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Epidemiology 
CML accounts for 7% to 15% of all leukemias in adults, with approximately 1 to 

1.5 cases per 100,000 population (16, 20). There is a male predominance, with a male to 
female ratio of 1.5 to 1. The incidence of CML has remained steady for the last 50 years. 
The median age at presentation is 50 to 60 years, but the disease occurs in all age groups 
(53). In early reports, more than 50% of patients were age 60 years and older, but this 
incidence has decreased in more recent studies to as low as 12% (77). This is likely due 
to the strict criteria of the Philadelphia chromosome positive disease and the exclusion of 
patients with other myeloproliferative disorders, Philadelphia chromosome (Ph)-negative 
CML and chronic myelomonocytic leukemia (CMML) (21, 28, 38). 

Etiology 
The underlying etiology of CML is unknown. There is little evidence for specific 

genetic predisposition for the development of CML. Children of parents with CML do 
not have a higher incidence of CML than in the general population. There is also no 
correlation in monozygotic twins, suggesting that CML is an acquired disorder. There 
may, however, be some correlation with the development of CML and the presence of the 
HLA antigens CW3 and CW4 (15). Survivors of the atomic disasters at Nagasaki and 
Hiroshima were reported to have a significantly higher incidence of CML, although this 
was not confirmed by cytogentic studies because the reports preceded the discovery of 
the Philadelphia chromosome. Thus many of these patients may have had CMML or 
other myelodysplastic syndromes (88). Therapeutic radiation has also been associated 
with increased risk of CML, as observed in some patients with ankylosing spondylitis 
given spinal radiation and women with uterine cervical cancer treated with radiation 
therapy (14, 17). Exposure to specific chemicals have not been associated with an 
increased risk for the development of CML. 

Definitions of Accelerated and Blastic Phases of CML (78) 

Accelerated phase CMl 
Multivariate analysis-derived criteria 

Peripheral blasts 15% or more 
Peripheral blasts plus promyelocytes 30% or more 
Peripheral basophUs 20% or more 
Thrombocytopenia <100 X to9 !L unrelated to therapy 
Cytogenetic clonal evolution 

Other criteria used In common practice 
Increasing drug dosage requirement 
Splenomegaly unresponsive to therapy 
Marrow reticulin or collagen fibrosis .. 
Marrow or peripheral blasts~ 10% 
Marrow of peripheral basophlls :t eoslnophlls ~ 10% 
Triad ofWBC>50 X 109 /L, hematocrit <25%, and 

platelets<100 X 109 /l not controlled with therapy 
Persistent unexplained fever or bone pains 

Blastic phase CML 
30% or more blasts In the marrow or peripheral blood 
Extramedullary disease with localized Immature blasts 
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Defmitions of CML Phases 
Definitions of the different phases of CML is important in order to determine the 

appropriate therapeutic intervention for patients (77). CML usually has a biphasic, and 
sometimes triphasic, course. The disease presents in an indolent or chronic phase, which 
after 2 to 6 years of conventional therapy, evolves into an accelerated phase that lasts for 
less than 1 to 1.5 years. The accelerated phase is followed by the blast phase, which 
results in the patient's death within t. Twenty percent to 25% of patients die during the 
accelerated phase, and another 20% to 25% progress directly from chronic to blast phase 
without a discernible accelerated phase (97). Standard definitions of the accelerated and 
blastic phases of CML have been proposed (75, 77, 81). 

Clinical Presentation 
CML is frequently asymptomatic in the chronic phase of the disease. The 

incidence of asymptomatic cases has increased over the last decade from 15% to about 
45% of all cases, due to diagnosis by routine blood counts (54, 62, 77). Patients with 
symptoms usually have a gradual onset of fatigue, anorexia, weight loss, increased 
sweating, left upper quadrant discomfort, and early satiety because of splenomegaly. The 
magnitude of splenomegaly correlates well with the total body granulocyte mass and the 
blood granulocyte count. The degree of splenomegaly may be an indication of the 
duration of the chronic phase of the disease with gross splenomegaly predicting a shorter 
time for the development of the blast phase. Splenomegaly was documented in 
approximately 70% of patients in older reports, but it has decreased to 50% in more 
recent studies. Hepatomegaly is less common (1 0% to 40% of patients). 
Lymphadenopathy is uncommon in chronic phase CML, and its appearance suggests 
either accelerated or blastic phase disease (73, 75). Rare patients with very high WBC 
counts may have manifestations of hyperviscosity, including priapism, tinnitus, stupor, 
visual changes from retinal hemorrhages, and cerebrovascular accidents (135, 137). 

Presenting Features of Patients with Chronic Phase ofCML (48) 

Presenting Features 

Age i!:60y 

Asymptomatic presentation 
Hepatomegaly 

Splenomegaly 
Hemoglobin level< 120 g/l 

Patients at the 
University ofTexas 

M.D. Anderson 
Cancer Center 

15 

45 

9 
48 
45 

Leukocyte count i!: 100 cells x 109 /L 52 
Platelet count> 700 cells x 109/L 15 

Peripheral blood blasts 52 
Peripheral basophlls i!: 7% 14 

Marrow blasts i!: 5% 6 
Marrow basophlls i!: 3% 26 

3 

% 

Patients at 
Hammersmith 

Hospital (United 
Kingdom) 

0.2 

20 
2 

76 
62 

72 
34 

NA 
NA 

NA 
NA 



The accelerated phase of CML is a somewhat ill defined transitional phase (73). 
It is occasionally asymptomatic and the diagnosis is made based on increased blasts in the 
peripheral blood and bone marrow. Some patients may have fever and night sweats, as 
well as progressive enlargement of the spleen (73). At least 20% of chronic phase 
patients develop a blast phase without evidence of an accelerated phase. 

Poor Prognostic Factors in CML (78) 

CUnical 
Older age 
Symptoms at diagnosis 
Significant weight loss 
Hepatomegaly 
Splenomegaly 
Poor performance 
Black race 

Laboratory ' 

Anemia 
Thrombocytosis, thrombocytopenia, megakaryocytopenla 
Increased basts, or blasts+ promyelocytes in blood or marrow 
Increased basophlls In blood or marrow 
Collagen or reticulin fibrosis grade 3- 4 

Treatment-associated 
Longer time to achieve hematologic remission with busulfan chemotherapy 
Short remission duration 
High total dose of busulfan or hydroxyurea therapy required in the first year 

to control the disease 
Poor Initial hematologic or cytogenetic response to Interferon-alpha therepy 

The blastic phase CML resembles acute leukemia (61, 75, 87, 152). Its diagnosis 
requires the presence of at least 30% of blasts in the bone marrow or peripheral blood. 
Patients in the blast phase are more likely to have symptoms, including weight loss, 
fever, night sweats, and bone pains (75). Symptoms of anemia, infectious complications, 
and bleeding are common and signs of CNS leukemia may be seen particularly with 
lymphoid blast transformation (30% incidence). In some patients the blastic phase is 
characterized by extramedullary deposits of leukemia called myeloblastomas or 
chloromas (72, 143). These usually appear in the CNS, lymph nodes, or bones, and 
occasionally they occur in the absence of blood or bone marrow evidence of blastic 
transformation (72, 75). Most of these patients develop hematologic manifestations 
within a few months (143). Patients in blastic phase usually die within 3 to 6 months. 
The major cell detected in the peripheral blood in the blastic phase is myeloid in 
approximately 50% of patients, lymphoid in 25% and undifferentiated in 25%. Patients 
with lymphoid blastic phase respond to therapy used to treat acute lymphoblastic 
leukemia (50% to 60% of the time). Although their median survival is better as 
compared with myeloid or undifferentiated cases (9 months versus 3 months) however, 
the prognosis for all patients with blastic phase CML is still very poor (37, 44). 
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Laboratory Features 
The most common peripheral blood feature of CML is an elevated WBC count, 

usually above 25 x 109 /L, and frequently above 100 x 109 /L. (135). Some patients have 
wide cyclic variations in the WBC count of up to an order of magnitude in 50- to 70-day 
cycles (70). At diagnosis, circulating BFU-E and CFU-GM progenitor numbers in CML 
may be increased up to 180-fold and 9000-fold, respectively. Leukostasis is a particular 
problem in 60% of childhood cases, reflecting the very high WBC in children with Ph­
positive CML. The platelet count is elevated in 30% to 50% of patients, and it may be 
greater than 1000 x 109 fL in some patients (98, 140). Although platelet function is 
frequently abnormal in vitro most frequently with a decreased secondary aggregation in 
response to epinephrine, this is not usually associated with bleeding. Most patients have 
mild anemia at diagnosis, but untreated patients may be severely anemic. Patients in 
chronic phase do not have an increased risk for infections, although in vitro neutrophil 
function abnormalities are common (29, 155). Marrow hyperplasia of myeloid cells in 
CML is caused by progenitor cell expansion, a slower cell cycle, prolonged maturation­
division times, and delayed compartmental transit. The WBC differential usually shows 
granulocytes in all stages of maturation, from blasts to mature granulocytes, which look 
morphologically normal. Basophils are usually elevated, but only 10% to 15% of 
patients have at least 7% basophils in peripheral blood. A very high proportion of 
basophils in the peripheral blood (ie, at least 20%) is usually associated with accelerated 
phase disease (73). Eosinophils are also frequently elevated, although to a lesser degree. 

Peripheral Blood and Bone Marrow in CML (129) 

B. 

The bone marrow in the chronic phase of CML is hypercellular, with a cellularity 
of 75% to 90%, and very scarce fat (83). The myeloid to erythroid ratio is 10:1 to 30:1 , 
rather than the normal 2:1 to 5:1. Bands plus segmented neutrophils, metamyelocytes, 
and the combined numbers of myeloblasts, promyelocytes, and myelocytes occur in 
equivalent proportions, demonstrating a marked shift toward myeloid immaturity. 
Megakaryocytic hyperplasia is common, and dysplastic changes variably affect all cell 
lines. About 30% of CML patients develop focal or diffuse increases in marrow reticulin 
fibers (reticulin fibrosis) early in the disease, and some 20% develop extensive new 
collagen formation (collagen fibrosis). 
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LAP activity is reduced in nearly all patients at diagnosis (125). Serum vitamin 
B 12 levels are increased up to 10 times the normal levels in proportion to the amounts of 
transcobalamin I and III released during breakdown of CML granulocytes. Increased 
production of uric acid, with hyperuricemia and hyperuricosuria, is common in untreated 
CML. Serum levels of lactic dehydrogenase are also frequently elevated. 

Molecular Analysis 
The molecular diagnosis of CML is based on the detection of the Philadelphia 

(Ph) chromosome which is a translocation of chromosomes 9 and 22 (106, 126) t(9;22), 
two exellent reviews of this subject have recently been written (49, 129). This 
translocation is present in 95 percent of the patients with CML. Another 5 percent have 
complex or variant translocations. However, the result of these translocations is the 
fusion of the BCR (breakpoint cluster region) gene on chromosome 22 to the ABL 
(Ableson leukemia virus) gene on chromosome 9. This translocation is not limited to 
myeloid cells, but is also found in erythroid, megakaryocytic, and B lymphocytes. Thus 
CML is a stem-cell rather than a myeloid specific disease. During the development of 
blast crisis, a variety of additional chromosomal changes develop including duplication of 
the Ph chromosome and trisomy 8 (11). In addition, mutations or deletions of tumor­
suppressor genes including p16 (132) and p53 (2) also occur with variable frequency late 
in the disease and likely contribute to the pathogenesis of blast crisis. 

The Translocation oft(9;22)(q34;q11) In CML (49) 

Chromosome 22 
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The result of the t(9;22) translocation is the generation of a fusion protein, BCR­
ABL, which is a constitutively active cytoplasmic tyrosine kinase. Depending on the site 
of the breakpoint in the BCR gene, the fusion protein can vary in size from 185 kd to 230 
kd. Each fusion protein differs in the length of BCR sequence retained at the N terminus, 
but encodes the same portion of the ABL tyrosine kinase. Nearly all patients with 
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chronic-phase CML express a 210-kd BCR-ABL protein, whereas patients with Ph­
positive acute lymphoblastic leukemia express either a 210-kd or a 190-kd BCR-ABL 
protein. A 230-kd BCR-ABL fusion protein is found in a subgroup of patients with CML 
who present with a lower white-cell count than typical CML patients and in whom 
progression to blast crisis is slow (114). Laboratory studies of the biologic activity of 
these proteins indicate that the 190-kd BCR-ABL protein has greater activity as a 
tyrosine kinase and is a more potent oncogene than the 210-kd or 230 kd proteins Thus 
BCR-ABL fusion proteins of different sizes can be correlated with different biological 
activities with the magnitude of the tyrosine kinase signal likely correlating with the 
clinical outcome of the disease (95, 150). 

Functional Domains of p160BCR, p145ABL, and p210BCR-ABL (49) 

BCR (chromosome 22) ABL (chromosome 9) 

N N c 

Col.led- Ser--thr GEF RAC GAP Myrlstoylaton SH sites Binding .sites 
coli motif kinase (OBL-IIke). site tvr kinase (nucleus, DNA, act ion) 

1 1 ' • 

GAG 

Highly sensitive and specific molecular BCR-ABL probes are useful for 
monitoring responses to therapy. Quantitative cytogenetic information can be obtained 
by fluorescence in situ hybridization (FISH) without the need to culture cells or analyze 
cells in metaphase (144). Polymerase-chain-reaction (PCR) testing of peripheral-blood 
RNA is highly sensitive resulting in the detection of 1 Ph-positive cell expressing the 
BCR-ABL fusion transcript present in 106 normal cells (30). Thus the response of CML 
to treatment can now be based on the hematologic, cytogenetic, and molecular criteria. A 
hematologic remission indicates a return of peripheral-blood cell counts and bone 
marrow morphology to normal, whereas cytogenetic and molecular remissions indicate 
the disappearance of the Ph chromosome or the BCR-ABL gene, respectively. 

Negative PCR results in patients treated by allogenic bone marrow transplantation 
clearly predict a favorable outcome (68, 118). However, the results of PCR assays can 
remain positive in interferon-treated patients who are in complete cytogentic remission 
and patients who have survived for several years after bone marrow transplantation, two 
subgroups with very favorable outcomes (66, 103). This is likely due to remaining small 
numbers of leukemic cells. Quantitative PCR assays are now being performed which 
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permit quantitation of the level of BCR-ABL messenger RNA transcripts. Using this 
assay, a progressive increase in BCR/ ABL RNA levels in patients minimal residual 
disease after allogeneic transplantation appears to predict eventual relapse (30). It is 
likely that this quantitative PCR assay will become the standard in determining the 
clinical course of CML. 

Mechanisms of BCR-ABL Leukemogenesis 
The mechanism by which BCR-ABL results in leukemia has been studied in both 

mice models and by biochemical techniques. For example, transgenic mice containing 
the 190-kd BCR-ABL protein result in animals with acute leukemia at birth (64). These 
mice also contain secondary chromosomal abnormalities analogous to blast-crisis cells in 
humans (151). Retroviral-mediated transfer of the BCR-ABL gene into hematopoietic 
stem cells of normal mice results in the generation of acute and chronic myeloid 
leukemias depending on the genetic background of the mice (31, 46, 82). 

The effects of overexpression of BCR-ABL on the growth and cellular 
transformation of,hematopoietic cells has also been analyzed. BCR-ABL can transform 
hematopoietic cells so that their growth and survival becomes independent of cytokines 
(58, 100). Its expression protects hematopoietic cells from programmed cell death 
(apoptosis) in response to either cytokine withdrawal and DNA damage by chemotherapy 
or radiation (47, 105). BCR-ABL also increases the adhesion of hematopoietic cells to 
extracellular-matrix proteins by increasing the activity of integrin (6) which may localize 
these cells to sites where growth inhibitory cytokines are present. 

Signaling Pathways ofp210BCR-ABL (49) 

The BCR-ABL protein is a constitutively active tyrosine kinase which is present 
in the cytoplasm, whereas the wild-type ABL protein shuttles between the nucleus and 
cytoplasm (92, 146). The BCR-ABL protein can thus phosphorylate a number of 
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cytoplasmic proteins due to its increased tyrosine kinase activity, thereby activating 
multiple signal-transduction pathways that affect the growth and differentiation of cells. 
The substrates include CRKL (104, 110, 142), p62Dok (24, 154), paxillin (128), CBL 
(34) and RIN (1). These substrates are involved in activating a number of critical 
signalling pathways including RAS (96), RAF (113), phosphatidylinositol-3 kinase (133), 
JUN kinase (119), MYC (130), and STAT (23, 69, 131). Thus the BCR-ABL protein 
activates the same signaling cascades that are activated by cytokines and are involved in 
the control of growth and differentiation of normal hematopoietic cells. Since the BCR­
ABL exhibits constitutive tyrosine kinase activity, cells with this translocation exhibit 
enhanced growth properties and become leukemic. 

Role ofp21oocR-ABL Protein in Leukemogenesis (148) 

P21 0 BCR/ABL 

+c-myc ,,,,, ••at•tt 
Survival 

Expansion Drug Resistance Blast crisis 

Cytotoxic therapy 
As treatment for CML has improved, the goals of therapy have changed 

markedly. In more than 80% of chronic phase CML patients, hydroxyurea and other 
cytotoxic agents have the ability to control the signs and symptoms of CML caused by 
the myeloid hyperplasia, leukocytosis, and organomegaly (53, 63). However, these 
agents have little or no effect on progression of the disease into blast transformation. All 
patients receiving traditional cytotoxic therapy will eventually evolve into blast phase and 
succumb to their disease after a median survival of 3 to 6 years. 

Criteria for Response to Therapy in CML (78) 

RESP6NSE CATEGORY CRITERIA 

Hematologic remission Complete Normalization ofWBC counts to <9 x 109/L 
with normal differential 

Normalization or platelet counts to <450 x 1 09/L 

DISappearance of all signs and symptoms 
of disease 

Partial Normalization ofWBC with persiStent Immature 
peripheral cells, or splenomegaly or 
thrombocytosis at <50% pretreatment level 

C,ytogenetlc respo~e Complete No evidence ofPh-posltl've cells 

Partial 1% to 34% ofmetaphases Ph-positive 

Minor 35% to 90% of metaphases Ph- positive 

None All analyzable cells Ph-positive 
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Hydroxyurea is a cycle-specific inhibitor of DNA synthesis that has been used to 
treat CML since 1972 (127). Hydroxyurea gives a rapid but relatively transient control of 
the hematologic manifestations of CML and patients requires frequent follow-up. It is 
usually given at a dose of 20-30 mg/kg and in an attempt to keep the WBC at 
approximately 2 x 109

• Hydroxyurea is very well tolerated by most patients and has very 
few side effects. Prolonged treatment with hydroxyurea causes red cell macrocytosis and 
megaloblastic changes in the marrow due to its effects on inhibiting DNA synthesis. 
Hydroxyurea and another agent busulfan can both control the hematologic manifestations 
of the disease in more than 80% of CML patients. A large randomized study of 458 
patients prospectively compared these two agents in chronic phase CML (63). Patients 
randomized to hydroxyurea therapy had a significantly longer median survival (56 versus 
44 months) than did the patients who received busulfan. The survival advantage 
conferred by hydroxyurea was evident in all prognostic subgroups. The median duration 
of chronic phase in the hydroxyurea cohort was significantly longer (47 versus 37 
months), than in the busulfan cohort. However, no patients achieved a complete 
cytogenetic response to either agent. There were no serious adverse events with 
hydroxyurea, in contrast to serious adverse events including prolonged marrow aplasia or 
pulmonary toxicity in 6% of patients receiving busulfan. Therefore, hydroxyurea is 
clearly better in controlling CML giving less toxicity and a more prolonged survival as 
compared to busulfan. However, neither agent induces cytogenetic remission or 
significantly delays the time to the development of blast phase. 

Chemotherapeutic Drugs Used to Treat 
the Chronic Phase ofCML (129) 

DRUG 

Hydroxyurea 
Busulfan 

Interferon 
alfa 

Interferon 
alfa plus 
cytarabine 

Interferon-alpha 

DOSE 

0.5-2.0 g/day orally 
2.0-6.0 mg/day orally 

5 million U/m2/day sub­
cutaneously 

Interferon alfa, 5 million 
U/m2/day subcutane­
ously, plus cytarabine, 
20 mg/m2/day for 10 
days each month 

ADVERSE EFFECTS 

Cytopenias, rash, nausea 
Cytopenias, rash, bone mar­

row aplasia 
Fever, myalgias, rash, depres­

sion, thrombocytopenia 
Fever, myalgias, rash, depres­

sion, thrombocytopenia, 
nausea, vomiting, diarrhea, 
mucositis, weight loss 

Interferon-alpha (IFNa) therapy prolongs survival and delays the progression to 
the blast phase in patients with CML when compared with therapy using either 
hydroxyurea or busulfan (3, 91, 112). The dose of IFNa used may be important for 
obtaining complete cytogenetic response. Patients receiving less than 5 MU/m2 three 
times a week have less than 10% incidence of major cytogenetic remissions, as opposed 
to a 40% likelihood of a major cytogenetic response if patients 5 MU/m2 daily. However, 
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IFNa toxicity increases with dose. Patients who develop serious toxicities must 
discontinue IFNa until they resolve, and therapy can then be reinstituted with a 50% dose 
reduction. Moderate chronic toxicities such as a WBC less than 2 x 109 or a platelet 
count less than 50 x 109 may be alleviated by a 25% reduction of the dose of IFN a . 

Mechanisms Underlying Therapeutic 
Effects of Interferon-alpha (148) 

IFN-a 

L-selectin t 

LFA-3 + 

Although major cytogenetic remissions induced by IFNa therapy are durable, it is 
uncertain how long they last after discontinuation of IFNa therapy. One approach is to 
continue IFNa therapy until a complete cytogenetic response is seen and PCR negativity 
is documented for 3 years. About 40% of such patients continue in complete remission at 
a median of 40 months off such therapy (39, 89). 

Response to IFN-alpha by CML Phase (78) 

CYTOGENETIC RESPONSE (%) 

PHASE CHR (%) ANY MAJOR 

Early chronic 60-80 40-50 20-35 

Late chronic 40-60 10-20 <10 

Accelerated 20-30 <10 0 

Blastic <10-20 <10 0 

CHR =Complete hematolog.l.c remission 

Initial studies of combining IFNa with cytotoxic agents were conducted to 
investigate whether patients who failed to achieve a cytogenetic remission to IFNa alone 
might do so with combined therapy. Furthermore, it was important to determine whether 
cytogenetic remission rates might be improved by combination therapy. Since ara-C 
selectively suppresses the growth of CML cells over that of normal hematopoietic cells in 
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vitro (134), combinations of IFNa and ara-C were investigated in patients with late 
chronic phase disease (55, 74). 

A combination of daily IFN-a (5 MU/m2 ) and low-dose ara-C in different 
schedules (10 mg/day or 20 mg/m2 /day for 10 days) was well tolerated and associated 
with cytogenetic and clinical results similar to those seen in CML patients who receive 
therapy with IFN-a alone. However, lowering the dose of IFN-a in regimens with ara-C 
may be associated with a lower major cytogenetic response rate. A current International 
Oncology Study Group (IOSG) randomized study comparing IFN-a /HU with IFN-a 
/ara-C in early chronic phase CML is now underway to better evaluate the efficacy of 
ara-C in combination with IFN-a. 

Cytogenetic and Hematologic Responses to Interferon-a Plus or Minus 
Cytarablne, Results of Three M.D. Anderson Cancer Center Phase II Studies (76) 

IFN-a +Dally IFN-a +Intermittent 
low dose cytarablne low dose cytarablne IFN-a alone 

Response [N=134] [N=45] [N=274] 

Complete hematologic response 92 84 80 
Cytogenetic response (overall) 74 73 58 
CR ''} 20} 26} 

50% 38% 38% 
PR 19 18 12 
Minor response 24 33 20 
Median follow-up (mo) 42 52 65 

Allogeneic Transplantation 
Allogeneic stem cell transplantation (alloSCT) is the only form of treatment for 

chronic myelogenous leukemia (CML) with a prospect of cure in the majority of patients. 
Several advances in the past two decades have made CML the most frequent indication 
for allogeneic stem cell transplantation (60, 124). Improved control of complications 
such as graft-versus-host disease (GVHD) has resulted from treatment with cyclosporin 
A and methotrexate (136) and by depletion ofT-cells from the graft (59). Supportive 
treatment for prophylaxis of viral infections reduces the risk of complication from 
allografts further ( 1 02). The most important need to make more patients with CML 
eligible for transplantation is to further expand large registries of HLA-typed volunteer 
donors. In the last decade, the number of registered donors has increased worldwide 
from about 100,000 donors to more than 6 million. As a consequence the likelihood of 
finding a suitable donor has increased dramatically in the last decade (7) (National 
Marrow Donor Program Report 1998). Moreover, the methods for matching unrelated 
donors with patients has improved through the use of high resolution typing of DNA. 
Approximately 35% of Caucasian patients, 33% of American Indian/Alaskan, and 31% 
of Hispanic, but only 24% of Asian/Pacific and 22% of African/American proceed from 
search from a donor to transplantation. The median age of patients with CML is 
approximately 50 years so that increasing the age of patients has increased the proportion 
of patients grafted for the treatment of CML. 
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Results of Allogeneic Bone Marrow 
Transplantation in Patients with CML in Chronic Phase (129) 

No. OF DURATION OF 
STUDY AND TYPE OF DONOR PATIENTS FOLLOW-UP SURVIVAL RELAPSE 

yr percent 
HLA-matched related donor 

IBMTR 2231 3 57 
EBMT 373 8 54 
Clift and Anasetti 351 >10 70 

HLA-matched unrelated donor 
NMD 779 3 40 
IBMTR 331 3 38 
Hansen et al. 196 5 57 

IBMTR denotes International Bone Marrow Transplant Registry, 
EBMT European Group for Blood and Marrow Transplantation, NMDP 
National Marrow Donor Program, and NA not available 

This study was performed at the Fred Hutchinson Cancer Center in 
Seattle 

13 
19 
20 

5 
NA 
NA 

The success of allogeneic stem cell and marrow transplantation for CML is 
dependent on the histocompatibility of the donor and host, the stage of the disease at the 
time of transplantation, the age and sex of the donor and host, and the time from 
diagnosis to transplantation. Adverse risk factors are patients with CML in the 
accelerated phase or blast crisis, less than a fully matched donor, age over 40 years, a 
female donor for a male patient, and transplantation more than a year from the diagnosis. 
Patients with 0 or 1 risk factors had a 5-year survival of 70-72%, while the survival of 
patients with 5 or 6 risk factors was only 18-22%. In transplantation from unrelated 
donors the age of the patient, matching of the HLA-DR locus, the time from diagnosis to 
transplant, obesity, and CMV status are risk factors. 

Relapse and Survival of CML Patients 
Transplanted in First Chronic Phase (84) 

Donor N. Eval. Relapse% Survival% 

Twin 49 51 86 
HLA-identical sibling 4630 17 65 
Unrelated 1234 18 46 
HLA- identical, 

T -cell depleted 281 45 64 
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Survival of Patients Treated with Allogeneic Marrow 
Transplantation for CML (84) 
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Between 20 and 30% of patients with CML have an HLA-identical sibling as 
donor. Patients up to the age of 55 years are evaluated for transplantation, if the patient 
does not have additional serious diseases. About one half of the patients with CML 
treated with allogeneic transplants remain free of leukemia. However, relapses may 
occur late, more than 10 years after transplantation (45). The results of these unrelated 
donor transplants have improved considerably, due to better immunosuppressive agents 
and to better HLA-typing using high-resolution DNA probes. In several recent studies 
the results of unrelated transplants were not markedly worse than those of related donors. 
The most important factors for transplants using unrelated donor is that the disease is in 
the chronic phase and the age of the patient is less than 50 years of age (75% vs 45% 
chance of survival). 

Donor Lymphocyte Transfusions 
Treatment of patients with CML who relapse following an allogenic transplant 

sometimes respond to donor lymphocyte transfusions. Donor lymphocytes from HLA­
identical sibling donors (85) can sometimes have marked effects on relapsed CML. Two 
large studies confirmed this experience with the transfusion of donor lymphocytes for the 
treatment of recurrent leukemia after allogeneic stem cell transplantation (27, 86). Best 
results were seen in patients with hematological relapse in chronic phase of the disease or 
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those who develop either a cytogenetic or molecular relapse. Intermediate results were 
seen in patients with accelerated or blast phase of CML. Graft versus host disease 
develops in about 52% of patients treated with donor lymphocyte transfusion and in 36% 
of the patients the graft-versus-host disease is severe enough to require treatment with 
immunosuppressive agents. Another complication of donor lymphocyte transplant is 
myelosuppression, which is transient in some patients but severe in up to 20% of patients. 
Factors that favorably influence the remission rate in patients with CML include patients 
with cytogenetic or hematological relapse rather than those I nthe blast phase, chronic 
phase of the disease at the time of transplantation, more than one year of remission after 
transplantation, the presence of donor-host chimerism, and the absence of chronic GVHD 
after transplantation. The potential role of combinations of IFNa. and donor lymphocyte 
transfusions on patients with relapsed CML remains to be determined. 

Survival after donor lymphocyte transfusion may be as good as that after 
transplantation. In certain settings, the survival probability for patients with a 
hematological relapse is 58% at 8 years and that for patients with a cytogenetic relapse is 
80% at 6 years. Some patients who have a second relapse of CML will respond 
favorably to a second treatment with donor lymphocyte transfusion. However, after a 
single donor lymphocyte transfusion most patients become and remain negative for 
BCRJABL by RTPCR (93). 

Survival of patients treated with donor lymphocyte 
transfusion for recurrent CML after allogeneic 

transplantation (84) 
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The graft versus leukemia effect of donor lymphocyte transfusion is not well 
understood. Cells that may be involved in these effects include T -cells, natural killer 
cells (NK), macrophages and dendritic cells. The cells may recognize leukemia-specific 
antigens, histocompatibility antigens or other antigens present on leukemia cells only. 
The clinical response to donor lymphocyte transfusion requires several weeks to occur, 
while the cytogenetic and molecular responses may take several months. The median 
time to a cytogenetic and a molecular response is 4 to 6 months with late responses 
occurring even more than a year after transfusion (147) . Responses to donor 
lymphocytes are seen in all groups with an allogeneic donor but are not seen in syngeneic 
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twins who have served as donors for transplants with CML. This finding supports the 
view that the graft versus leukemia effects is directed against minor histocompatibility 
antigens on leukemic cells. A remission has also been induced in a patient in which 
donor T-cells were ex vivo expanded and selected for reactivity to CML cells (50). 

Autologous Transplantation 
A number of agents are currently being explored to treat patients with CML in the 

accelerated or blast phase (76). High-dose chemotherapy when followed by infusion of 
purified stem-cells from CML patients should theoretically provide a means to perform 
autologous transplants with Ph-negative stem cells. Stem cells that are Ph-negative are 
harvested during the recovery phase after induction chemotherapy, and then are infused 
following high-dose chemotherapy where they successfully can engraft, to result in Ph­
negative hematopoiesis (22). However, Ph-positive hematopoiesis inevitably recurs, 
usually within the first year after transplantation, with a return to the chronic phase of 
CML (99, 123). This recurrence probably results from the failure to remove all cells that 
are positive for BCR-ABL during the enrichment process. This hypothesis has been 
confirmed in retrovirus-marking trials, which demonstrate that virus-marked CML cells 
contribute to relapse (36). This result has provided a rationale to purge stem-cell 
preparations of residual CML cells with antisense messenger RNA directed against either 
BCR-ABL (33) or the MYB gene (52), perform in vitro culture conditions that select 
against Ph-positive cells (5), or physically separating Ph-negative stem cells from Ph­
positive stem cells (149). The clinical feasibility and safety of each of these strategies 
have been demonstrated but their therapeutic value remains to be proved. 

Autografting when it is combined with effective purging strategies, is unlikely to 
result in long-term remissions in most patients. This is due to the fact that a graft-versus­
leukemia effect do_es not develop in these patients as compared to patients who receive an 
autologous transplant. For example, the relapse rate is two to three times as high in 
patients who receive bone marrow transplants from their identical twins - compared to 
patients who receive HLA-matched transplants from siblings who were not their identical 
twin (26, 67). Thus, it is likely that patients who receive autografts for CML will require 
post-transplantation therapy to remain in remission. For example, treatment with IFNa 
may be able to induce Ph-negative hematopoiesis in a subset of patients who receive an 
autologous transplants. This is based on the fact that IFNa can induce remissions in 
some patients who relapse after allogeneic bone marrow transplantation (4, 65). 

Investigational Therapies 
Homoharringtonine (HHT) is a plant alkaloid derived from the Cephalotaxus 

fortuneii tree. When HHT is used as a low-dose continuous infusion of 2.5 mg/m2 daily 
for 14 days for induction, then for 7 days every month in patients with late chronic-phase 
CML, it can induce a complete hematologic response in two-thirds of patients (more than 
50% of whom were resistance to IFN-a) and a cytogenetic response in one-third of these 
patients (half of which were major responses) (108). When HHT is given for 6 cycles as 
remission induction followed by IFNa maintenance to patients with early chronic-phase 
CML, the complete hematologic response rate is 92% and the cytogenetic response rate is 
68% (109). Combinations to determine the efficacy of HHT and IFNa are now in 
progress (107). 
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Progression of CML is associated with hypermethylation of the Pa promoter 
region of the BCR-ABL gene (9, 71 ). 5-azycytidine and 5-aza-2'-deoxyazacytidine 
(decitabine) are cytidine analogues capable of inhibiting the DNA methyltransferase 
enzyme. Decitabine produces response rates of 25% in blast phase and 53% in 
accelerated phase disease (79). When decitabine is compared with intensive 
chemotherapy as initial therapy for CML blastic phase, it is associated with significantly 
better survival among patients 50 years or older. Investigations of decitabine in 
combination with busulfan and cyclophosphamide as part of a preparative regimen for 
allogeneic SCT and as salvage therapy with stem cell rescue after relapse from allogeneic 
transplantation are in progress (80). 

A modified IFNa molecule can be covalently attached to polyethylene glycol. 
PEG interferon has a longer half-life than the parent compound and is given once weekly 
instead of daily. In a phase I study, Talpaz et al (139) treated 21 patients with CML in 
chronic phase with escalating doses of PEG interferon. In addition to a better side effect 
profile of PEG interferon, 50% of patients achieved a hematologic response, including 4 
of 13 patients who had been resistant to IFN-a. Preliminary results with PEG interferon 
are promising since it appears to be easier to deliver (once weekly), less toxic, and 
possibly more effective than IFN-a. 

Molecular Approaches for Treating CML 
Early in the pathogenesis of CML, the only known genetic abnormality is the 

BCR-ABL gene itself. Due to its unique sequence structure, the BCR-ABL gene and its 
cognate mRNA and fusion protein are potentially ideal targets for disruption in an 
attempt to prevent expansion of the leukemic cells. Several strategies aimed at blocking 
BCR-ABL functions are currently being investigated. An alternative to inhibiting BCR­
ABL itself is to target proteins which are directly or indirectly modulated by BCR-ABL 
in its various oncogenic pathways. 

Attempts to design therapeutic tools for CML based on our current knowledge of 
the molecular and cell biology of the disease have concentrated on three main areas: (a) 
inhibition of gene expression at the translational level by 'antisense' strategies; (b) 
modulation of protein function by specific signal transduction inhibitors, and (c) 
stimulation of the immune system to recognize and destroy the leukemic cells. 

Antisense Therapy Against BCR-ABL 
The unique b2a2 or b3a2 junctional sequences of the BCR-ABL transcripts are 

potential targets for antisense approaches in CML. The first studies (32, 138, 153) 
provided encouraging results, reporting on suppression of colony formation by CML but 
not normal cells exposed in vitro to oligonucleotide decoys directed against either BCR­
ABL junctional sequence. Nevertheless, other groups working on such systems have 
been unable to reproduce these results only with limited success. Attention then shifted 
to physiologically relevant proteins other than BCR-ABL that are involved in the 
pathogenesis of CML. 

Targeting adaptor proteins required for BCR-ABL signal transduction is an 
alternative for antisense targeting. For example, Tari et al (101) used liposome-coated 
nuclease-resistant antisense oligonucleotide against the translation initiation sites of 
either CRKL or GRB2 adaptor proteins in cultures of two CML and one Ph+ ALL cell 
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lines. Downregulation of the respective protein expression was followed by a significant 
decrease in cell viability in the three BCR-ABL-positive lines, whereas ras induced 
proliferation of a control BCR-ABL-negative cell line was unaffected. Other candidate 
genes for antisense therapy are not directly linked to BCR-ABL but are expressed in early 
hematopoietic cells and seem to be more essential for growth of leukemic rather than 
normal hematopoietic cells. Examples of these are the KIT receptor (122) the VA V 
protein (94, 156) and MYB (18). MYB antisense oligonucleotide have been shown to 
preferentially inhibit the in vitro growth of CML, as compared to normal progenitors (19, 
120) and to increase the survival of SCID mice transplanted with the K562 CML cell line 
(121). 

Peptide Therapy to Generate Leukemia Specific CTLs 
An exciting new approach to induce a CTL response is to pulse dendritic cells 

with exogenous 8-25 amino acid peptides derived from the b3a2 or b2a2 junctional 
regions of the BCR-ABL fusion protein. Four peptides spanning the b3a2 junction were 
found to bind with intermediate to high affinity to selected HLA class I molecules (13). 
One of these peptides (11 amino acids) was able to induce specific CTLs in two of three 
HLA3 donors against autologous and allogeneic HLA-matched peptide-pulsed 
mononuclear cells. A longer 25 amino acid peptide could stimulate an HLA class 11-
restricted T-cell proliferation in three out of seven donors with the HLA- DR11 haplotype 
(12). A recent study (141) succeeded in generating CD4 and CD4/CD8 T-cell clones by 
repetitive stimulation with a 17 amino acid peptide covering the b2a2 fusion region in an 
HLA-Dr51 normal individual. 

A clinical trial was begun to determine the safety and immunogenicity of a 
multidose, multivalent b3a2 peptide vaccine in 12 patients with CML in the chronic 
phase of their disease. No significant adverse effects were seen. Three out of six patients 
treated at the two highest dose levels of vaccine, generated peptide-specific T cell 
proliferative responses ex vivo and/or delayed type hypersensitivity responses, lasting up 
to 5 months after vaccination. However, specific CTLs were not identified (116). The 
overall results suggest that a BCR-ABL derived peptide vaccine can be safely 
administered to CML patients and can elicit a specific immune response. It remains to be 
seen whether this type of vaccination will result in significant clinical benefit. 

Tyrosine Kinase Inhibitors 
One of the tenets of rational drug design for cancer therapy is to define specific 

molecular abnormalities in tumors and then to use this data to develop specific inhibitors. 
In CML, we may be near the time when rational drug design to inhibit BCR-ABL 
function is a reality. The BCR-ABL fusion proteins are constitutively activated tyrosine 
kinases with increased protein tyrosine kinase activity as compared to the c-ABL tyrosine 
kinase (95, 100). Numerous studies have shown that tyrosine kinase activity is required 
for the transforming abilities of the BCR-ABL oncoprotein (95, 111). Because the BCR­
ABL protein is a novel intracellular protein with elevated tyrosine kinase activity, an 
inhibitor of the BCR-ABL protein tyrosine kinase could be a potentially useful 
therapeutic agent for CML. 

The crystal structure of several protein kinases has been determined therefore, it is 
now possible to rationally design compounds based on the structure of the ATP binding 
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site or active site of the enzyme. This in-formation, in combination with the knowledge of 
the structure of protein tyrosine kinase inhibitors, has allowed for the synthesis of 
inhibitors with increased potency and specificity. One such class of compounds is the 2-
phenylaminopyrimidine derivatives. One compound in this class, CGP 57148, is a potent 
inhibitor of the ABL protein tyrosine kinase (43). 

CGP 57148 or STI 571 inhibits the ABL tyrosine kinases at submicromolar 
concentrations in vitro. All ABL kinases, including p210BCR-ABL, p185BCR-ABL, v­
ABL, and the c-ABL tyrosine kinase are inhibited by similar concentrations of 
CGP57148. Numerous tyrosine and serine/threonine protein kinases have been tested for 
inhibition by CGP 57148, and except for the platelet-derived growth receptor (PDGFR) 
and the c-Kit tyrosine kinases, no others are inhibited (25, 43). 

Competition for the ATP Binding Site in BCR-ABL (41 ) 

CGP 57148 or STI 571, at concentrations of 1 and 10 ~M, kills or inhibits the 
proliferation of all BCR-ABL expressing cell lines tested to date (10, 25, 35, 43, 51). In 
contrast, a variety of immortalized or transformed cell lines that do not express BCR­
ABL are not sensitive to CGP 57148. In colony-forming assays of CML bone marrow or 
peripheral blood samples, treatment with CGP 57148 decreases the number of colonies 
formed and may select for the growth of BCR-ABL-negative progenitor cells (35, 43). 
Minimal inhibition of the colony forming potential of normal bone marrow has been 
observed (35, 43). Thus, CGP 57148 appears to be selectively toxic to cells expressing 
the constitutively active BCR-ABL protein tyrosine kinase. Antitumor activity has been 
observed in syngeneic or nude mice injected with BCR-ABL-expressing cells followed 
by treatment with CGP 57148 (42, 43). CGP 57148 is highly bioavailable as an oral 
formulation and has minimal toxicity in rats and dogs. 

Based on the above data, an IND was obtained from the FDA and phase I trials in 
CML patients were begun in June 1998. The phase I study targeted CML patients who 
failed IFNa therapy. Over 40 patients have now been treated, and early results show that 
this drug is well tolerated with no significant side effects. Adequate bioavailabilty and 
pharmacokinetics have been observed with once daily administration. At the higher dose 
levels it has been possible to achieve levels in vivo that inhibit BCR-ABL kinase activity 
in vitro. Consistent with this finding, significant hematologic responses have been 
observed at the higher dose levels (42). Ph chromosome responses have not yet been 
observed; however, it is quite early and the patient population selected for these initial 
studies may have minimal Ph-negative hematopoiesis. Further studies of this agent either 
alone or in combination with other agents may provide a major breakthrough in the 
treatment of CML. 
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An alternative to direct inhibition of BCR-ABL is interference with proteins 
which are critical for BCR-ABL induced transformation. One of these proteins is GRB2, 
whose SH2 domain binds directly to BCR-ABL via the phosphorylated tyrosine 177 
within the BCR portion of the chimera (115). This results in the formation of a BCR­
ABLIGRB2/SOS complex which activates RAS GDP/GTP exchange (57). Several 
studies have provided compelling evidence for the role of GRB2 and RAS activation in 
this oncogenic process. Based on these observations, Gishizky and coworkers at Sugen 
Research initiated a screening program to identify small organic molecules that inhibit 
interaction between the SH2 domain of GRB2 and a tyrosine phosphorylated peptide 
found in BCR-ABL. One such compound was found to have GRB2-binding inhibitory 
capacity in vitro and in cells, and to reverse BCR-ABL-induced transformation of a 
murine cell line in vitro. This compound also inhibits the mitogenic responses induced 
by EGF and PDGF receptors, consistent with the participation of GRB2 in the signal 
transduction cascade of these two receptor tyrosine kinases. Provided that these 
molecular side effects do not adversely affect essential functions in normal cells, 
inhibitors of GRB2 may prove useful in the therapy for CML. 

Clinical Decision Making: Transplantation versus Interferon-a Therapy 
Over the past 10 years the survival of patients with CML has improved as a 

consequence of early diagnosis through routine blood counts and treatment with 
transplantation or interferon alfa. In view of the improved cytogenetic-response rates in 
patients treated with a combination of interferon alfa and cytarabine, physicians 
counseling patients with CML who are eligible for allogeneic bone marrow 
transplantation may face a difficult decision. Although curative, allogeneic bone marrow 
transplantation is associated with substantial mortality and potentially disabling 
morbidity among those who survive for long periods. Treatment with interferon alfa is 
safer, but the percentage of patients who have a complete cytogenetic remission is low 
and the durability of the survival benefit has not been defined in large numbers of 
patients. 
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Aproach to the Treatment of Patients with 
Chronic Myeloid Leukemia in Chronic Phase (129) 

One strategy supported by decision analysis (90) is to treat older patients or 
younger patients for whom no suitable donor of bone marrow is available with interferon 
alfa. In patients who have a cytogenetic response within one year, treatment with 
interferon alfa is continued indefinitely; the others undergo transplantation. With 
improvements in HLA-matching procedures and pretransplantation risk assessment, this 
algorithm will require modification. An implicit assumption of this approach is that the 
success of allogeneic bone marrow transplantation is not affected by prior treatment with 
intetferon alfa, but there have been conflicting reports on this topic and the issue remains 
unsettled (8, 56, 157). Patients who relapse after allogeneic bone marrow transplantation 
can be treated successfully with infusion of donor lymphocytes, (40, 85, 117) IFNa, (4, 
65) or a second allogeneic transplantation. 

However, with the potential number of new agents and new strategies available to 
treat CML, it is likely that steady progress will be made in the treatment of this disease. 
It is likely that by combining immunologic approaches and drugs that target BCR-ABL 
itself and downstream signal transduction pathways that CML will finally become a true 
chronic but treatable disease. 
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