HUNK, MGC16169, TEX14, NYD-SP25, 
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TNK1 and DAPK3. In addition, we proposed previously unknown mechanisms of 

differential pathway activations by the EGF receptor, like clathrin or caveolae-

mediated endocytosis, PLCγ activity and/or EGFR phosphorylation. These 

potential mechanisms of EGF-mediated activation of ERK and STAT3 have to be 

investigated further, and the relevant roles of our potential hits have to be 

identified in these processes. 

 

Questions posed above will be primarily addressed by applying a correlative 

strategy, where correlation of STAT3 and/or ERK activation phenomena will be 

correlated with differential EGFR phosphorylation, endocytosis and/or PLCγ 

activity. Although there are many clues as to differential signaling of EGFR by 

each of these mechanisms in the literature, no study has addressed this issue with 

a sufficient rigor. We have shown that STAT3 activation requires high 

concentrations of active EGFR as evidenced from the STAT3 activation curves 

with different EGF and EGFR inhibitor concentrations (see above). First of all, 

the same experiment will be performed in a non-transformed human cell line in 

order to check if this phenomenon is specific for EGFR-overexpressing cells or if 

it reflects normal cell biology. Then, this experiment will be repeated by 

extending the number of readouts to include efficiency of endocytosis (both 

clathrin-dependent and caveolae-dependent), a panel of EGFR phosphorylation 

sites and a panel of other downstream pathways like AKT, p38 and JNK. In 
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addition, inhibition of clathrin-mediated endocytosis by clathrin RNAi, of 

caveolae-mediated endocytosis by specific small-molecule inhibitors of lipid raft 

formation like beta-cyclodextrin and of PLCγ activity by specific small-molecule 

inhibitor will performed with the same readouts as above. Finally, RNAi knock-

down of several of our hits will be performed using these same readouts. Primary 

goal of these experiments will be to extract correlations of each of these readouts 

with STAT3 and ERK signaling phenotype so as to get insights into the 

mechanisms of regulation of these two pathways by EGFR. 
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