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Understanding cooperative interactions within proteins is an important goal because 

cooperativity underlies protein functions such as catalysis, allostery, ligand binding and folding.  

Cooperative units within proteins can be revealed via an evolution based method called statistical 

coupling analysis that quantifies the correlations between positions in a multiple sequence alignment of 

a protein family.  In this work, coupling analysis and experimental studies were used to analyze two 

protein families – the TonB dependent receptors and the S1A serine proteases. 

The TonB dependent receptor family members are membrane bound siderophore transporters.  

Ligand binding on the extracellular side of the transporter transmits a signal to the periplasmic side 

where another protein (TonB) provides the energy for transport.  Coupling analysis, based on a diverse 

alignment of 541 family members revealed a network of physically contiguous positions extending close 

to 50 angstroms from the ligand binding pocket to the putative periplasmic interaction sites.  A 
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mutational analysis of FecA, a representative member of this family, confirmed the functional 

significance of the coupled positions.      

The S1A serine protease family members are involved in diverse functions such as digestion, 

coagulation, immunity and reproduction.  Coupling analysis on 1470 serine proteases revealed at least 

three sets of independently evolving positions.  Each set of positions is called a sector.  Structural 

analysis revealed that each sector is physically contiguous suggesting mechanical independence.  

Extensive data in the literature on this protein family allowed the assignment of function to two of the 

sectors.  One sector comprised positions making up the catalytic machinery, while another sector 

comprised positions important for substrate binding.  To determine the function of the sector with 

unknown function, mutations were done on positions making up this sector and tested for catalytic and 

stability effects on proteins.  The data showed that the positions in the unknown function sector 

affected stability but not catalysis.  Each sector therefore performs a different and independent 

cooperative function: one sector for catalysis, one for substrate binding and one for fold stability.   
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Chapter 1: Protein cooperativity 

 

 This chapter is an introduction to the cooperative nature of proteins and the methods available to 

observe this cooperativity.  It also explains why cooperative units of proteins are observed in evolution 

based methods, a subject that will be explored further in subsequent chapters. 

Section 1: Cooperative protein behavior 

Proteins do many amazing things: catalyze reactions in milliseconds that would otherwise not occur 

in geological time, bind ligands with atomic specificity and avidity, manipulate single atoms, harness 

single photons and adopt specific three dimensional shapes.  These functions all occur while the protein 

is immersed in liquid water or in lipids or both and while constantly vibrating with thermal energy.  

Although understanding these protein properties has been the aim of decades of structural, biochemical 

and theoretical investigation, it is not yet possible to choose an arbitrary function and design an amino 

acid sequence that will carry out that function. 

A reason why a deep understanding of proteins has been elusive is because it is not yet possible to 

easily observe or account for the cooperative interactions within a protein’s atoms [1].  In other words, 

while the sequence and structure of proteins are often known, the functional units are not because the 

functional units are made up groups of amino acids that work together in as yet mysterious ways.  As I 

will explain below, many protein functions depend on or exhibit cooperativity.  Catalysis, ligand binding, 

allostery and folding all arise from cooperative interactions between multiple amino acids.  In addition, 

the dynamic nature of proteins is a cooperative one.  Because cooperativity plays such an important role 

in protein function, it is important that methods to measure, observe and understand it are developed. 

Enzyme catalysis 

Enzymes are biological catalysts.  The degree to which enzymes increase the rate of chemical 

reactions can be estimated by calculating the rate acceleration which is the ratio of the rate of the 

catalyzed reaction to the rate of the uncatalyzed reaction.  The rate acceleration for some enzymes is 

shown in Table 1 (adapted from two of Richard Wolfenden’s papers [2, 3]).  The rate acceleration ranges 

from 105 to 1017.  Some enzymes also exhibit diffusion-limited or ‘perfect’ second order rate kinetics; 

these enzyme rates are limited only by time it takes substrate to bind to the enzyme (on the order of 1-

10x109 M-1s-1).  The high second order rate constant of ‘perfect’ enzymes arises from an optimal 

arrangement of atoms to carry out the chemical reaction and the attraction of the substrate to the 
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active site via charged interactions [2].  Enzymes also display high specificity for a particular substrate.  

They do not, for example, catalyze the same reaction using the enantiomeric form of a substrate, which 

is a problem that synthetic chemists cannot easily solve.   

The specificity, rate acceleration and chemical efficiency of enzymes have been the subject of much  

 

investigation.  It was thought at least since 1921 (reviewed in [3])  that an enzyme binds with strong 

affinity to the transition state of the reaction relative to that of the substrate.   Figure 1 shows a 

schematic of how an enzyme catalyzes a reaction relative to the uncatalyzed reaction with the 

formation of the transition state being the highest energy point in the reaction scheme.  The central role 

of the transition state has been largely accepted today [4-6].  Creation of catalytic antibodies by using as 

an antigen a molecule thought to mimic the transition state of a particular reaction is consistent with 

Table 1: Rate acceleration (ratio of catalyzed to uncatalyzed rate) for some enzymes (adapted from Radzicka and 
Wolfenden, 1995). 

ENZYME 

RATE 
UNCATALYZED 

(s
-1

) 

RATE 
CATALYZED 

(s
-1

)  

RATE 
ACCELERATION 

OMP decarboxylase 2.8 * 10
-16

 39 1.4x10
17

 

Staphylococcal nuclease 1.7 * 10
-13

 95 5.6x10
14

 

Adenosine deaminase 1.8 *10
-10

 3.7*10
2

  2.1x10
12

 

AMP nucleosidase  1.0 *10
-11

 60 6.0x10
12

 

Phospotriesterase  3.2 *10
-10

 2.99*10
2

  1.2x10
12

 

Cytidine deaminase 7.5*10
-9

 2.1*10
2

  2.8x10
11

 

Carboxypeptidase A 3.0*10
-9

 5.78*10
2

  1.9x10
11

 

Ketosteroid isomerase 1.7*10
-7

 6.6*10
4

  3.9x10
11

 

Serine proteases 0.2*10
-9

  50 1x10
10

  

Triosephosphate isomerase 4.3*10
-6

 4.3*10
4

  1.0x10
9

 

Chorismate mutase 2.6*10
-5

 50 1.9x10
6

 

Carbonic Anhydrase 1.3*10
-1

 1*10
4

  7.7x10
6

 

Cyclophilin, human 2.8*10
-2

 1.3*10
4

  4.6x10
5
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this model for enzyme function [4].  The role of the transition state is expressed in the following formula 

for the rate of a reaction (k) [5]: 

k=(transmission coefficient) x (barrier crossing frequency) x (equilibrium constant of transition state formation)  

The transmission coefficient (tc) is a correction factor for tunneling, barrier recrossing and solvent 

friction that is usually between 0.1 and 1.  The barrier crossing frequency (v) is the frequency of 

oscillation along the reaction coordinate and is often approximated by kBT/h but could differ with 

different transition states.  The equilibrium constant for transition state formation is the concentration 

of the transition state divided by the product of the concentrations of enzyme and substrate. 

One consequence of transition state theory, first worked out by Wolfenden [6] is that the enzyme 

must bind the transition state with a binding affinity proportional to the enzymatic rate acceleration.  To 

see this, a thermodynamic cycle can be written based on the scheme in Figure 1. 

To work out how the thermodynamics leads to an understanding of the rate acceleration, two 

assumptions of transition state theory are needed.  The two assumptions are: 

1. The limiting step is the rate at which the transition state decays to the product. 

2. The enzyme-transition state complex is in equilibrium with the enzyme substrate complex. 

  One can now write an expression using the transition state equation for a catalyzed (e) and uncatalyzed 

reaction (n): 

Figure 1: Scheme for an enzyme catalyzing a reaction going through a high energy transition state.  The double 
tipped arrows represent an equilibrium reaction and the single tipped arrows represent an irreversible 
reaction. 

 

 

Enzyme (E) + Product (P)

Enzyme(E)+Substrate(S)

ES 
(Michaelis complex)

E+S transition state

ES transition state

fr
ee

 e
n

er
gy

reaction coordinate

binding reaction characterized by Km
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transition state

transition state

e e e e

n n n n

k tc v K

k tc v K




 

The ratio of rates can now be written as: 

 

transition state

transition state

e e e e

n n n n

k tc v K

k tc v K
  

 And because of the equilibrium assumption, a thermodynamic cycle can be written so that the ratio 

of the substrate binding equilibrium (Km) to substrate transition state equilibrium (Kts) equals the ratio of 

activated substrate equilibrium (Ke
transition-state

) to enzyme- substrate equilibrium (Kn
transition-state

).  

That is: 

 

transition state

transition state

ts n

m e

K K

K K
  

Substitution of Km and Kts back into the rate expression k results in:  

 
e e e m

n n n ts

k tc v K

k tc v K
  

Now if the ratios of tc and v are close to one then this means that the ratio of catalyzed to 

uncatalyzed rates (the rate acceleration) must be close to the ratio of substrate binding to transition 

state binding.  Since the rate acceleration data indicate that the rate acceleration is very high then that 

means that the enzyme binds the transition state more than the substrate by a factor of 105-1017 

(depending on the enzyme). 

The question now becomes one of trying to understand how an enzyme binds a transition state so 

tightly.  The answer is that the enzyme binding  to the transition state are a result of the cooperative 

behavior of many enzyme atoms or amino acid residues so that the transition state is precisely bound [3, 

6-8].  In chapter five I will discuss a specific example of an enzyme utilizing five different residues to bind 

the transition state. 

Ligand binding 

Proteins are capable of binding other proteins as well as an extremely diverse array of non-protein 

molecules.    Protein ligand binding is often characterized by high specificity and high affinity.  These 
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properties are also mediated by cooperative protein interactions.  As an illustrative example, I will 

consider two examples of proteins binding to ligands.  

The first example is streptavidin binding to biotin which has one of the highest affinities found in 

nature (dissociation constant on the order of 10-15 M) [7, 8].  Streptavidin is a tetrameric protein with 

each subunit consisting of 133 residues.  Biotin is a small molecule more commonly known as vitamin H 

or Vitamin B7.  The structure of streptavidin [8] together with extensive mutagenesis and binding energy 

measurements [8-10] demonstrates that biotin is held tightly by interactions among at least six residues 

widely distributed in the structure and with different biochemical properties (four tryptophans, a serine 

and an aspartate) (see Figure 2).  Thus, the biotin is held via a network of hydrogen bonding and van der 

Waals forces.  

Another example of a protein bound to its ligand is human growth hormone bound to its receptor.  

The structure of this complex reveals as many as 30 amino acids at the binding interface [9].  However, 

extensive mutagenesis revealed that just two residues contribute 75% of the binding energy [9], a 

phenomenon seen in other protein families as well [10].  What these works suggest is that although 

Figure 2: Structure (1STP) of streptavidin bound to biotin (in red).  Four of six residues 
that have been shown to interact with biotin are in color.  Note that this structure is only  
one monomer of the streptavidin native tetrameric structure. 
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structurally many positions are observed contacting the ligand, it is possible that only a subset of those 

make strong interactions with the ligand. 

Allostery 

The term allostery was originally used to refer to the interactions between two ligand binding sites 

within a protein [11].  The observation made in Jacques Monod and Francois Jacob’s lab by their student 

Pierre Changeaux, that the product of an enzyme inhibited the enzyme by binding at another site on the 

same enzyme [12] prompted their investigation into allosteric effects in proteins.  Subsequently, it was 

discovered that allostery was common in proteins.  One of the most commonly studied examples is the 

binding of oxygen to hemoglobin.  Hemoglobin is composed of two pairs of subunits and binds four 

oxygen molecules with the binding of one oxygen progressively increasing the affinity of the other 

subunits for oxygen [11].   

 In general allosteric systems can occur where one ligand affects the binding of the same ligand at a 

distant site (homotypic) or of a different ligand (heterotypic).   There could be positive cooperativity 

where the binding of a ligand increases the affinity for another ligand and negative cooperativity where 

the binding of a ligand decreases the affinity for another ligand [11].  In hemoglobin the cooperativity is 

homotypic and positive. 

 Allosteric effects are typically detected by changes in the slope of binding curves (graphs of 

concentration of substrate against fraction bound).  Scatchard plots or more commonly Hill plots are 

used.  Two classical models have also been proposed to explain how cooperativity could occur.  One 

model developed by Monod, Wyman and Changeaux [13] (MWC model) is called the concerted model 

and another developed by Koshland, Nemethy and Filmer [14] (KNF model) is called the sequential 

model.  The models have implications about the molecular nature of interaction between sites.  The 

sequential model postulates that one binding site directly contacts the other binding site whereas the 

concerted model postulates that one binding site changes the form of the subunit in which the second 

binding site exists.  The MWC model implies that a system has two states (called the tense and relaxed 

states), whereas the KNF model suggests that there are many states along the path from one binding 

site to the other.    Different models could apply to different proteins.  In the case of hemoglobin two 

distinct states are observed structurally which provides support for the MWC model These two models, 

introduced in the 1960’s, have been continuously revised as additional data are collected [10, 12]. 

 Irrespective of the details of the specific model, both agree that an energy/information transfer 

pathway exists in allosteric proteins.  By definition this involves the cooperation of several residues to 
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transfer this information [15].  Identifying these networks of sites is very difficult to do with current 

methods.  

Folding  

Folding is the process by which a long polypeptide chain adopts a specific tertiary structure.  For 

many small proteins an idea known as the thermodynamic hypothesis applies to this process [16].  The 

thermodynamic hypothesis means that the native state is the free energy minimum of a protein.  

Experimentally the thermodynamic hypothesis is supported for many proteins by the observations that 

a protein can be denatured by temperature or chemical denaturants but then recover its structure and 

function when the denaturants are removed. 

 Though the thermodynamic hypothesis suggests that the protein fold is thermodynamically stable 

(exceptions to this have been discovered-for example in alpha lytic protease [17]), there are still 

unresolved problems with the understanding of protein folding.  One problem is to understand the 

speed of folding.  Another problem is to understand the forces in the protein-solvent system that lead to 

folding.  These problems are not mutually exclusive. 

 The problem of explaining the speed of folding was reported by Cyrus Levinthal in 1968 [18] and is 

known as Levinthal’s paradox.  Levinthal calculated the number of conformations an unfolded 

polypeptide can adopt and estimated how long it would take the protein to adopt one conformation 

(the folded state conformation, for example).   The number of conformations can be calculated by 

assuming that an amino acid can adopt one of three conformations in an unfolded state.  Then if a 

protein has 100 amino acids in a polypeptide, the total number of conformations is 3100 .  The maximal 

rate of folding would be limited to the bond vibration frequency which is on the order of 1013/second.  

That means that a random search through all the possible conformations would take something on the 

order of 1027 years.  Since proteins fold on time scales of microseconds to seconds [19], the hypothesis 

that a protein samples conformations randomly or has a large number of conformations to sample 

cannot be correct.  Thus there must be pathways along a reaction coordinate the lead to folding or that 

the energy landscape of protein folding is shaped like a funnel [20, 21].   

 The problem of understanding the nature of the forces that lead to a folded protein has received 

much attention in the literature.  Folded proteins adopt a very compact, dense, glass-like, almost 

uncompressible state [22-25].  In this compact state, there are many possible interactions that could 

promote folding (such as hydrogen bonding, ionic interactions, van der Waals forces, local interactions, 

distant interactions) and there are interactions that oppose folding (reviewed in [26]).   It is estimated 

that the hydrophobic effect accounts for most of the energy of folding although other interactions can 
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contribute as well under certain circumstances.  The hydrophobic effect can be described as the way 

that the hydrophobic residues in a protein partition away from water; the partitioning is maximized 

when these hydrophobic residues interact with each other forming the highly compact protein structure.   

The energetic interactions that oppose folding are entropic in nature: the folded state of a protein 

strictly reduces the conformations accessible to the protein.  The balance between the hydrophobic 

effect and entropic effects results in the marginal stability of a protein [26].   

   The hydrophobic effect, while explaining the compact nature of a protein, does not explain the 

fine structure of a protein.  A protein, for example, has alpha helices and beta sheets in specific 

orientations.    It is thought that hydrophobic collapse is followed by the establishment of specific 

interactions between elements of the structure through hydrogen bonding, ionic interactions and van 

der Waals forces [26, 27]. 

Regardless of the exact nature of folding, the available evidence indicates that protein folding is 

extremely cooperative.  Multiple interactions in the core of a protein are required for the hydrophobic 

effect to overcome the entropic penalty [28, 29].  Furthermore, specific aspects of structures such as 

helixes and sheets are defined as groups of residues.  Evidence for the cooperative nature of folding is 

also seen by the temperature dependence of folding for small proteins which show a single sharp 

transition indicating that the protein folds and unfolds as a unit [30-32] .  Thus an understanding of 

cooperativity in protein folding is important for a complete picture of the protein folding process. 

Dynamics 

The protein functions discussed above all occur through cooperative interaction although the 

molecular basis for these cooperative interactions is as yet unknown.  One idea that may unify all these 

disparate functions comes from the low frequency dynamic nature of proteins.   As Richard Feynman 

wrote , “...everything that living things do can be understood in terms of the jigglings and wigglings of 

atoms.” [33].  The protein atoms, like all atoms above absolute zero, vibrate at fast time scales (0.1 ps) 

reflecting rapid bond fluctuations.  However, there is another aspect of proteins which is that they also 

possess, at physiological temperature, slow (microsecond to millisecond) collective motions [34, 35] .  

These slow collective motions occur only at temperatures above 180-220 K which correlates with the 

temperature at which protein function first occurs [36, 37].  The correlation of these observed motions 

with function is striking.  In one specific example in bacteriorhodopsin, the photocycle was examined 

below and above 220 K and it was observed that while light absorption could occur below 220 K the 

cycle could not be completed at that temperature.  To paraphrase the authors,  the enzyme was in 

effect frozen in the middle of the photocycle due to uncoupling of the protein from thermal motion [36]!  
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Once the temperature was raised the bacteriorhodopsin completed the photocycle and could be 

stimulated again.  In another illuminating study from Gregory Petsko’s lab [37] a protein crystal was 

studied with x-ray crystallography for more than one month while the temperature was varied over the 

180-220 K transition while different aspects of function were tested.  As in the bacteriorhodopsin case, 

at low temperatures an inhibitor could be trapped in the enzyme once the temperature was lowered 

below 180 K (the binding was done at higher temperature).  It was also observed that catalysis did not 

occur with native substrate at low temperatures. 

 More evidence for the occurrence and importance of slow collective motions comes from work 

done using NMR to look at the motions of most residues in several protein systems [38-42].  NMR has an 

advantage over other methods in that the motions of individual atoms can be resolved.  In one study 

from Peter Wright’s lab [42], using the enzyme DHFR, the authors measured the conformational changes 

for many intermediates along the reaction pathway (including free enzyme, substrate bound and 

product bound).  One result is that the enzyme without substrate shows conformational change in the 

substrate binding pocket, suggesting that enzyme samples conformations that would bind the substrate.  

The authors also find that while product is bound, the regions in the product binding site show motions 

as if the product binding site is empty.  Another interesting result is that the rate of conformational 

change is correlated with the catalytic rate (specifically the rate of conformational change of the product 

binding region is close to the rate limiting step of the reaction which is product release) .  Another study 

from Dorothee Kern’s lab [39] on adenylate kinase presented evidence showing that positions that were 

moving on the ps-ns timescale were in the same regions that were involved in hinge motion thus 

providing a link between fast time scale motions and slow time scale motions. 

 There are two general points to make about the dynamic properties.  First, that slow scale 

dynamics are cooperative as they require the synchronized movement of many atoms and residues.  

Second, this dynamic, cooperative behavior may contribute to or be the cause of other cooperative 

behavior in proteins such as catalysis, ligand binding, folding or allostery.  For example, one notable 

study [43] measured using NMR the dynamics of a protein with and without ligand and related the 

dynamics to the conformational entropy and they found that the conformational entropy strongly 

contributes to the ligand binding energetics.  Another important study [44] measured, using neutron 

inelastic scattering, the dynamics with and without the binding of a ligand to the dihydrofolate 

reductase enzyme and observed a change in dynamics to a softer, more flexible protein upon ligand 

binding; the dynamic change was estimated to contribute a factor of 1000 to the binding constant.  
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Studies of this type will lead to a greater understanding of the relationship between cooperative 

dynamics and other cooperative behavior in proteins.  

 One aspect of the previous methods is that while they are able to detect cooperative interactions, 

they cannot reveal the magnitude and nature of interactions between the cooperative units.  That is, 

one cannot say how much a particular atom contributes energetically to the function.  In the next 

section, I will discuss a method known as thermodynamic mutant cycles that can be used to examine the 

interaction between sites. 

  

Section 2: Measuring the magnitude of cooperativity : thermodynamic mutant cycles 

One powerful way to uncover the cooperativity of amino acids is through mutational analysis.  

Specifically, double (or more than double) thermodynamic mutant cycles [45-48] can reveal whether 

two mutated positions interact and if so by how much they interact.  The simplest thermodynamic 

mutant cycle consisting of three sets of mutations is depicted in Figure 3.  The basic idea is that one can 

calculate whether two positions interact in a protein by making a double mutant and each single mutant.  

So, referring to Figure 3, one can make a mutation A and a mutation B and then measure the free 

energy change of the mutation.  Then one makes the double mutation AB and measures the free energy 

change.  The free energy change can be measured for any function-catalysis, ligand binding, folding or 

any other measurable function.   Then one compares the sum of the free energies of the single mutants 

to the actual measured free energy of the double mutant.  There are two possibilities to consider: the 

double mutation can be the sum of the two single mutants or the double mutation can be different from 

the sum of the two single mutants.  (In real experiments, the error of the measurement must be 

considered when deciding whether the summed free energy is different from the measured double 

Figure 3: Thermodynamic cycle scheme.  WT is the native protein.  A 
refers to a mutation and B refers to a mutation different from A.  AB 
is both mutations. 
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mutant free energy).  In other words, the interaction between positions A and B can be additive or non 

additive. 

If the effect is additive then one likely conclusion is the sites act independently.  This is because free 

energies for independent processes are additive.  On the other hand, if the effect is non-additive then 

one can consider that the two positions in the protein interact together to carry out the measured 

function. 

One assumption of thermodynamic mutant cycles is that the interaction of the mutations, which is 

what is being measured, is similar to that of the interaction of the amino acids in the native state.  This 

assumption can easily be wrong as the following thought experiment shows.  Imagine replacing 

positions A and B of a protein have two valines and what one would like to determine is if those valines 

are interacting.  Now imagine if the valines are mutated to cysteines and that the valines are adjacent in 

space.  When the double mutant is formed it will form a disulfide bond in reducing conditions.  Now if 

the interaction being studied is in the context of fold stability of the proteins, one would conclude that 

those two positions interact to a large extent because the fold stability change of the double mutant is 

much greater than the sum of the stability changes of the single mutants.  This conclusion would be 

reached regardless of the interaction of the valines in the native structure.  Granted this thought 

experiment requires the residues to be adjacent and mutated to cysteines and the assay be fold stability 

but it is used to illustrate the assumption underlying thermodynamic mutant cycle conclusions.  It is 

possible to perform control experiments to test whether the protein is drastically perturbed when the 

mutations are made but in general, without some independent way of verifying the interaction of the 

native amino acid at positions A and B there is no certainty that the interaction effect exists in the native 

state.   

One controversy that I will briefly address here that has occurred in the literature that applies to  

thermodynamic mutant cycles is whether the individual components that give rise to energy can be 

parsed out from the energy term  [1, 49].  That is, if one is given an entropy or enthalpy or free energy 

change, can one conclude that this change is due to a particular hydrogen bond interaction or van der 

Waals interaction or charge-charge interaction?  The short answer is that one cannot because the free 

energy is a function of the state of the entire system and these states can only be considered as additive 

if they are shown to be independent [49].  But, as I have shown, for many protein functions, many 

functional aspects are cooperative and therefore not independent.  Thus the free energy changes 

measured during thermodynamic mutant cycle experiments cannot be used to say whether specific 

interactions account for the energetic change.  In some cases, one can make a reasonable case that the 
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entropy changes are minimal and therefore conclude that the enthalpy of a particular bond accounts for 

the energy change.  However, it is important to keep in mind that the free energy, in general, is a 

property of a system and decomposing a system into subsets of interactions is possible only if the 

subsets are independent. 

What has been learned about proteins from thermodynamic mutant cycles?   The first report in 

1984 of the use of this method from Alan Fersht’s lab [46] reported how a mutation at one position of a 

tRNA synthase affected the strength of another position to the ATP substrate.  Since then many studies 

reviewed in 1990 by Wells [50] and in 1995 by LiCata and Ackers [51] reveal an interesting protein 

energetic architecture.  The earlier review by Wells found that most mutations were additive whether 

the interactions were protein binding to protein or protein binding to DNA or protein folding.  

Interactions that were not additive were due to positions that were in direct contact or change the 

structure or electromagnetic field or were cooperative in their function (as in enzyme active sites).   

The later review disagreed somewhat with the 1990 review.  LiCata and Ackers specifically looked 

for non-additivity between sites that were far enough away that they could not be contacting.  They 

then observed that greater than 50% of interactions in several different systems showed small but 

significantly non-additive interactions.  These small non-additivities were considered as additive by 

previous researchers.  The authors also state that these small non-additivities were almost always 

positive indicating that they were real because if these small non-additivities were due to noise then 

there would be negative additivities as often as positive additivities.  The authors conclude by stating 

that the mechanism of propagation could be due to long-range electrostatics, long-range structural 

perturbation or dynamical effects.  The authors also warn that the implications of non-additivity should 

be considered by computational methods as those computations generally assume that distant sites are 

non-additive.  Thus thermodynamic mutant cycles show that proteins have a highly heterogeneous 

structure with some positions being cooperative (non-additive) and others not cooperative (additive).  

Also, cooperativity can occur between physically non contacting sites through several possible, though 

generally unknown, mechanisms. 

From the perspective of protein physics, the implications of thermodynamic mutant cycles is that 

they reveal and quantify the cooperativity between positions.  They are one of the few readily accessible 

methods that can do so (one must keep in mind the assumptions stated before).  However, to 

understand the interaction of one site with another requires making all possible pairs of mutations 

between all positions and assaying each one for function.  Such a task has not been done due to the 

number of mutations and assays needed.  Moreover such pairwise mutations reveal only pairwise 
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additivities or non-additivities; it is possible to have cooperative interactions between three or more 

positions and general approaches for elucidating those are not available (although Yifrach’s group has 

studied higher order coupling for several sets of residues in the potassium channel [52, 53]) .  It is 

therefore important to seek alternative ways to look for cooperativity between protein positions. 

Conclusion 

 This chapter presented some of the available evidence for the role that cooperativity plays in 

proteins.  Cooperative interactions are observed in catalysis, ligand binding, allostery and folding.  

Furthermore, the very nature of a protein seems to be a cooperative one with the occurrence of slow 

time scale cooperative motions.   

One problem with most available methods that observe cooperativity is that most cannot measure 

the energy of the cooperative interaction.  For example, an observation that an enzyme substrate is 

bound by several residues cannot determine what the relative strength of each interaction is.  

Experimentally, thermodynamic mutant cycles have shed light on the energetic nature of the 

interactions but these experiments are both difficult to conduct and make assumptions that can be 

difficult to justify.  Therefore, the development of new methods to observe cooperative interactions and 

to estimate their strength is desirable. 

One relatively new method that has been explored in the Ranganathan lab and others to detect 

cooperative units in proteins is based on the evolution of a protein family.  The rationale for this 

evolution-based method is that residues that cooperate for function are likely to exhibit mutual 

conservation whereas residues that do not cooperate with any other residues will have little, if any, 

mutual conservation.  Therefore, if a protein family with members that have the same function has a 

distribution of conservation at different positions it is likely that the residues with a similar conservation 

pattern cooperate together.  In other words, an analysis of conservation patterns based on a multiple 

sequence alignment of a protein family can reveal cooperative units.  The use of one evolution based 

method, called statistical coupling analysis (SCA), for the analysis of two protein families is the subject of 

this dissertation.  I will show, in conjunction with experimental evidence, the use of SCA to identify a 

possible allosteric pathway in the TonB dependent receptor family and to identify three independent 

cooperative units of function in the serine protease family.
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Chapter 2: Calculating Covariance Between Positions in Multiple Sequence Alignments 

 

Cooperativity is an important determinant of protein function that is hard to reveal experimentally.  

Our lab and others have developed evolution based methods to detect cooperativity.  These methods 

are discussed and compared in sections 1 and 2 of this chapter.   

The underlying idea behind evolution based methods to detect cooperativity is that sites that 

interact together for a certain function will be less likely to tolerate mutations than sites that act 

independently.  One could say that those positions in the protein are evolutionarily constrained.  The 

reason why sites that act cooperatively are likely to mutate less is because if a mutation at a cooperative 

site occurs it is much more likely to be deleterious to the function because of its interactions with other 

sites.  Therefore, the organisms that carry the protein with reduced functionality will likely be selected 

against (unless further mutations that restore function occur before the population carrying the 

deleterious mutation becomes extinct).  Independent sites, on the other hand, are less likely to result in 

deleterious effects due to the fact that mutations in them are not likely to disrupt other positions in the 

protein.  

Evolution based methods exploit the constraints that cooperativity imposes on protein evolution.  

There are two consequences of cooperative constraints that can be analyzed.  The first is that 

cooperative constraints will lead to conservation in a multiple sequence alignment at positions whose 

amino acids mediate the cooperative interaction.  The second consequence of cooperative constraints is 

that a correlation between the conservation at one position and the conservation at another position 

should exist if two positions are cooperative.  Analyzing the conservation and correlation is possible 

using different statistics based methods.   

  One complicating factor with this analysis of conservation and correlation is that there is another 

source of correlation among positions.  The source is the historical relationship between the sequences 

arising from the common ancestors that different sets of sequences have.  This historic source of 

correlations is often called historical or phylogenetic noise and it can greatly affect the use of 

correlations to detect correlations coming from cooperative interactions.  In practice this problem is 

minimized by using as phylogenetically diverse an alignment as possible and by using algorithms that 

take the effect of phylogeny into account as will be explained in the following sections. 
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Section 1: Statistical Coupling Analysis: 

 Our lab has developed three related methods to calculate coupling between amino acids in a 

multiple sequence alignment (MSA).  These methods will be referred to as the weighted covariation 

method, the bootstrap method and the perturbation method.  All three methods are related together 

through a common framework called statistical coupling analysis (SCA) which will be described. 

 There are two aspects of SCA that differentiate it from other methods.  First, SCA uses the binomial 

distribution to calculate the probability of a particular amino acid frequency at a position given a 

multiple sequence alignment.  Second, SCA implements methods to downweight correlations that could 

come from historical noise and upweight correlations that are thought to arise from cooperative 

constraints.  These will be discussed in the following section. 

The background frequency 

 One requirement for statistical coupling analysis is to be able to quantify how probable the 

frequency of an amino acid is.  The question is if there is an amino acid a at a position i present at a 

frequency of 10%, then how does one calculate if that frequency is low, high or average?  To answer this 

problem requires knowledge of how frequent a particular amino acid is in nature.  The frequency of 

occurrence of an amino acid is called the background frequency. 

 The background frequencies are calculated as the average frequency of amino acids from all 

proteins in NCBI’s non-redundant database.  The background frequencies used in all of the statistical 

coupling work are shown in Table 2.  The same background frequency is used to analyze every protein 

family based on the assumption that there are no amino acid frequency biases across different protein 

families.  To investigate whether this assumption is reasonable, I analyzed the background frequencies 

of all 10340 protein families in the PFAM database [54].  The results of this analysis are shown in Figure 

4.  Note that the background frequency from the table above which is shown as a green dot in the 

following figure is close to the mean frequency of the distribution.  Note also that while the variance of 

the distribution is small, there are some families that clearly have amino acids far from the mean.  I 

calculated that 66% of families have at least one amino acid that occurs at 2 fold greater than the 

background and that 3% of families have at least one amino acid that occurs at 4 fold greater than the 

background.  In a way that I will discuss later, differences from background frequency on the order of 2 

fold or greater could potentially change the frequency at some positions. 

However, as shown in Figure 4, the families that I will use for coupling analysis are all close to the 

mean background frequency for most amino acids and hence results are not affected to any measurable 

extent. 
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Table 2: Background probabilities calculated using all sequences in the NR database (1998). 

 

 

 

 

 

 

 

 

 

 

 

   

 Examination of the background frequencies shown in Table 2 shows that there is a lot of variation.  

The most common amino acid is leucine occurring in 8.9% of all amino acids.  The least frequent is 

tryptophan occurring in 1.3% of all amino acids.  Based on this it is clear that the presence of tryptophan 

at 9% frequency would be highly unusual whereas observing the same frequency for leucine would not 

be unusual.  A quantitative measure of unusualness that will assign a probability to the observed 

frequencies of amino acids given the background frequency is needed.  A measure that I will discuss next 

which can be used for this purpose is called the binomial probability. 

 

 

 

Amino acid Background Probability (%) 
 Alanine (A) 7.3 

Cysteine (C) 2.5 

Aspartic acid (D) 5.0 

Glutamic acid(E) 6.1 

Phenylalanine (F) 4.2 

Glycine (G) 7.2 

Histidine (H) 2.3 

Isoleucine (I) 5.3 

Lysine (K) 6.4 

Leucine (L) 8.9 

Methionine (M) 2.3 

Asparagine (N) 4.3 

Proline (P) 5.2 

Glutamine (Q) 4.0 

Arginine (R) 5.2 

Serine (S) 7.3 

Threonine (T) 5.6 

Valine (V) 6.3 

Tryptophan (W) 1.3 

Tyrosine (Y) 3.3 
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Figure 4:  Background frequencies in different protein families.  The blue histograms show frequencies of 20 amino acids in 
10340 protein families in the PFAM-A database (Oct. 2008).  The yellow line is the mean frequency.  The red histograms are 
a subset of the blue ones where all protein families are represented by at least 100 sequences (to rule out biases of small 

sample size).  The green dot shows the background probability used in the current work as in Table 2.  Background 

frequencies of families used for SCA in this work are shown by blue (PDZ domain), black (serine proteases) and red (TonB 
dependent receptors) dots. 
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The binomial probability 

 The binomial probability is used to enable the estimation of the probability of an observed 

frequency of amino acids given a background frequency. It assumes two states for an event: an event 

either happens or does not happen.  In the context of sequence data, the binomial probability considers 

whether an amino acid occurs or does not occur. 

 The binomial probability, in words, is the probability of getting n successes in a set of trials where 

every trial is independent.  Calculating the binomial probability requires knowing the number of ways n 

can occur and the probability of success of n.  Note that the probability of NOT success of n can be 

calculated from the probability of success as [1-probability of success].   

 The number of ways n can occur is given by the combination of the number of times an event can 

occur given a total number of trials (N).  This is called (N choose n).  The formula to calculate this is: 

 
!

N choose n=
!( )!

N N

n n N n

 
 

 
 

 The formula for binomial probability then becomes: 

 binomial probability= (probability of success) (probability of not success)n N n
N

n

 
  

 
 

 If the probability of success is denoted as q and the probability of not success as p (note that p+q=1 

and p=1-q) then the binomial probability can be written as:  

binomial probability= (q) (1 )n N n
N

q
n

 
   

 
 

 

This is the general expression of the binomial probability.  To calculate the amino acid frequency 

probability using the binomial probability is now straightforward.  The goal is to calculate the binomial 

probability of the observed amino acid frequency at a position in a multiple sequence alignment.    

The first step is to calculate given a multiple sequence alignment with M sequences the frequency, f, 

of an amino acid, a, at particular position, i.  I will denote this observed frequency as a

if .  In the 

binomial probability expression it is necessary to know the number of amino acids a that occur at 

position.  This can be readily calculated by either counting or by multiplying the calculated frequency 

a

if  by the total number of sequences, M.  Thus one can substitute for n the product, a

iMf .  N is the 

number of sequences, M.  The only unknown quantity before the binomial probability is computed is the 
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probability of success.  This is where the background probabilities that were discussed in the previous 

section become essential because the background probability of a particular amino acid is the 

probability of success (the background probability will be denoted as q). 

This means that what is being done is to calculate the frequency of a particular amino acid at a 

position and comparing that to the average frequency of amino acids observed in all protein families.

 Now that the background probabilities are considered to be the probability of success, the last 

variable is known and the binomial probability can be calculated.  The expression for the binomial 

probability can now be written as: 

( ) ( )
(1 )( )

( )
binomial probability=P( )= (q) (1 )

a a
i iMf M fa

i a

i

M
f q

Mf

 
   

 
 

 This expression can be written in a simpler form which makes it easier to analyze.  The 

simplification begins by expanding the combination expression (subscripts and superscripts will be 

dropped for clarity): 

( ) (1 )!
P( )= (q) (1 )
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 Now take the natural logarithm of both sides: 

( ) (1 )!
ln(P( ))=ln[ (q) (1 ) ]

!( )!

a Mf M f
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M
f q

Mf M Mf

  


 

 which expands to: 

(1 )ln( ) ln ! ln ! ln( )! ln ln(1 )Mf M fP M Mf M Mf q q         

 This expression can be further simplified by using the Stirling approximation for the factorials.  The 

Stirling approximation to the first order is: 

ln ! lnN N N N   

 Therefore: 

ln( ) ln ln (1 )ln(1 ) ln (1 )ln (1 ) (1 )P M M M Mf q M f q Mf Mf Mf M f M f M f            

ln( ) ln ln (1 )ln(1 ) ln (1 )ln (1 )P M M M Mf q M f q Mf Mf Mf M f M f M Mf              

The M and Mf terms cancel out and the equation reduces to: 

ln( ) ln ln (1 )ln(1 ) ln (1 )ln (1 )P M M Mf q M f q Mf Mf M f M f          

‘M’ is now common to all expressions and can be factored out: 
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ln( ) [ln ln (1 )ln(1 ) ln (1 )ln (1 )]P M M f q f q f Mf f M f          

 After some more rearrangement and factorization: 

ln( ) [(1 1 )ln (ln ln ) (1 )(ln(1 ) ln(1 ))]P M f f M f q f f q f          

1
ln( ) [0ln ln (1 ) ln ]

1

q q
P M M f f

f f


   


 

1
ln( ) [ ln (1 ) ln ]
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 The final expression above relates the probability of amino acid frequency to the number of 

sequences in the alignment multiplied by a function that only has observed frequencies (f) and 

background probabilities (q) in it.   This function is called the relative entropy (denoted by D): 

1
relative entropy= = ln (1 ) ln

1

f f
D f f

q q


 


 

 One thing to note about the relative entropy is that it depends only on the observed frequency and 

the background probability.  With the relative entropy expression it is easy to see what will happen if 

the observed frequency of an amino acid is equal to the background probability.  In that case, q f and 

ln1 (1 )(ln(1))f f  is zero (because ln1 = 0).  The form of relative entropy with different background 

frequencies is shown in Figure 5. 

Figure 5: The form of relative entropy plotted with three different background frequencies 
shown in the legend. 
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 Calculation of the binomial probabilities of amino acids allows one to state how significant a 

particular frequency of amino acid at a position is.  The goal of SCA however is not to calculate 

significance at one site but to calculate how the amino acid distribution at one site is similar to that at 

another site.  One measure of similarity is the covariance which I will discuss next.  Keep in mind 

however, that the covariance expression will take into account the binomial probabilities. 

Covariance 

  Covariance is a commonly used concept in statistics.  Given two vectors, one can calculate how close 

they are to each other using the covariance.  The covariance (between two vectors x and y of dimension 

n, with means denoted with x and y respectively and components denoted by xi and yi) is defined as: 

 

( )( )

covariance=

n n

i i i i

i i

x x y y x y

xy
n n

 

 
 

 

 As the above equation shows the covariance depends on the product of ix and iy as well as the on 

the means of x and y.  The dependence on the product means that if two vectors grow together, their 

product will be high and so the sum will be high and therefore the covariance.  If one vector is negative 

while the other is positive, the covariance will have a high negative value.  If the vectors have a random 

mixture of high and low values, the covariance will be close to zero.  Thus the magnitude of the 

covariance indicates how close to each other two vectors are. 

 In the case of sequence data, one wants to calculate the covariance between two positions.  

However there is one complication in that the sequence data is not numerical but is composed of 

discrete amino acids.  One cannot multiply or add amino acids together.  To be able to perform 

calculations, the sequence data is binarized. 

Binarization considers one type of amino acid at a time for a given position.  If an amino acid ‘a’ at a 

position ‘i’ is present, then a value of 1 is assigned to that position; if not present, then a value of zero is 

assigned to the position.  This process is carried out for all the other positions.  It is then possible to 

calculate any covariation between the two vectors for a particular pair of amino acids.  In a sense, what 

is done is to convert one alignment into 20 alignments, with each alignment containing only one type of 

amino acid. 

 For example, consider that an amino acid ‘a’ at position ‘i’ is present in the first four sequences of 

an alignment.  The vector for amino acid ‘a’, position ‘i’ is then (1 1 1 1 0).  Similarly if at position j, 
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amino acid ‘a’ is not present then the vector for that will be (0 0 0 0 0).  These vectors of ones and zeros 

are termed binary vectors.   

A binary vector can be represented as 
( )

,

a

i sx , where s refers to sequence, i to the multiple sequence 

alignment position and a to the amino acid.  The frequency of an amino acid at a position i can now 

easily be calculated as the average of the sum of binary vector.  The frequency of binary vectors is 

denoted as ( )

,

a

i s s
x .  

A covariance score can now be calculated for any two pairs of amino acids at two positions using 

the binary vectors.  The covariance is based on the above formula and can be written with the 

expression for binary vectors as: 

 ( ) ( ) ( ) ( ) ( ) ( ) ( )

, , , ,covariance ab a b a b ab a b

ij i s j s i s j s ij i js s s
C x x x x f f f      

A high covariance score says that the two vectors have the same pattern across sequences meaning 

that wherever there is a 1 in one vector, there is a 1 in another vector.  A low covariance score implies 

that the vectors have no pattern. 

Since twenty amino acids are possible at a given position i and twenty amino acids are possible at 

position j, there are four hundred values quantifying the degree of covariance between every possible 

pair of amino acids.  These four hundred values can be visualized by thinking of a 20×20 matrix of 

couplings.  The question that arises then is what pair of couplings or combination of pairs should be 

considered as representative of the coupling between two positions?  If all 400 numbers are equally 

prevalent or large, then this would complicate the analysis.  With real alignments, however, this 20×20 

matrix of coupling values is sparse because most amino acids are not present in all positions.  

Furthermore, there is usually one pair that produces a high covariation score.  Given these observed 

properties of the matrix of coupling values, two approaches are possible to obtain a single number 

representing the coupling between two positions of the alignment.  The first approach is to consider 

only the pair that has the highest covariance.  The second approach is to sum all the values in the 20x20 

matrix which means that if two pairs have a high score then the total covariance at the position will 

reflect the two scores.  In practice, there is not much numerical difference between these approaches so 

in this work the sum of all the covariance values will be used. 

Weighted covariance 

Now that binomial probabilities and covariances have been explained, the current SCA method can 

be derived.  The SCA method combines both the binomial probabilities and the covariance calculation.  
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The idea is to weight the covariance by a function of the binomial probability.  In other words, what is 

desired is a weighting function that would downweight the contribution of an amino acid to the 

covariation if the frequency of an amino acid is not significantly above background.   On the other hand, 

if an amino acid frequency is significantly above background, then its covariance score should be 

weighted higher.  The effect of this type of weighting is that it will reduce the covariation between two 

positions caused by a few related sequences that happen to exist in the alignment.  The weighting 

equation can be written in the following way (
( )ab

ijC is the covariance between amino acids a and b at 

positions i and j/ ( )a

iD is the relative entropy of amino acid a at position i): 

( ) ( ) ( ) ( )weighted covariance= ( ) ( )ab a b ab

ij i j ijC D D C 
 

( )( )a

iD , is called a functional which is a function of a function and has the form: 

 
( ) ( ) ( )

( )

( ) ( ) ( )

(1
( ) ln

(1 )

a a a
a i i

i a a a

i i

D f q
D

f f q


  
   
  

 

 The derivation of this will be given later, but for now, I will state that the weighting function is given 

by the first derivative of the relative entropy term with respect to frequency.  Therefore if the 

covariation score and the frequency of an amino acid and the background frequency are known, the 

weighted covariance can be calculated.  The form of  ( )( )a

iD is given in Figure 6.  One can see by the 

Figure 6: The form of the partial derivative of the relative entropy with respect to frequency.  The different 
curves represent different background frequencies of 0.01, 0.05 and 0.1. 
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graph and by the equation that if the observed frequency is at the background frequency, the derivative 

of Di would be zero and therefore the weighted covariation including that site would to go to zero 

regardless of the actual covariation.  On the other hand as the frequency increases above that of the 

background the weighting factor increases. 

With this the reader can see that a high weighted covariation score is only possible if there is a high 

covariation score between two vectors and if the frequencies of amino acids in either vector are higher 

than the background frequency. 

 The impact of weighting on the covariance is shown in the Figure 7 on the following page.  As is 

clear from the histograms of the coupling values, the weighting scheme decreases the values of some of 

the positions while dramatically increasing the magnitude of a few positions.  In effect the weighting 

makes some positions stand out from the cluster of values observed in the unweighted covariance 

matrix.  Note that mathematically, the matrix after weighting is not a true covariance matrix and so is 

referred to as coupling matrix.  However, for certain purposes as will be explained later, the coupling 

matrix is used as if it is a covariance matrix because numerically it is close to being a true covariance 

matrix. 

 Taking the first derivative of the relative entropy may seem at this stage a somewhat arbitrary step.  

However, this weighting is actually the most natural one as will be shown next when another 

implementation of SCA called the bootstrap method is discussed; as will be shown the bootstrap 

method is equivalent to the weighted covariance.   
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Figure 7: Impact of weighting on the covariance values.  The following histograms, matrices and scatter plot show that the 
weighting scheme increases the range of the covariance values so that some positions are more easily distinguished from the 
weak coupling.  A PDZ domain alignment was used for this analysis.  The coupling matrices are shown with values colored 
according to the color scale. 
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The bootstrap method  

 The bootstrap method [55] is a way to calculate the covariation using, not the positional 

frequencies (vectors of one and zero) but rather vectors of the relative frequency.  The relative 

frequency is the change in the frequency of an amino acid at a position when one sequence is removed 

from the alignment.  Note that the relative frequency is not the same as the relative entropy.   The basic 

idea is to calculate coupling based on the correlation between relative frequencies at different sites as 

sequences are removed. 

 The bootstrap method removes a sequence ‘s’ from an alignment and then calculates the new 

relative frequency (D) for every position.  .  The relative frequency changes because a sequence is 

removed, so the total number of sequences (denoted M in the binomial probability expression) 

decreases.  Then, if every sequence of the alignment is removed and a new relative frequency calculated, 

then one obtains a vector of relative frequency (D) for every position and every pair.  Next one 

calculates which positions show similar changes in relative entropy as the sequences are eliminated by 

calculating the covariation between the vectors of relative entropy obtained with single sequence 

elimination.  Positions that covary would have the same variation in relative entropy and so will have a 

high covariance. 

The covariation given by the bootstrap method when a sequence, s is removed, is written like this 

(the symbols represent calculation of a mean value of the expression in the brackets): 

 ( ) ( ) ( ) ( ) ( )

, , , ,
ˆrelative frequency covariation= ab a b a b

ij i s j s i s j sC D D D D   

 This bootstrapping method can be shown to be equivalent, within a multiplicative factor to the 

weighted covariation method. 

 First the expression for the frequency of an amino acid (f) can be written as the number of 

sequences containing an amino acid ‘a’ at position ‘i’ divided by the total number of sequences, M: 

 
a

a i
i

M
f

M
  

Now if a sequence‘s’ is removed as in the bootstrap procedure the expression for the frequency 

changes.  M is reduced by one and a

iM  could change depending on whether an amino acid ‘a’ is present 

in that sequence.  In any case a

iM  will either be reduced by one or not reduced at all depending on 

whether the removed sequence ‘s’ contained amino acid a at position i (represented by ,

a

i xx in the 

following expression): 
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,

,frequency after eliminating one sequence= 
1

a a

i i xa

i s

M x
f

M





 

 If M is large so that the elimination of one sequence does not change M very much, then the 

removal of one sequence can be considered a slight perturbation.  This slight perturbation allows the 

use of the Taylor series approximation. 

 The Taylor series approximation is a method used to approximate functions as a series of infinite 

polynomial terms.  A Taylor series for a function f is written as: 

 
( )

2( ) ( )
Taylor series= ( ) ( )( ) ( ) ... ( )

2! !

n
nf a f a

f a f a x a x a x a
n


        

 The important property of the Taylor series is that the Taylor series of order n has the same values 

when x=a.  When x is close to a then the Taylor series of a particular order approximates a function.  The 

farther x is from a, then the more terms need to be considered for a good approximation. 

 The Taylor series for the frequency function can be written as: 

 , , , , , ( 1) ( ) ( ) 1 ... ( ) ( ) ....a a a a a

i s i s i s i s i sf M f M f M M M f M f M              

 To evaluate this, the function for the frequency and the derivative of the frequency are needed.  

The frequency was given before as 
( )

( )
a

a i
i

M
f

M
 .  The derivative of the frequency with respect to M is: 

 
2

a
a i

i

M
f

M


   

 The derivative and the frequency after single sequence elimination are substituted into the Taylor 

series expression: 

2
, , , ,

, 2 2

( )
 ( 1) ( 1)

a a a a a aa a
i i s i i s i s i sa i i

i s

M x M x x xM M
f M

M M M M M M

  
         

 
 

 The last term is divided by M2 and if M is large will be small so it will be discounted.  The expression 

for frequency will then be substituted and the M term grouped to give: 

, ,

,

1 1
 ( 1) (1 )

a a

i s i sa a a a

i s i i i

x x
f M f f f

M M M M
        

 The same approach can now be used for the relative entropy, D which is a function of the 

frequency. 
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,

, ,

1 1 1
[ ] [(1 ) ] [(1 ) (1 ) ]

aa
i sa a a a ai

i s i s i i ia

i

xD
D D f D f f f

M f M M M


       



,

, ,

1
[ ] [(1 ) ] [ ]

aa
i sa a a i

i s i s i a

i

xD
D D f D f

M f M


    


 

.
, ,[ ]

a a
a a a i s i
i s i s i a

i

x D
D D f D

M f


  




 

 Now the definition of covariation comes into play: 

, , , ,relative entropy bootstrap covariation ab a b a b

ij i s j s i s j ss s s
C D D D D  


 

 The relative entropy can be substituted with the relative entropy approximation. This will give the 

following: 

. .. .ˆ ( )( ) ( ) ( )

b b b ba a a a
j s j j s jab a b a bi s i i s i

ij i j i ja b a b

i j i jss s

x D x Dx D x D
C D D D D

M f M f M f M f

  
     

   

   
 

 This expression can be rewritten by multiplying the joint product and simplifying: 

. .. . ..

2
ˆ ( )( )

a bb b a b b ba a a a
i s j sj s j i s j s j jab a b b a a bi s i i s i s

ij i j j i i ja b a b a b

i j i j i js

x xx D x x D Dx D D D
C D D D D D D

M f M f M f f M f M f

    
      

     

     

. . ..

2

. . . .

2

ˆ
b b a b ba a a
j s j i s j s jab a b b ai s i i

ij i j j ia b a b

i j i j s

a b a bb ba a
i s j s i s j sj ja b b as i s s s i

i j j ia b a b

i j i j

x D x x Dx D D
C D D D D

M f M f M f f

x x x xD DD D
D D D D

M f M f M f f

  
   

   

  
   

   

   

   
 

 Now expand the first average: 

. . . .

2

. . . .

2

ˆ

( )

a b a bb ba a
i s j s i s j sj jab a b b as i s s i

ij i j j ia b a b

i j i j

a b a bb ba a
i s j s i s j sj ja b b as i s s s i

i j j ia b a b

i j i j

x x x xD DD D
C D D D D

M f M f M f f

x x x xD DD D
D D D D

M f M f M f f

  
   

   

  
   

   

   

   
 

 

 Many terms cancel now and the expression simplifies considerably: 

 

. . . .

2 2
ˆ

a b a bb ba a
i s j s i s j sj jab s i s s i

ij a b a b

i j i j

x x x xD DD D
C

M f f M f f

  
 

   
 

 Grouping terms yields: 
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. . . .2

1ˆ ( )

ba
jab a b a bi

ij i s j s i s j sa b s s s
i j

DD
C x x x x

M f f


 

 
 

 

This is just the covariation matrix multiplied by the first derivative of the relative entropy and 

divided by the square of the number of sequences: 

2

1ˆweighted covariation= ( )

ba
jab abi

ij ija b

i j

DD
C C

M f f




 
  

 This shows that the bootstrap method for calculating covariance is the same as the relative entropy 

weighting up to a constant.  Thus, there is no need to perform the bootstrap procedure as the weighted 

covariance can be calculated analytically if M is large enough (more than 100) that the assumption (that 

removing one sequence does not change the frequency very much) holds . 

 

Perturbation method  

 This was the first method developed in the Ranganathan lab and used in several of the first studies 

[56-60].  This approach will be presented as it was first published and then it will be related to the 

framework presented previously of weighted covariances. 

 The coupling analysis method starts by defining a multiple sequence alignment as a thermodynamic 

ensemble.  In this evolutionary ensemble, the different positions have different energy states.  With this 

assumption, the difference in energy between positions can be calculated using the Boltzmann 

distribution.  The Boltzmann distribution, for two populations, ni and n0, separated by energy (ei-e0) can 

be written as  

0( )

0

1
,ie ein

e
n kT

 
 

 

 

In the 1999 Lockless and Ranganathan paper [58], the following was written down as the energy 

difference (∆G) between mutating two positions (i and j) in an alignment: 

xGi j

kT

x

i

x

j

P
e

P

 



  

 This is considered as equivalent to the Boltzmann distribution expression with ∆G=εi –εo, and where 

the probabilities can be obtained from the numbers by dividing by the total number of amino acids at 
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that position.  In addition 1/kT* is denoted as ‘*’ to note that this is not the same as that used in classical 

thermodynamic systems.  (The ϐ value of 
1

kT
in classical thermodynamic systems is obtained from 

comparing the expression of internal energy of an ideal gas obtained using the equipartition expression 

with the expression of internal energy obtained using the translational partition function [61].  For 

sequence data, the value of ϐ is unknown because the internal energy of a system of sequences and the 

partition functions cannot as yet be calculated).      Also since there are 20 different amino acids at a 

position, there is an ‘x’ for every amino acid.  Using this expression, the observed probabilities for an 

amino acid can be converted into an energy score by taking the logarithm of both sides and rearranging: 

 ln
x

x i
i j x

j

P
G kT

P



   

 Then, based on the above equation, a measure of conservation is defined in the following way: 

2(ln )
xP

i
xP
MSA

STATG kT
i

x

    

 Introduction of this measure is necessary because at any site there are multiple amino acids and 

this accounts for them by summing over all of the amino acids at a position.  In addition, PMSA refers to 

the probability of an amino acid in the total alignment. 

 This conservation measure is then used to calculate the coupling.  The idea behind coupling is to 

measure the degree that an amino acid at one position correlates with an amino acid at another 

position.  In this paper, this was implemented in two steps:  

1. Choose a position i and calculate ∆GSTAT for position i. 

2. Choose an amino acid x at position j and then calculate ∆GSTAT for position i.  Subtract the ∆GSTAT 

after selection from the ∆GSTAT before selection.  This defines ∆∆GSTAT between positions i and j.  

The actual formula incorporates the fact that different amino acids occur at a given position by 

summing them.  The formula for this is: 

2(ln ln )
x xP Pi j i

x xP j P
MSA MSA

STATG kT
i

x






    

 

 The one thing needed to solve this equation are the probabilities of amino acids at positions.  In this 

paper the probabilities were defined as binomial probabilities.  Recall that a binomial probability 

measures the probability that an event occurs relative to that event not occurring.  In this approach the 
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probability of every amino acid is calculated separately so that a position in an alignment has a vector 

containing 20 elements (although any particular value could be 0).  In the case of a multiple sequence 

alignment, the binomial probability is calculated as follows: 

!
( ) (1 )

!( )!
x xn N n

x x

x x

N
P x p p

n N n


 


, 

where, 

px: occurrence of amino acid x in a protein database, 

N: total number of sequences 

nx: the number of occurrences of amino acid x 

 

This completes the description of the original SCA method.  Its use in practice will be discussed now.  

One practical limitation is with the method of selecting a position j when calculating ∆∆GSTAT.  The 

limitation is that in some cases one can calculate the coupling at position i but not the coupling at 

position j.  This resulted in asymmetric coupling patterns.  This occurs because of the imposition of a 

threshold when selecting sequences.  The threshold is that after selecting an amino acid a position, the 

distribution at several pre-selected non conserved sites should not change.  This threshold is important 

to make sure that the selection is not globally changing the alignment (i.e. selecting for closely related 

sequences).   If that number is not reached, then no calculations are made.  In practice this is a sampling 

issue when there are few sequences present in the alignment.  However, in cases where the coupling 

can be calculated between two positions, the coupling energies are similar.  Although this method was 

used for several papers [56-60, 62], it has now been supplanted with different methods of calculating 

correlations. 

 This method also fits into the framework of weighted covariation.  This can be seen by deriving an 

analytical equation for the perturbation method. 

 The starting point is to write down how the frequencies change in the subalignment vs. the full 

alignment.  The subalignment frequencies are technically conditional frequencies; that is, they are the 

frequency of an amino acid given that the previous position has been fixed.   This conditional frequency 

is denoted like this: 

 
|

|conditional frequency=f ib a

j i  

 In general, a conditional frequency can be written as the ratio of the joint frequency to the marginal 

frequency.  That is, the joint frequency of ‘a’ and ‘b’ is the frequency of ‘a’ times the conditional 

frequency of  ‘b’ given ‘a’. 
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|,

|joint frequency= i ia b aa b

ij i j if f f  

 Next, add and subtract 
b

jf  to the previous equation so that: 

, ,

|

| =i

i i

a b a b

ij ijb a b b

j i j ja a

i i

f f
f f f

f f
    

 If ia

if is not taken as a common factor one obtains the following expression: 

,

|

|

i

i

i

aa b b

ij i jb a b

j i j a

i

f f f
f f

f


   

 The numerator in the fraction above is a covariance so: 

|

|

i

i

i

a b

ijb a b

j i j a

i

C
f f

f
   

  Now the expression for the conditional relative entropy can be written, using the Taylor series 

approximation discussed previously, as: 

 
| |

| |( ) ( ) [ ]i i

b

jb a b ab b

j i j j i jb

j

D
D f D f f f

f


  


  

 The joint frequency expression can be substituted as above so that the relative entropy is given by: 

|

|( ) ( ) [ ]
i

i

i

a bb

j ijb a b

j i j ab

j i

D C
D f D f

f f


 


 

 This expression now has a covariation term in it as well as a partial derivative.  With it, the 

analytical solution to the perturbation is at hand.  The 
, ,

|
iSTAT b a

G
j i

 is written as: 

|

|

1, ,
[ln [ ] ln [ ]]

|
ib abi

M j M j i

stat b a
G P f P f

j i M
     

To remind the reader, the expression 
1

ln [ ]b

M jP f
M


is the relative entropy 

b

jD  so that  

, ,

|
iSTAT b a

G
j i

  is the difference between the marginal relative entropy and the conditional relative 

entropy like this: 

 |

|

, ,
( ) ( )

|
ib abi

j j i

STAT b a
G D f D f

j i
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 This statement can now be compared to the equation for the joint relative entropy.  The reader can 

see that 
, ,

|
iSTAT b a

G
j i

 can be written like this: 

 
1, ,

|
i

i

b

j a bi
ija b

i j

DSTAT b a
G C

j i f f


 


 

 This can be considered as a weighted covariation with one weight being the partial derivative of the 

relative entropy and the other weight the inverse of the frequency.  Note that this weighting scheme is 

not symmetrical.  This completes the analytical solution of the perturbation experiment. 

 The perturbation method is presented here for completeness; it is not currently used to calculate 

coupling.  The weighted covariation is used. 

 In the next section I consider the methods other labs have used to calculate coupling. 
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Section 2: Methods reported in the literature to calculate covariation: 

 

 Many approaches to calculate coupling between positions in a multiple sequence alignment have 

been published (see Table 3).  In this section, I describe a subset of the published methods along with 

brief discussions of specific results or conclusions.  I also compare the SCA method to selected methods.  

I have divided the different literature studies into the following categories: early studies, statistical 

algorithms to calculate coupling, comparison of selected methods with SCA, statistical methods to 

correlate coupling with physical contacts, experimental approaches, learning algorithms, inter-protein 

coupling, methods that attempt to correct for phylogeny, miscellaneous work, and a review of reviews. 

Early studies 

The observation of correlations between positions in sequence data predated the advent of fast 

and reliable DNA sequencing methods in 1975.  The first report I know of was in 1972 when Crowson, at 

the zoology department in the University of Glasgow observed by visual inspection correlation between 

positions of 43 cytochrome c (a protein involved in apoptosis and the electron transport chain) 

sequences from several species [63].  The author noted that the correlations could be important and 

suggested that extracting significant meaning would have to await more sequences.  Then in 1976 a 

paper from Wang’s lab [64] at Carnegie Mellon employed statistical methods to calculate the 

significance of correlations on a set of 63 cytochrome c sequences concluding that correlated sites 

tended to be on the surface of a protein and suggesting that this is functionally important because other 

molecules bind to the surface of proteins.  This paper was ahead of its time as it was not until more than 

25 years later that methods of this level of sophistication are used. 

The next paper to report coupling came in 1987 from Klug’s lab [65] at Cambridge,11 years after 

the previous paper.  In this work, the authors studied an alignment of seven viral sequences.  The 

methodology they used was not based on statistical methods but on visual pattern recognition.  The 

authors numbered the amino acids at a position. For example, if an amino acid at one position is 

absolutely conserved then the amino acids at all those positions would be given the value 1, and so for 

seven sequences the numbering would be a vector of 1’s(1 1 1 1 1 1 1).  If the position was not 

absolutely conserved but there were only two amino acids at a position, the vector of that position 

could be (1 2 1 1 1 1 1) if the second sequence had an amino acid different from the others.  If there are 

three types of amino acids at a position, then the vector could be (1 2 3 1 1 1 1).  This was done for all 

positions.  The identity of the amino acid was not important for this study, only that the amino acid was 

different from others in a column.
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Table 3: The following are published studies that analyze covariation between positions in a multiple sequence alignment.  

‘EXP?’ refers to whether experiments were done and ‘Purpose’ refers to the whether the primary purpose of the study is to 

determine functional residues (F) or contact residues (C) or both (F/C). 

 

  

#/ref First Author Last Author Year Coupling method EXP? Purpose 

1 [63] Crowson, RA  1972 visual pattern recognition No F 

2 [64] Wong, AK Wang, CC 1976 mutual information based No F 

3 [65] Altschuh,D Klug,A 1987 visual pattern recognition No F 

4 [66] Altschuh,D Nagai, K 1988 visual pattern recognition No F 

5 [67] Vernet, T Altschuh, D 1992 visual pattern recognition Yes F 

6 [68] Korber, BT Lapedes, AS 1993 mutual information No F 

7 [69] Neher, E  1994 correlation, physiochemical No C 

8 [70] Gobel, U Valencia, A 1994 correlation, distance metric No C 

9 [71] Taylor, WR Hatrick, K 1994 correlation, physiochemical No C 

10 [72] Hatrick, K Taylor, WR 1994 review No  

11 [73] Kovalenko, O Horovitz, A 1994 not described Yes F 

12 [74] Clarke, ND  1995 mutual information, weighted No F 

13 [75] Lichtarge, O Cohen, FE 1996 evolutionary trace No F 

14 [76] Thomas, DJ Sander, C 1996 correlated, distance metric, learning No C 

15 [77] Pollock, DD Taylor, WR 1997 review using simulated alignments No F/C 

16 [78] Chelvanayagam, G Benner, SA 1997 phylogenetic, physiochemical corr. No F/C 

17 [79] Pazos, F Valencia, A 1997 intraprotein physiochemical correlation No C 

18 [80] Olmea, O Valencia, A 1997 correlation+conservation No C 

19 [81] Ortiz, AR Skolnick, J  1997 correlation, physiochemical No C 

20 [82] Pollock, DD Goldman, N 1999 maximum likelihood, physiochemical No C 

21 [83] Olmea, O Valencia, A 1999 correlation+conservation No C 

22 [84] Ortiz, AR Skolnick, J 1999 correlation, physiochemical No C 

23 [85] Farsiselli, P Casadio, R 1999 correlation, neural network No C 

24 [86] Tuff, P Darlu, P 2000 phylogenetic, physiochemical No C/F 

25 [87] Wollenberg, KR Atchley, WR 2000 mutual information, phylogeny No F 

26 [88] Atchley, WR  Dress, AW 2000 mutual information, phylogeny No F 

27 [89] Fariselli, P Casadio, R 2001 physiochemical, neural network No C 

28 [90] Pritchard, L Dufton, M 2001 rule-based correlation No C 

29 [91]   Filizola, M Weinstein, H 2002 correlation, physiochemical No C 

30 [92] Oliveira, L Vriend, G 2002 weighted covariance No F 

31 [93] Kass, I Horovitz, A 2002 chi-square No F 

32 [94] Tillier, ER Lui, TW 2003 mutual interdependency No F 

33 [95] Saraf, MC Maranas, CD 2003 correlation, distance based No C/F 

34 [96] Fodor, AA Aldrich, RW 2004 review-energetic coupling, contacts No C/F 

35[97] Fodor, AA Aldrich, RW 2004 review-OMES, MI, SCA, McBasc No C/F 

36 [98] Dekker, JP Yellen, G 2004 explicit likelihood of subset covariation No C 

37 [99] Fleishman, SJ Ben-Tal, N 2004 correlation, phylogeny No F 

38 [100] Dutheil, J Galtier, N 2005 correlation, phylogeny No C 

39[101] Gloor, GB Dunn, SD 2005 mutual information No C/F 

40 [102] Noivirt, O Horovitz, A 2005 chi-square, phylogeny No C/F 

41 [103] Fares, MA Travers, SA 2006 correlation, phylogeny No C 

42[104] Halperin, I Nussinov, R 2006 correlation No C 

43 [105] Kundrotas, PJ Alexov, EG 2006 filter based correlation method No C 

44 [106] Fuchs, A Frishman, D 2007 review of nine methods No C 

45 [107] Dunn, SD Gloor, GB 2008 mutual information  No C 

46 [108] Sayar, K Onaran, O 2008 chi-square based No F 

47 [109] Skerker, JM Laub, MT 2008 mutual information Yes C/F 
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To identify correlated positions the authors listed all the positions which had the same pattern.  For 

example if position 1 had a vector (1 2 1 1 1 1 1) and position 2 had a vector (1 2 1 1 1 1 1) then they 

would be grouped together.  The authors found several such groups.  In the cases where the positions 

are not absolutely conserved then this would be grouping positions based on the pattern of 

substitutions at a position.  The authors then mapped the correlated groups onto the known structure of 

the virus.  They found that in most cases the grouped patterns were forming important structural 

contacts.   

The visual pattern recognition process while conceptually sound did not have any statistical 

tests to ensure significance or to separate phylogenetic correlations from functional ones.  In the follow-

up paper in 1988, a contributor to the previous paper, Altschuh, now at Nagai’s lab in France, addressed 

some of the limitations of the previous work [65].  The authors examine three protein families (serine 

proteases, hemoglobins, cysteine proteases) in the manner previously described.  However, the authors 

realize certain complications.  They note for instance, that the more number of sequences that one has 

in the alignment, the harder it will be to find exact pattern matches and so they introduced a method 

they called ‘relaxed’ to look for similar patterns rather than identical ones.  The authors also introduce 

the idea of significance of positions as well as grouping amino acids based on chemical similarity.  Note 

that these ideas are presented in a conceptual, not mathematical way. Later studies addressed coupling 

mathematically. 

 

Statistical algorithms to calculate coupling 

 In this section I describe methods that have been used to calculate correlations.  These methods 

use statistical approaches between positions to measure coupling and do not include any information 

about the physio-chemical nature of the amino acids for the statistical tests. 

 Mutual Information, Korber and Lapedes, 1993 [68] 

The paper by Korber and Lapedes in 1993 introduced a mathematical approach to quantify the 

coupling between positions in a protein multiple sequence alignment.  The authors applied their method 

to the human immunodeficiency virus (HIV) (specifically, the V3 loop of the envelope protein).   

 The authors used a mutual information based method to detect coupling.  Since mutual 

information is a widely used method I will explain it in some detail and then, in the next section, 

compare the values from mutual information to SCA values for the same alignment. 

  Mutual information is based on the idea of sequence entropy: 
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 px (i) is the probability of occurrence of a state x at a position i. In the case of 

alignment data, x refers to the set of amino acids and i to the column of an 

alignment. 

For every column in the alignment, one can calculate a sequence entropy for a particular amino 

acid.  Because there are 20 amino acids, one would have 20 sequence entropy values.  For a second 

column in the alignment, one would then have another set of 20 entropy values.   

If one now considers the occurrence of pairs of amino acids, one can calculate an entropy for that 

as well.  Since there could be 20 amino acids at one site and 20 amino acids at another site, there could 

be 400 possible pairs of amino acids.  The entropy of pairs is called joint entropy and it is calculated in 

the following way: 

joint sequence entropy=- ( ( ) ln ( ))xy xy

xy

p ij p ij  

With the single and joint entropies defined, a quantity called mutual information can be defined.  

Mutual information is calculating by summing the entropy of site i with the entropy of site j and then 

subtracting the joint entropy of sites i and j: 

 

mutual information=entropy(i)+entropy(j) – joint entropy (i,j). 

 

If two vectors are not independent then the mutual information will be high.  Basically, mutual 

information is a measure of the reduction of uncertainty of one vector given another vector.  The 

mutual information is always positive and has a maximum value when the covariation is one.  If the 

mutual information is zero this could mean two things: either sites i and j vary independently or that 

there is no variation at all. 

 With real, finite data, the mutual information, even for independent, varying sites is almost never 

zero because the sample size is too small.  This means that there is a slight bias towards positive mutual 

information in finite data sets.  To account for this, the authors vertically shuffled the alignment 750,000 

times and calculated a mutual information score.  Then they counted the number of times that a mutual 

information score in the shuffled data sets was at least as large as the mutual information score 

calculated from the unshuffled data set.  They divided this number by the total number of randomly 

vertically permuted alignments (750,000) to obtain a significance probability.  The significance cutoff 

they chose was 0.1.  

sequence entropy=- ( ( ) ln ( ))x x

x

p i p i
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 Their results are that only a subset of positions in the V3 loop were coupled based on the threshold 

that they chose.  Note that the authors excluded columns with more than 95% identical positions and 

those with ‘primarily’ gaps. 

 The authors also calculated a term called the ‘specific information’.  This term describes the degree 

to which an amino acid at position i can predict an amino acid at position j.  They listed for the columns 

with highest mutual information the amino acid pairs with high specific information. 

 The authors’ primary purpose in developing this method is to suggest using the covarying residues 

to develop vaccines and to identify functional sites.  They also acknowledge that sites could covary 

because of functional constraints and structural constraints. 

 Weighted mutual information, Clarke, 1995 [74] 

This 1995 paper by Clarke is one of the clearest and most explanatory papers dealing with coupling 

analysis.  The author discusses coupling from a fundamental perspective and goes through all the factors 

that could affect the coupling signal.  He discusses the assumption that all sequences in the analyzed set 

should undergo the same selective pressure and that sequence sets could be too small and that the 

sequences are not ‘phylogenetically uniform’. 

From an analytical perspective, the author also introduces a new metric based on mutual 

information.  The author states that this metric is not rigorous but is based on the fact that it agrees 

better with functional and structural data.  The expression used is: 

,2

,

,

weighted mutual information= ( ) log( )
i j

i j

i j i j

a a

a a

a a a a

P
P

P P
  

This differs from the usual mutual information in that the joint probabilities are squared.  Also, the 

sum here is over residue pairs and not over sequences.  The result of this is that amino acid pairs with 

high joint entropy (high information) that are present most often will contribute most to the sum.  The 

author also states that many pairs of positions that would have been found to be highly covarying would 

be downweighted with his method because the covariation comes from low frequency pairs. 

The author then applied this methodology to analyzing the coupling pattern and significance on the 

homeodomain family.   He also identified a network of positions and depicted this with a network 

diagram.  Covarying positions were also mapped onto structures to try to structurally rationalize the 

coupled pairs.  Also, he analyzed the functional data available on the pairs and found that the covarying 

pairs are implicated in the function of the homeodomain. 
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Again, this paper is commendable for its scope and for the clarity of the writing and reasoning that 

went behind what the author did. 

 Weighted covariation, Vriend’s lab, 2002 [92] 

Four protein families were analyzed using correlation.  The authors differentiate between different 

sets of correlated positions and in fact find that proteins have different networks of correlated positions.  

This presages our work in the serine protease family by detecting four networks one of which is the 

active site residues, another is one of unknown function and two of which have to do with calcium 

binding. 

 The method used is quite similar in spirit to the one I described in section 1.  It is a weighted 

covariation matrix.  The difference is in the weights and the covariation calculation however: 

1

1 |1

covariation(i,j)=W(i,j) ( )
n n

p q p q

p q p

i i j j


 

  

2

( 1)
W

n n



 

The delta function can be 1 or 0 according to the following rules: 

1: ip=jp and iq=jq OR ip~=jp and iq~=jq 

2:ip=jp and iq~=jq OR ip~=jp and iq~jq 

 Another interesting part of this paper is that they make plots of entropy vs. variability and 

categorize rather arbitrarily the residues that fall in different regions of the plot.  They make a model 

that says that for any given protein there is a set of highly conserved and invariable positions that make 

up the active site.  This is surrounded by slightly less conserved positions.  Then, on the surface are 

usually unconserved positions except at particular sites which then interact through unknown 

mechanisms through the conserved core of the protein to the active site.  The model is interesting 

because it describes an information transfer pathway from one part of the protein to the other which is 

something that Lockless et al, 1999 [58] described as well. 

 Chi-square, Horovitz, 2002 [93] 

In this paper, Kass and Horovitz compute a measure of coupling based on the chi-square test. 

First, they calculated the expected frequency of number of sequences containing amino acid X and 

position i and amino acid Y at position j.  This was calculated as the number of sequences*frequency 
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Xi*frequency Yj.   An example if X at i occurs with a 0.2 frequency and Y at j occurs with 0.4 frequency, 

then assuming that they are independent, the expected frequency is 0.2*0.4=0.08.  If 0.08 is multiplied 

by the number of sequences in the alignment, one gets the expected number of sequences.  

 This expected number is compared to the observed number of sequences.  If this number is higher 

than the expected then one can consider that the residues are coupled.  The significance of this is 

evaluated using the chi-square statistic.   

 One additional thing they did is to consider that multiple amino acids at positions i and j could 

occur.  In that case they summed over all possible combinations of amino acids at sites i and j. 

 The formula they published is: 

2( )2 , ,

,

( , )
N N

n OBSERVED n EXPECTED

N
n EXPECTEDn

i j


  

 n=amino acids at position i×amino acids at position j, N=number of sequences 

 Mutual Interdependency, Tillier and Liu, 2003 [94] 

This paper follows up on the 1976 work [64] by using a mutual information based metric.  The 

authors apply their method to many sets of proteins and find that it works better than mutual 

information because it predicts more close or contacting residues than mutual information.  The 

weighting process includes several complex steps and would be interesting to investigate further. 

 Explicit Likelihood, Dekker, 2004 [98] 

This paper is a useful contribution to the literature as it introduces a new algorithm for coupling 

and compares that algorithm to the original SCA algorithm.  In addition, it is a well written paper with a 

lot of explanations.  The method they used to calculate covariation has very similar ideas to the original 

SCA in that one fixes a residue at one position in an alignment and looks at the change in conservation at 

another site in the alignment.  However, the actual difference metric used by Dekker is different.  Their 

metric is called Explicit Likelihood of Subset Co-variation (ELSC). 

 What they do is to calculate the number of ways that an observed distribution of amino acid 

frequencies in a subalignment can occur given the distributions of amino acids in the full alignment. 

This is done by calculating the number of times an amino acid a occurs in the subalignment given the 

total number of alanines in the full alignment (Nala choose nala) multiplied by the combinations for all 

amino acids.  So for example, if there are 10 alanines in the full alignment and 5 in the subalignment, 

then the total number of ways of getting 5 out of 10 is: 10!/5!(10-
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5)!=10!/5!5!=10*9*8*7*6/5*4*3*2=9*28=252.  This would be multiplied by the combinations for all 20 

amino acids that could be present in the subalignment: 
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where the combination is given by the following: 
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This total combination number is then divided by the total number of possible subsets which is (Ntotal 

choose ntotal).  This gives a probability, denoted by L: 
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 This L value is then further normalized to the likely frequency of an amino acid (denoted as m(r,j) at 

a position. 
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The normalization is then done by dividing L by Lmax which results in a score denoted by the authors as: 
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 Their results are that the algorithm performs with greater power than SCA at detecting contacting 

residues although the results by both SCA and ELSC were statistically significant. 

 Normalized mutual information, Dunn’s lab, 2005 [101] 

This paper presents a new method for calculating covariation based on mutual information.  Mutual 

information is based on the idea of sequence entropy provided before: 

sequence entropy=- ( ( ) ln ( ))x x

x

p i p i
 

For every column in the alignment, one can calculate a sequence entropy for a particular amino 

acid.  Because there are 20 amino acids, one would have 20 sequence entropy values.  For a second 

column in the alignment, one would then have another set of 20 entropy values.  If one now considers 

the occurrence of pairs of amino acids, one can calculate an entropy for that as well.  In that case, it 

would be a joint entropy in the following way: 

joint sequence entropy=- ( ( ) ln ( ))xy xy

xy

p ij p ij
 

 For any given pair, there are potentially 400 possible pairs to consider when calculating joint 

entropies.  Mutual information is calculating by summing the entropy of site i and amino acid x with the 

entropy of site j and amino acid y and then subtracting the joint entropy of sites i and j, amino acids x 

and y.  If the joint entropy is high it means that the mutual information is high.  Basically, mutual 

information is a measure of the reduction of uncertainty which one could see applies...if there is a high 

joint entropy then the uncertainty is less than it would be if positions i and j were evolving 

independently.  

 The authors noted some problems with mutual information.  Those problems are that there is 

strong mutual information due to random pairings of amino acids in small sequence sets.  They calculate 

that a minimum of 125 sequences be used to eliminate this.  A second problem which exists is that low 

conserved positions have higher random pairings.  To eliminate these problems the authors devised a 
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simple normalization where the mutual information is divided by joint entropy of the pair of positions.  

The authors also state that this ratio (mutual information/joint entropy) is a true distance measure.  

 A third problem that the authors discuss is the background mutual information coming from the 

fact that sequences are homologous.  They have also done evolutionary simulations and found that if 

positions are highly conserved it is not easy to separate those that are co-evolving from those that are 

not.  In this case, they impose a cutoff where they do not consider highly conserved positions.  Also, 

they do not consider gapped positions. 

 The authors’ main result is their identification of two classes of coevolving positions.  The first class 

is composed of pairs that are near each other in the structure and therefore have to coevolve together.  

The second class, which the authors suggest is more significant, is composed of sites that are grouped 

together in ligand binding regions or active sites of 22 analyzed protein families.  They also report that 

mutation of sites that are grouped are likely to cause mutations and compare their results with two 

protein families-homeodomain and E. coli ATP synthase. 

Comparing SCA with selected algorithms 

 The development of different algorithms for calculating coupling raises the question of how 

different these algorithms are from each other and how different they are from statistical coupling 

analysis.  In the next six figures I show comparisons of SCA and three other algorithms: mutual 

information, normalized mutual information and the chi-square test.  These algorithms were chosen 

because they are widely used (especially mutual information).  The comparison is presented for two 

alignments: a PDZ domain alignment (Figure 8 and Figure 9 and Figure 10) and a serine protease 

alignment (Figure 11 and Figure 12 and Figure 13).  For each alignment, I show the symmetrical coupling 

matrix, histograms of the coupling values (excluding the diagonal) and a scatter plot of each coupling 

pattern against the other.  The matrix and histograms give an overview of the data.  The scatter plots 

should reveal if there is a relationship between the different coupling measures, although this 

relationship does not need to be a linear one. 

 As the scatter plots clearly show there is a strong relationship between mutual information, 

normalized mutual information and chi-square test for both alignments.  On the other hand the 

relationship of with the other methods is poor, with normalized mutual information being the closest in 

the serine protease alignment.  This difference of SCA with other methods means that SCA would make 

different predictions about what the cooperative constraints are.   The correctness of these predictions 

can be discerned by either a much better understanding of evolution or by experimental work.  The 
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focus of my work (and generally that of the Ranganathan lab) is experimental testing of predictions 

made using the SCA algorithm discussed in the previous chapter. 

  

Figure 8: Coupling matrices for the PDZ domain family with values calculated using different algorithms. The coupling 
matrices are shown with values colored according to the color scale. 
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Figure 9 : Comparison of SCA with other methods for the PDZ domain.  Histograms for 
different ways to calculate coupling are shown. 

 



46 
 

  

Figure 10:  Comparison of SCA with other methods for the PDZ domain.  Scatter plots of one coupling measure vs. another 
are shown. 
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Figure 11: Coupling matrices for the serine protease family with values calculated using different algorithms.  The coupling 
matrices are shown with values colored according to the color scale. 
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Figure 12: Comparison of SCA with other methods for the serine protease family.  Histograms for different ways 
to calculate coupling are shown. 
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Figure 13:  Comparison of SCA with other methods for the serine protease family.  Scatter plots of one coupling measure vs. 
another are shown. 
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Statistical methods to correlate coupling with physical contacts: 

 These methods are listed separately from the methods of the previous section because they 

specifically look for relationships between coevolving residues and contact residues in proteins. 

 Neher, 1994 [69] 

 Erwin Neher who had previously developed the patch clamp method, worked on coevolution 

too.  Neher’s approach will be described in some detail because later approaches are based at least 

conceptually on this work.  The novelty of this work is that Neher not only introduced a new metric for 

correlation, but he also attempted to correlate the coupling to physical parameters of the protein.  The 

main thrust of Neher’s work was not the identification of correlated positions but to attribute 

correlation to some physical attribute of the amino acids making up the correlated pairs. 

 In this work, the frequency of amino acids is defined as a simple frequency although he also stated 

that in the general case, the frequencies should be considered as functions not only of the considered 

positions but also of all other positions.  Neher stated that that if the positions are independent then the 

joint probability P of finding amino acid x at position i and amino acid y at position j is: P(amino acid i=x; 

amino acid j=y) equals the product of the individual probabilities.  

 To associate physical properties with the amino acid frequencies, Neher calculated the average 

charge or surface area over that position as: 

 mean (expected) value= charge frequencyx x

i i

x

Q  

 variance= 2 2(charge )x x

i ii

x

Q f    

 The correlation was measured using Pearson’s correlation coefficient: 

 correlation among positions i and j=
,

,

,

(charge )(charge )x y

i j x y

i j

x y i j

Q Q
f

 

 
 , where ,

,

x y

i jf  refers to 

the joint frequency of x and y at positions i and j. 

 In the next equation, Neher formulates a correlation between sequences assuming the sequences 

in a multiple sequence alignment are independent.  The expression is similar to that above except the 

numerator of ,

,

x y

i jf is 1 and numerator is just the total number of sequences and the sum is over all 

sequences.  So what would be done is the correlation between some physical parameter (volume or 

charge of side chain) of one position at one sequence is compared to another position at the same 
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sequence.  Then the total correlation for that pair of positions is obtained by summing.  This works in 

this case because the correlations are between continuous variables  (i.e. charge and volume) and not 

the discrete variables of amino acid identity.   The expression is: 

,

(charge )(charge )1
n n

i ji j

i j

n i j

Q Q
r

N  


 
  

  

 This measure of correlation would give a value of zero if the positions were independent and the 

sequences were independent.  However, sequences are not independent as they are homologous and 

so any calculation of position independence could be obscured by the fact that the sequences are not 

independent.  To get around this problem, Neher attempted to calculate the correlations among pairs of 

sequences by subtracting the charge at one position from the charge at another position (and not from 

the mean of the charges as shown in the above equation).  The reader can see that if the amino acid is 

the same and therefore the charge, then the whole expression becomes zero.  This expression is: 

1 2 1 2

,

(charge charge )(charge charge )1 1

2

n n n n

i i j j

i j

n i j

r
N  



 
  

 One further modification is introduced to the above expression in order not to consider those 

positions which are zero is the sum.  This is easily done by considering N as only the pairs that are not 

zero.  So this calculation minimizes correlations due to homology by essentially removing those positions 

which have identical amino acids in two different sequences at a given position.  This is the final 

correlation score given by Neher. 

 The last aspect of this considered by Neher is trying to calculate the variance of the data.  Here, he 

used standard statistical analysis but modified to deal with the lack of independent sequences and the 

corrected expression.  Without going into the details that Neher does not describe, the expression for 

variance used is:  

, ,

,

1
variance

4
r i j

i jN



 

 The coefficient α requires some explanation.  It is obtained empirically by an iterative method from 

the distribution of ri,j.  It is a measure of the apparent degrees of freedom.  As the number of sequences 

go up, the variance decreases subject to the α coefficient.  With this definition of variance the noise of 

the data is calculated as the signal (the ri,j) divided by the variance. 
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 This completes the mathematical description of Neher’s work.  In the paper, Neher empirically 

determined the point at which he obtained maximal signal to noise ratio which was when the similarity 

between sequences was in the interval (60%-95%) for the set of 68 initial myoglobin sequences which 

resulted in a final analysis set of 42 myoglobins.   

Briefly, the first result that Neher obtained is that the correlation between amino acid volumes was 

close to zero when summed over all positions and when considered over only a subset of positions 

known to be neighbors based on structure.  This was unexpected because the assumption was that 

there would be correlation between amino acids due to size compensation.  The second result is that 

when charge is considered, the correlation between all positions was zero but when structural 

neighbors were considered the correlation was significant. 

Neher’s work is very interesting because it attempts to do, from little previous body of work, a lot.  

He attempts to measure a correlation score and the noise of the data and then use this to see if protein 

physical properties are correlated.  Neher also makes an intriguing statement where he says that he 

cannot predict the charge partner of a given position because the signal to noise ratio is too low.  He 

calculates that if he did have 250 sequences, he would have a signal to noise ratio enough to make a 

prediction.  It would be interesting to see if that analysis could be carried out with the large numbers of 

sequences and much more computing power present today. 

 Valencia lab, 1994, 1997, 1999 [70, 79, 80, 83] 

The next reports come from Valencia’s lab.  The authors introduce a rather novel way to calculate 

coupling.  Their aim is to predict contacts in proteins.  The method they use is to replace the sequence of 

amino acids at a position with a distance metric.  The distance metric is calculated by obtaining a 

distance metric for each possible pair of amino acids at a position using the McLachlan distance metric 

(this is a matrix of chemical similarity scores).  After encoding the alignment in this way, the authors 

calculate a correlation score which is similar to the covariation except that the denominator is the 

standard deviation of i*standard deviation of j instead of the total number of sequences. 

Another study in 1997 also by Valencia’s group continued the effort to predict intra-protein 

contacts.  The coevolution method that is used combines correlation with conservation.  With this 

combination the authors achieve a success rate of 30%; that is 30% of predicted contact sites based on 

their correlation based metric is correct based on the known structures of the analyzed proteins.  The 

authors state that this is a promising start and plan on refining their method. 
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Valencia’s group one year later, in 1999, published another paper with the aim of predicting 

contacts.  Their main approach is to consider a few sequences which show covariation.  They compare 

the contacts predicted with threading algorithm to that predicted from conservation and correlation and 

conclude that conservation and correlation or a linear combination of both can predict with low but 

significant accuracy contacts.  They do not do the immediately obvious experiment which is to use the 

constraints obtained from conservation and correlation data in the threading algorithms and see if that 

improves the fit between the threaded structure and the crystallographic structure. 

 Hatrick, 1994 [71] 

 This paper follows many of the previous papers in trying to devise a way to quantify 

covariations between positions with the idea that those covarying positions represent contacting 

positions and thus could be useful for predicting the structure of a protein.  The authors in fact write the 

following,  “The importance of correlations of this kind stems from the supposition that they might arise 

through the direct physical effect of one sequence position on the other.  This implies that the side 

chains of the residues involved are close enough to interact.” 

 The approach here is more sophisticated than previous approaches in that the authors specifically 

address the question of spurious correlations.  Spurious correlations are those that may arise just due to 

historical correlations.   To address this problem the authors formulated a method where in calculating 

correlation only non-identical sites are examined.  This is similar to what Neher proposes but they do 

not explicitly mention his work.  For example, if at a position i in a multiple sequence alignment, there 

are two amino acids, a and b and at another position j, there are two amino acids, c and d, correlations 

are not calculated when a=b or a=c or b=d or c=d. 

 Furthermore, the authors, to calculate correlation, assigned a ‘spatial’ model and a physiochemical 

scale to amino acids and in this way particular numbers could be assigned to the occurrence of amino 

acids.  They then use a clustering method to cluster pairs based on their effect. 

The author’s conclusion is somewhat surprising for published work.  They specifically write that 

their method has little predictive power in identifying contacting residues and that previous methods 

had more significant values.   

 Skolnic lab , 1998, 1999 [81, 84, 110, 111] 

 The next series of studies from Skolnic’s lab are again focused on using correlated mutations to 

predict contact sites in proteins but with a twist.  The authors do not predict the contacts and stop there 
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but they simulate the folding of a protein using restraints derived from correlated mutations.  The 

details of the method will not be described here but the authors report that their work is equivalent to 

that of threading algorithms (threading attempts to fold proteins by comparing sequences with 

unknown folds to homologous sequences with known structures). 

 The authors also report that they entered the CASP contest and found that they can predict with 

their method some unknown structures.  They report that their method does well on small helical and 

alpha/beta proteins less than 110 residues, including those with some novel folds.  Their method fails 

however, with beta proteins or large proteins. 

 Maranas Lab, 2003 [95] 

 This group introduces a method called residue correlation analysis which is very similar to the 

method introduced by Gobel et al in 1994 [70] .  The correlation between positions i and j is: 
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 The Xikl and Xjkl were obtained from the McLachlan scoring matrix. 

As a practical matter, they excluded positions with more than 70% gaps.  They chose a cutoff of a 

correlation of 0.4 to indicate significance based on the fact that random vertical or horizontal shuffling 

resulted in low correlation scores.  They also considered only pairs that did not have the same 

sequences in both positions to minimize biasing the correlation scores to overrepresented sequences. 

 The author’s goal however, is not to introduce this previously developed correlation score but to 

use it for the calculation of something they call a correlation tendency.  The correlation tendency is a 

measure of how a ‘contiguous string of residues’ is correlated to several other residues.  The authors are 

interested in regions of a protein that form contacts with another set of residues that is not contacting 

the original region (a cutoff of three residue away is chosen).   

 The authors state that the correlations are noisy and introduce a metric that aims to reduce the 

noise.  This metric, for the correlation tendency is: 
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 A value greater than one of the correlation tendencies is considered significant because shuffled 

alignments show values below one. 
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 The authors also then state that conserved positions are important but do not show up in the 

correlated positions.  To take advantage of this conservation they introduce a metric for conservation 

called site entropy: 
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 , the probabilities are the probabilities of amino acid x at position i. 

 Using these metrics that authors attempt to understand whether covariation can capture any 

information that is not captured by conservation and whether both methods together can yield more 

information.    

 Their conclusions, briefly, are that correlations, when signal is high, identify functional sites better 

than contact maps and conservation and that the combination of correlation and conservation is best 

for capturing most of the functional sites. 

 Halperin, 2006 [104] 

This paper uses correlated mutation to measure contacts between two different proteins.  They find 

that in one protein correlated mutation analysis works but in another protein family it doesn’t and they 

therefore conclude that this method is not suitable for aiding in docking which is different from what 

other people have published. 

 Kundrotas and Alexov, 2006 [105] 

 This is yet another paper where the author tried to use correlation mutations to predict physical 

contacts.  The authors believe that they achieved an advance over previous methodologies by imposing 

a set of filters and optimizations on the multiple sequence alignment prior to the predictions.  The filters 

are: 

1) Removing non-homologous sequences  (<20% identity) and removing highly similar sequences 

(>90% identity). 

2) Ignoring absolutely conserved positions 

3) Obtaining sub multiple sequence alignments 

4) Incorporating a minimum degree of conservation for the calculation of coupling in the sub 

alignments. 

5) Filtering the predicted positions by some physiochemical inclusion list.  That is the authors chose 

allowed residues based on whether they form hydrophobic pairs, ion pairs, hydrogen bonds and 

disulfide bridges.  Pairs of residues that did not make chemical sense were excluded. 
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Then the authors varied each of the variables to find which threshold maximized the predicted 

residues for several families which have high resolution structures.  The net result of all this is that the 

true predicted residue pairs were about 0.09 on average which is on the low end of other methods.  The 

authors claim that this can be improved with further work. 

 Dunn’s lab, 2008 [107] 

 The authors of this report adopt a coupling method that is similar to SCA in spirit.  They develop a 

new method to remove background mutual information from actual mutual information values in order 

to better estimate correlations due to contacts.  

 The idea is quite simple.  The authors take two unrelated protein families and make a joint 

alignment.  Then they calculate the mutual information between positions in the two families.  Then 

they make what they say is a surprising observation that the mutual information between positions in 

the unrelated families can be estimated by the average mutual information.  Then the average mutual 

information is factored out of the calculated mutual information.   

 This paper is similar to SCA in spirit because with SCA the probability of every amino acid is based 

on a background probability.  Here, the background mutual information comes from all the alignment 

and not the individual amino acid but the idea is the same: to account for a background level of 

correlations.  The authors claim that their method increases by three to four fold the prediction of 

physically contacting residues. 

 

Experimental approaches   

 Of close to 50 reported papers on coevolution that are by other labs, only 3 that I am aware of 

attempt to do an experiment to test the significance of coevolution.  These three are briefly described 

here. 

 Altshcuh, 1992 [67] 

The first experiment I am aware to test the significance of correlated sites experimentally was 

made by Altschuh’s lab in 1992.  The authors took one pair of positions in the cysteine protease, papain, 

and investigated whether the ‘complementary’ pair identified by a multiple sequence alignment rescues 

function compared to the single mutants.  They find that one single site mutation kills the enzyme which 

can be rescued by another mutation at another site.  A single mutation at the other site has small effects.  
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This study is noteworthy as it represents a test of how a statistically coupled pair can actually function in 

a protein. 

 Horovitz, 1994 [73] 

Another early experimental work comes from Amnon Horovitz’s laboratory in 1994.  Horovitz was 

one of the first to work on thermodynamic mutant cycles along with Alan Fersht.  In this short report , 

they investigate whether thermodynamic coupling is observed in co-evolved pairs.  First, they identified 

a pair of correlated sites in GroEL (a chaperone protein).  Then they made double mutant cycles on this 

pair and concluded that the effect of the mutants was non-additive suggesting that the sites were 

interacting cooperatively in the native protein.  The authors do not describe the method for calculating 

covariation and instead only say that it is so and show a table with the claimed, correlated site.  The 

value in this paper though is the experimental finding that the predicted cooperative sites were non 

additive.  This paper was the first to make explicit the link between thermodynamic mutant cycles and 

statistical coupling. 

 Laub, 2008[109] 

This year Laub’s group published a paper where they changed the interface between two proteins 

that contact each other based on the coupling between them.  The system used was bacterial proteins 

that are in the two-component signal transduction system.  These proteins consist of a histidine kinase 

and a response regulator.  Both proteins take part in the same function and exist on the same operon.  

They used this fact to make an alignment of the two proteins and then they used mutual information to 

calculate the coupling between and within domains.  The coupling data between domains identified 

clusters of residues that could be the binding interface between the two proteins. 

The authors then switched the coupled region along with the connecting loops of one protein to 

another and they found that the switched protein exhibited the specificity of the protein from which the 

switch regions were obtained.  This was done for several proteins and for each protein the authors were 

able to transfer the specificity just by transplanting the coupled positions and connecting loops.  This is 

the first experimental demonstration of such a specificity switch using coupling data. 

 

 



58 
 

Learning algorithms 

 Several groups have attempted to use learning algorithms to see if they can develop rules that 

would enable the prediction of contacts.  None of these studies was very successful. 

  Learning algorithm, Thomas and Sander, 1996 [76] 

The work from Thomas and Sander continues the trend of using coevolution to predict contact sites 

in proteins but without much success as acknowledged by the authors.  This paper attempts to correlate 

contacts with correlated mutations using a learning algorithm.  They take a set of alignments for which 

there are known structures.  Then they bin the contacting pairs of sequences and the non-contacting 

pairs into different categories.  They use this as a training set.  They compare the predictive power on a 

set of unknowns.  Their method achieves only a 1% improvement in predictive power over previous 

methods, which the authors say is,”...weaker that we might have hoped.” 

 Neural Networks, Fariselli and Casadio, 1999 [85], Valencia’s lab 2001 [89, 112] 

In this study, neural networks are designed that integrate chemical and evolutionary information 

with the aim of predicting contact maps.  The authors report an improvement over previous methods in 

that their method is independent of protein size but still, to quote, ‘far from useful’ owing to the fact 

that the fraction of predicted contacts is never more than 26% accurate. 

Another method published by Valencia’s group in 2001 uses a similar idea as the Thomas and Sander 

paper.  The new method tries to incorporate coupling information into a neural network with the goal 

being to improve the prediction of contacting sites.  The details of this approach will not be discussed 

but the authors report that without the neural network they predicted 15% of all contacts but when 

incorporating neural networks they obtained an accuracy of 21% which represents a 6-fold increase over 

random guessing (random guessing would give an accuracy of ~3.5%). 

 Maximum likelihood, Pollock and Taylor, 1999 [82] 

Similar in spirit to neural networks, Pollock and Taylor who wrote a 1997 review critical of methods 

used for correlated mutation analysis developed in this paper a new method to deal with some of the 

uncertainty regarding what is the best way to calculate correlations between sites.  The authors here 

use a maximum likelihood method to calculate coupling in an effort to reduce the effect of random 

correlations which they say affected previous methods.  Their method modeled evolution using 

complementary states of amino acids.  The complementarity was based on physical aspects of amino 
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acids such as the size of the amino acid or the charge.  So inherent in their method is a certain 

assumption for what compensating mutations should be. 

 In general, maximum likelihood methods choose some model for the data and then calculate using 

the model, the parameters.  Then, parameters are compared to experimental data to see which model 

most closely resembles the experimental data.  Every model has some free parameters which are 

simulated during each calculation. 

 The authors used two models of evolution, a model where amino acids are independent and a 

model where amino acid mutations are dependent according to an evolutionary scheme.  The details of 

the models are rather complex and are essentially an evolutionary model that will not be described here.  

The authors conclude that their method can detect coevolution in both simulated and real data.  They 

also say that residues that are strongly co-evolving are more likely to be near each other.  They also 

admit that they used size and charge arbitrarily and say they will work on other ways to group proteins. 

 

Inter protein coupling 

These studies attempt to calculate the contact sites of two proteins based on the co-evolution 

of the two proteins. 

 Pazos and Valencia, 1997 [79] 

The first study by Pazos and Valencia widens the scope of correlated mutation analysis by 

looking at the coevolution between two proteins that interact.  The idea is that if two proteins interact 

together then the residues that mediate that interaction would co-evolve together even though they are 

on different peptides.  The authors used the correlation metric introduced before (Gobel et al, 1994 [70]) 

but introduced a new method to compare distances between pairs in actual structures. 

 They test their method on known interacting pairs.  They find that sequence correlation data can 

predict which of the docking solutions is best.  This to them is strong evidence that their method can 

find contacting interfaces.  Then they make a prediction for interacting pairs using a protein with an 

unknown structure to them.  They find that their method could predict the interacting regions at the 

interface although they do not do any mutagenesis. 

The value of this work is it is the first attempt to my knowledge at using correlated mutations to 

predict interactions between two different proteins. 

 Filizola, 2002 [91] 
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This work is aimed at identifying interfaces between proteins.  It is based on previous work 

discussed above, but in this work the authors claim to have developed a new method called subtractive 

correlated mutation (SCM).  This method is easy to explain: the authors take two similar protein families 

and then compute four alignments.  The first alignment is of protein A.  The second alignment is of 

protein B.  The third alignment is A appended to B so A and B seem like one protein(A+B).  The fourth 

alignment is AB where A and B are aligned together because they have similar structures.  Then each 

alignment has its coupling matrix calculated using previous methods.  However, to obtain the 

intermolecular coupling the authors subtract the coupling values in the following manner: 

intermolecular coupling=Coupling(A+B)-Coupling(A)-coupling(B)-coupling(A,B).  Then the set of positions 

identified by intermolecular coupling are filtered based on solvent accessibility (as the structures are 

known, this is possible to do reliably). 

 This method was applied specifically to the opiod receptor heterodimers, which are members of 

the GPCR family where specific interactions were found.  A negative control where no interfaces were 

predicted was used also. 

 Laub’s lab 2008 [109] 

This paper is a very interesting experimental paper where the authors measured coevolution using 

mutual information between two bacterial interacting proteins in the same operon.  They were able to 

then redesign the interaction surfaces between the two proteins based on the coevolution pattern.  This 

study was discussed further in the experimental studies section. 

 

Considering phylogeny 

 Understanding the phylogenetic history of individual positions in alignments can allow for more 

accurate extraction of functional signals.  The studies reported here attempt to model evolution.  The 

evolutionary methods are not discussed in any detail but the results and conclusions of the authors are 

reported. 

 Benner’s lab, 1997 [78] 

A paper in 1997 in Benner’s lab partially addressed the concerns raised by Pollock and Taylor 

[77].  This paper has a combination of several novel approaches to calculate coupling.  To begin with, the 

authors only considered interior positions (surface accessibility <40%).  Second, they defined 
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‘simultaneous variation’ as two positions in aligned proteins that have both mutated.  Third, they 

subdivided the ‘simultaneous variation’ into proximal and distal variation.  The proximal variation is 

variation between residues that are close (<6 angstrom) in the structure whereas distal variation is 

variation between residues that are farther than 6 angstrom in the structure.  They only considered 

proximal covariation in their analysis as they could hope to explain the covariation based on specific 

amino acid property compensation. 

 The calculation of ‘simultaneous variation’ is novel and I will explain it in more detail.  Consider two 

positions in a sequence alignment at sequence a: say at position i there is amino acid A and at position j 

there is an amino acid B.  Now consider another sequence: at position i there would be an amino acid C 

and at position j there would be amino acid D.  The mutated pair would be: A->C|B->D.  As there are 20 

amino acids and every amino acid can be changed to any other one, there are a total of 400 pairs for a 

single site and 400 pairs for a second site, and to describe the changes at both sites requires a 400x400 

matrix.  The authors excluded changes that occur as (A->A|C->D) and so the final data set has 36290 

elements rather than 160,000 (400*400).  However, the authors did not use these covariances.  Instead 

they categorized them based on the physical properties of the amino acids.  Amino acids could be 

volume compensated, hydrogen bond compensated or charge compensated. 

The authors also introduced a weighting scheme based on constructing phylogenetic trees from 

their sequence data.  They looked at the effect of different evolutionary depths on the covariation.  The 

main result is that at different evolutionary depths, different types of physical compensation become 

detectable.  That is, when sequences are at intermediate distance, the covariation tends to account for 

hydrogen bonding.  At low evolutionary distance, volume compensation is present.  At all distances, 

charge compensation is present.  The authors also see if their methodology can predict contacts but 

they cannot improve on previous methods. 

The idea that at different evolutionary distances, different effects are possible is quite new and 

may be useful to think about although the specific compensations that the authors use may not be 

correct. 

 Tuffery and Darlu, 2000 [86] 

This paper attempts to model phylogeny as a way to get at the significant correlations.  This was 

the most extensive model of evolution yet built to detect significant correlations in multiple sequence 

alignments.   Only an outline of the methods and results is given here. 
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First, the authors constructed a tree of the sequences using maximum parsimony.  Then using two 

different approaches (parsimony and maximum likelihood) they constructed ancestral sequences at the 

nodes of the tree.  Then, they simulated the evolution from the ancestral sequences to the known 

sequences. 

From the simulated evolution they were able to get at what they call ‘cosubstitution’, which is two 

different sites undergoing substitution in the same tree branch.  The significance of the ‘cosubstitutions’ 

was evaluated via two evolution-based approaches the details of which will not be discussed here.  For 

both approaches however the idea is that one can arrive at an expected substitution given that 

evolution occurs at sites independent than at others sites.  These expected substitutions can be 

compared to the observed one and a significance ascribed. 

One key finding they reported is that in order to get significant cosubstitution they need to 

categorize the amino acids into physically meaningful pairs.  Their overall conclusion is that the 

coevolving pair detection is sensitive to the method and reliable analysis of co-evolution requires further 

work. 

 Wollenberg and Achtley, 2000 [87] 

This paper clearly describes the problem of detecting covariance between positions.  The authors 

list that there are three sources that could result in coevolution between positions: 1) chance 2) 

phylogeny and 3) structural/functional constraints.  The goal, as the authors state, is to understand what 

signals come from chance and phylogeny and what can come from functional constraints. 

 To achieve this goal, the authors constructed three sets of data.  First is the coevolution of the 

natural alignment calculated using mutual information.  The second set is the coevolution of an 

alignment reconstructed from a phylogenetic tree of the data and a substitution matrix of the data.  The 

third set is made by computing the tree from the natural data but using a substitution matrix made from 

all protein alignments.  Then the authors compared the data sets. 

 According to the authors in a way not fully explained, the third data set preserves the phylogenetic 

and chance properties of the alignment.  The second data set preserves the functional data as well as 

the phylogenetic and chance data.  Therefore, if one wants to extract functional data, all one needs to 

do is to take the threshold set by the third data set as things that are not functionally important. 

 To test this idea, they used the basic-loop-helix motif.  They found that the mutual information of 

the phylogenetic data set are much less than that of the natural data set and the model of the natural 

data set.  They therefore conclude that they can extract functional information with a particular 
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probability based on this method.  The actual method used to make the reconstructed data sets is not 

described but is referenced.  Other than that, the paper is quite well written and is a good attempt in 

trying to separate chance and phylogeny from function. 

 The same authors published another paper [87] that resembles very much the previous one 

but is more extensive it its explanation.  They even use the same protein family.  The only extra type of 

information they provide is the construction of network graphs of residues with mutual information 

above a certain threshold. 

 Dufton’s lab, 2001 [90] 

 This seems to be a set of rules for calculating covariation based on the detection of significant 

blocks.  A block is a set of positions that covary together perfectly.  The authors correctly consider that a 

block made up of one sequence only is not significant.  However, the exact calculation of correlation 

between positions is not explicitly defined.  The authors then simulate evolution and apply their 

correlation analysis to see if their method can detect true correlations.  They were limited to 60 

sequences.  They calculated both the noise (defined as the correlations at positions that they did not 

choose to be correlated) and the signal (the number of pairs that were identified to be correlated at the 

sites which were designated to be correlated).  The signal/noise ratio was then calculated which 

expresses the proportion of true correlated changes.  This was done for different evolutionary models. 

 Conclusions: number of sequences should be high to minimize noise and get a high signal (>16), 

most reliable results are when there are large data sets with high sequence divergence and high rate of 

substitution.  This paper described the effect on correlations of different evolutionary methods and as 

such it is useful. 

 Fleishman, 2004 [99] 

This is another phylogenetic based correlated mutation analysis.  An additional aspect of this work is 

that the authors used principal component analysis.  The authors used their analysis on potassium 

channels and claim they need 50-100 sequences.  The rationale behind phylogenetic approaches is to 

simulate the evolutionary path from hypothetical ancestral sequences to the extant sequences along a 

tree based on the extant sequences.  The idea is to consider changes that occur in one branch of the 

tree.  In addition to this, they weight the amino acid mutations differently based on the identity.  As they 

say, a valine to isoleucine change is considered of smaller magnitude than a glycine for a tryptophan.  

These changes are accounted for by the Miyata substitution matrix. 
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The authors using this method computed basic correlation coefficients and calculated the 

significance of the coefficients via bootstrap sampling.  After obtaining a set of significant correlation 

values (note that the correlation values were between pairs of amino acids at positions) the authors 

performed a principal components analysis to detect networks of coupled positions. 

 The results are the identification of networks of correlated amino acids that correspond in some 

cases to known functions of the potassium channel. 

 Dutheil 2005 [100] 

This work introduces yet another method for calculating coevolution.  The basis of the work is to 

construct a detailed phylogenetic model of evolution of each site.  This allows for the estimation of 

ancestral sequences.  Correlations are then calculated between the ancestral sequences.  According to 

the authors the use of this method predicted 95% of contact sites in a rRNA alignment.  One issue with 

this work is that the authors state that the method could be used for protein and nucleic acid sequences 

but do not show a coevolution example for protein sequences. 

 Horovitz 2005 [102] 

In this paper, Horovitz’s group modified the approach they used in their previous paper by 

incorporating by their own admission, ideas made by Wollenberd and Achtley (2000) [87].  They still 

used a chi-square test to rate significance but in this case they modified the calculation of observed 

sequences.  In addition, they also tried to select sequences for analysis based on an evolutionary tree.  

According to them this method helps to reduce noise in the alignment. 

The first difference they made is to shuffle a position i vertically many times.   This has the effect of 

removing all correlations.  For each shuffle they calculated a chi-square value.  At the end of their 

shuffling trials they had a distribution of chi-square values.  They then calculated  a p-value to estimate 

the significance between the chi-square value calculated before shuffling and after shuffling.  The reason 

for doing this, as the authors state, is that in certain cases the chi-square test results must be discarded, 

whereas in this case the results do not have to be discarded. 

The second modification that they did is to select 20% of the sequences randomly and then 

‘permute’ each sequence of the selected 20% with another sequence in the alignment.  However, this 

‘permutation’ was not done randomly but the probability that any given sequence is permuted with 

another depends on the evolutionary distance between the sequences.  It is not clear from the 

mathematical description how the evolutionary distance is calculated but I presume that a sequence has 
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a higher chance of being permuted with a sequence that is like it.  In this case, permutation I think 

means switched.  Finally, the distribution of shuffled positions was compared with the non-shuffled 

position.  In this case, this means that the correlations obtained with this method reflect ancestry or 

noise. 

In order to estimate evolutionary noise what the authors did is to obtain sequences of non-

interacting proteins from the same species and combine them.  Then from another species they picked 

the same pair and they made a multiple sequence alignment of all of these non-interacting pairs.  They 

then calculated the degree of coupling between positions.  What they found is even though the two 

proteins did not interact they detected a large amount of coupling.  However, when they vertically 

shuffled one of the proteins these correlations went away.  Their conclusions are that the coupling is 

easily observable and reflects noise.  One thing to note about this is that the authors did not distinguish 

the magnitude of coupling.  They just chose a cutoff p-value. 

When the authors applied their evolutionary weighting method they observed that both intra-

residue and inter-residue correlations decreased.   They then calculated a signal to noise ratio and found 

that for most of the protein pairs the signal to noise ratio increased. 

My criticism of this paper is that due to incomplete explanation I cannot follow why shuffling based 

on evolutionary distance decreases the p-value relative to not shuffling and second, why the calculation 

of evolutionary distance depends on the correlated positions. 

Finally they compare their correlation analysis to distance metrics of proteins and find that their 

method does better at revealing correlations that appear due to distance measures. 

 

 Fares and Travers, 2006 [103] 

This study aims to correct for phylogeny, ‘replacement propensity’, ‘background sequence 

divergence’ and ‘three-dimensional’ information, using a novel method that they describe. 

They call their method CAPS for coevolution analysis using protein sequences.  The idea is not to 

use the correlation between amino acids at a position as in other work but the correlated variance of 

the evolution of particular sites.  An additional correction is applied which based on the estimated time 

of divergence between sequences.  This is therefore a more complicated approach than used in other 

work.  The authors also compare their work with the work of Pollock (parametric method), Tillier 

(dependency) and Korber (mutual information).  The main advantage of this method is that it is highly 

sensitive and does not require large alignment sizes.  It would be interesting to examine the methods in 

this work more closely. 
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Miscellaneous work 

 Evolutionary trace, Cohen’s lab, 1996 [75] 

The next work in 1996 by Cohen’s lab is not a coupling method in the sense of calculating the 

covariance between positions in a multiple sequence alignment.  Instead of just relying on the multiple 

sequence alignment, phylogenetic trees of the sequences are used to select sequences to examine.  The 

authors are interested in identifying functional sites with this method that they call an evolutionary 

trace. 

The starting point is to make a multiple sequence alignment.  Then a dendrogram is made of the 

sequences.  This dendrogram groups sequences based on function.  At a particular branch point of the 

dendrogram, groups of sequences can be defined.  Subalignments are extracted from each group and 

then a consensus sequence is made of each subalignment.  Then the subalignment consensus sequences 

are aligned together and a consensus sequence of the consensus sequences is made. 

In this scheme, all positions can be classed into three categories: conserved, neutral, or class-

specific.  Conserved means that a position is 100% conserved.  Neutral means that a position has some 

variation in the original consensus sequence.   Class specific means that a position has some variation in 

the consensus of the consensus sequences. 

These steps are repeated for different partitions of the dendrogram and then, the categorized 

positions are mapped onto the structure.  The main result observed for two protein families (SH2, 

nuclear receptors) is that conserved and class-specific residues often form clusters that are regions 

where a peptide bonds.  They also observe non-clustered positions but they state that they cannot 

interpret the functional significance of those sites. 

 

 

Review of reviews 

 Hatrick and Taylor, 1994 review [72] 

 The emphasis of this paper is a review of using conservation and correlation to estimate 

contacts in proteins.  With respect to correlation, the authors review four methods including their own 

discussed above.  They state that the Altschuh method which looks at pattern recognition is faulty 

because the patterns could be artifacts of the conservation pattern.  They also state that that method is 
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hard to implement for many sequences.  They also consider another example from the literature where 

Benner and Gerloff in 1991 [113, 114] identified covarying residues but they did not ascribe much 

validity to the method.  The third method criticized is that of Oliveira et al [1993] where some positions 

where identified but without a structure are impossible to verify.  For their own method the authors 

criticize their work by saying that while they wanted to solve the problem of conservation they were 

unable too because when conservation is taken into account the correlation signal is quite weak. 

 Pollock and Taylor, 1997 review [77] 

The authors of this 1997 review, Pollock and Taylor tested different correlation methods (Neher, 

1994 [69]/Gobel et al, 1994 [70] /Taylor and Hatrick, 1994 [71]) on simulated evolutionary trees.  Their 

conclusion is that no method can detect a significant number of true correlations without also including 

correlations due to phylogenetic structure of alignments.  They go further and write that this may be 

impossible to address properly owing to the fact that it is not possible to make alignments in the first 

place that contain no phylogenetic information as alignments are built using homologous sequences 

that by definition are phylogenetically related.  They suggest but do not provide evidence that the best 

approach to analyzing sequence information is to model the alignments phylogenetically to extract true 

correlations. 

 Fodor and Aldrich, 2004 review [96] 

In this paper, Fodor and Aldrich do not introduce new algorithms or data for coupling but attempt 

to see whether coupling by two different algorithms is correlated with distance in a protein and with 

thermodynamic mutant cycles.  They write that they observed that statistical coupling with two 

different algorithms (Gobel score and SCA score) correlates with distance.  This is true to some extent 

but the correlation is rather weak.  The authors also compare thermodynamic mutant cycles in the PDZ 

domain (for binding), staphylococcal nuclease (folding) and shaker channel (for conductance) with 

distance and the Gobel score.  They find that the correlation is poor for these systems.  However, the 

authors only considered linear correlations but the relationship between sequence covariation and 

thermodynamics does not need to be linear.  Finally the authors correlate thermodynamic coupling with 

distance and report that the correlation is strong although this varies among different data sets and it 

could be non-linear as well. 

 This paper is an attempt to understand the meaning of statistical coupling in terms of physical 

properties of the protein, which is what other groups tried to do.  The authors also use the paper to 
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criticize the claims that they believe were made by proponents of statistical coupling analysis.  

Specifically they write that it is possible to observe thermodynamic coupling that is not predicted by 

statistical coupling analysis.  They also imply that, if a structure is present, it is possible to correlate 

distance to statistical coupling and it is therefore not very useful to determine statistical coupling 

because distance is also correlated with thermodynamic coupling. 

 My viewpoint is that distance metrics, thermodynamic coupling and statistical coupling measure 

related but not identical constraints.  There are problems with each of these metrics and thus the 

comparison between them to find out which is better than the other has many problems not 

acknowledged by Fodor and Aldrich.  For example, thermodynamic coupling data is not readily available 

and is also fraught with problems because mutants may change other parameters of the protein and the 

system itself may change.  In addition, there is a problem of what to mutate into.  Moreover, the 

relationship between the thermodynamic coupling and statistical coupling need not be linear, a point 

not discussed by the authors. 

 Fodor and Aldrich, 2004 review [97] 

In this paper a comparison of different algorithms for calculating covariance is made.  The authors 

compare OMES (Kass and Horovitz [93]), mutual information (Atchley et al [88]), SCA (Lockless et al [58] , 

McBasc (Olmea et al [83]). 

 The authors also introduce a measure of conservation at a position as the absolute sequence 

entropy:  

sequence entropy=- ( ( ) ln ( ))x x

x

p i p i   

 The authors point out the obvious that correlation only works when there are intermediate values 

of conservation.  This is because when a column is 100% conserved there is no correlation.  If the 

conservation is very low then the correlation is also zero or close to zero. 

 The authors construct an artificial alignment and compare the behavior of the different methods on 

it.  They find that all methods had the highest correlation between positions in which there is 50% MM 

sequences and 50% YY sequences (the alignment had only two columns).  What differed, however, was 

the distribution about this maximal value.  All methods had different distributions.  The authors also 

compared the performance of the algorithms to random positions and found differences as well.  Then 

they compared the behavior of the algorithms to real alignments and found that the different 
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algorithms had different shapes with some algorithms giving higher scores to less conserved positions.  

The third aspect that the authors looked at is the correlation between correlation scores and distance 

between positions.  They found, again, a relationship between correlation score and distance that is 

slightly different for different positions.  The authors also examine the predictive power of the 

algorithms for residue contacts and find that the algorithms generally have low accuracy.  The final 

figure of the paper shows the pair distance prediction for multiple protein families.  Again the 

algorithms perform differently. 

 The authors conclude the article with an interesting comparison of their analysis of the correlation 

algorithms with the claims made for the correlation algorithms. They single out SCA for special 

treatment.  One criticism is that SCA has low power and hence the conclusions that the energetic 

interactions in a protein are sparse may be due to its low power and not due to actual sparse 

interactions.  The authors also have a problem with all methods in that only the highly covarying 

positions are significant.  They question whether the information in the highly covarying positions is 

actually very useful in describing thermodynamic coupling and residue distances in proteins.  The 

authors end with the idea that different methods filter conservation in different ways and that some 

methods may be better suited for alignments of particular conservation. 

 Generally, the authors did a lot of analytical work in comparing the different methods.  They also 

point out that what SCA attempts to measure is actual thermodynamic coupling and not distance 

(although they are skeptical of the idea that most adjacent residues in proteins are not 

thermodynamically in contact). 

 Fuchs and Frishman, 2007 review [106] 

This is a comprehensive study on the general applicability of correlation analysis to membrane 

proteins.  The authors used nine different correlation algorithms (all the ones discussed previously) to 

analyze coupling in several membrane protein families.  The goal again was to predict contacts in 

membrane proteins.  In this case, though it’s acknowledged that only about 10% of correlated residues 

are contacting so the authors used a previously used measure based on proximity.  That is, they looked 

whether correlated positions are near each other.  They find that, with this measure, close to 50% of 

correlated residues are in ‘close vicinity to interhelical contacts’. 

 This paper is laudable in that they compared nine prediction algorithms and pooled the information 

from each.  They also state the both the SCA method and mutual information performed poorly in 

calculating coupling and so they excluded them from further analysis although they also state that for 
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one protein family mutual information was the best measure at predicting contacting residues.  The 

authors claim that their approach would be useful to predict the structure of contacting domains.   

Conclusion 

 Extracting correlations from a multiple sequence alignment that reflect cooperative interactions 

within a protein is complicated by the phylogenetic history of the sequences.  Deconvoluting 

cooperativity from phylogeny has been the key difficulty that has been addressed both in SCA and in 

other methods. 

It is clear from the comparisons between SCA and mutual information and chi-square based 

methods that there are fundamental differences in the methods reflecting differences in an assumed 

evolutionary model.  In the absence of true phylogenetic histories and true cooperative interactions, the 

correctness of each method can only be established by experimental evidence; i.e. methods should 

make testable predictions that can then be compared with experiments which is the approach taken in 

my work.   

 One specific comparison widely made in the literature is the comparison of correlation data to the 

contact sites in proteins.  The reason to predict contacts is that the contact constraints can greatly aid in 

predicting the fold of the protein.   However, a consistent them of these contact based methods has 

been that they do not predict contacts very accurately (on average only 20% of all predictions are real 

contacts).  The modest success could mean that phylogenetic information has not been removed 

properly or it could also mean that contacts in proteins do not, in themselves, provide strong constraints 

on evolution.  Further work will establish whether this is the case. 

 The most promising methods to separate phylogeny from function are phylogenetic reconstruction 

methods.  These methods attempt to reconstruct the phylogenetic history of the sequences comprising 

an alignment allowing one to know whether observed correlations come from functional constraints or 

evolutionary history.  Phylogenetic methods can be quite complex but they are worth examining in 

detail as they directly address the problem confounding coupling analysis. 
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Chapter 3: Analysis of statistical coupling matrices 

  A statistical coupling matrix, 

introduced in Chapter 2 (also in Figure 14), 

shows the coupling of every position in an 

alignment with every other position.  In 

some cases, there is strong coupling 

between two positions and in others there 

is weak or no coupling.  One can attempt 

to visually identify patterns in the data by 

looking for positions that have similar 

coupling patterns.  However, the 

complexity of the patterns requires 

methods other than visual inspection.  The 

goal of this chapter is to explain four 

methods to analyze the coupling matrix: 

network graphs, hierarchical clustering, principal components analysis and independent component 

analysis.  Each method has its advantages and disadvantages and these will be discussed as well. 

 

Section 1: Network graphs 

A useful tool to visualize coupling between positions is to draw a network graph.  The network 

graph is a graph where every amino acid is represented as a point, also called a node, and the coupling 

between positions is represented by a line.  

To illustrate the idea of network graphs I will first show a simple example consisting of only ten 

nodes (whereas a typical protein has a node for every position in the alignment (92 positions in the case 

of the PDZ domain alignment).  The covariance matrix that will be represented as a network graph is 

shown in Figure 15.  The network representation of that covariance matrix is shown in Figure 16. 

 

 

 

Figure 14: Example of a coupling matrix.  This matrix comes from an 
alignment of 240 PDZ domains.  The coupling matrix is shown with 
values colored according to the color scale. 
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The problem with the network graph shown in Figure 16 is that it does not show the value of the 

covariation between two positions.  In order to do show this it is necessary to either depict the lines 

with different colors and/or widths or to only draw lines above some covariance value threshold.  

In the next figure(Figure 17) I show a network graph with the lines colored depending on the 

coupling score.  The strongest coupling between amino acids 9 and 10 (covariance score=0.19) is shown 

as a dark black line whereas the other lines are fainter as they have lower covariance scores.  In Figure 

18 the lines with a covariation score less than 0.05 are removed leaving a much simpler network due to 

the lack of lines.  This representation can be simplified even more by removing nodes that are not 

connected (Figure 19).  Finally the nodes can be rearranged to more easily visualize the relationships 

among nodes (Figure 20). 

 

 

 

 

 

 

 

Figure 15: Covariance matrix consisting of 10 positions.  The 
shaded region is the diagonal which is the variance and is not 
required for this analysis.  The matrix is symmetric about the 
diagonal. 

 

Figure 16: Network graph of the covariance matrix.  
Every position is a node shown by the blue circle.  If a 
position is coupled to another then a line is drawn 
between the nodes.  This representation cannot resolve 
the value of the coupling. 
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Figure 20:  The nodes are arranged to show visually the 
relationships between the nodes better.  In this case it is 
clear that amino acid 10 is connected to all other nodes. 

 

 

Figure 19:  In this network, only nodes connected 
to other nodes are shown for clarity. 

  

Figure 17: In this network representation, the color of the 
lines depends on the covariation score with the higher the 
score, the darker the line color. 

 

Figure 18: In this network all lines with a covariation 
score less than 0.05 are removed, resulting in a 
simpler network to analyze. 
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The previous example showed only a small network of 10 nodes.  Most protein covariance 

networks are larger.  As an example, I will show the network graphs for the PDZ domain alignment 

consisting of 92 amino acids.  As Figure 21 shows, it is not possible to show dark lines for 92 nodes all 

connected to each other.  The 4186 lines that can be drawn between 92 nodes cannot be distinguished.  

Even if the lines are colored based on the covariance value as in Figure 22, it is still not possible to make 

sense out of all of this.  It is therefore necessary to filter out the weak correlations.  To do this, I shall use 

the same threshold as before which is to remove all correlations less than 0.5. This results in a much 

simplified network (Figure 23).   If the threshold is set at 0.75 the network is further simplified (Figure 

24), thus allowing connections to be visualized in an easier way.  

It is now clear to see which residues are coupled to one another.  This method of viewing different 

significance thresholds works but it would be more useful if one can see several layers of significance on 

one graph.  This is possible if different colors are used (rather than grayscale) for the different 

thresholds.  In the next figure (Figure 25) I show such a graph which makes it easy to see the networks 

and the relative strengths of the connections. 

Figure 21: Network graph showing all lines to all nodes when there are 92 nodes. 
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Figure 22: Network graph with 92 nodes where the lines between nodes are colored according to covariance value.  Although 
some relationships are discernable (such as the linkage between 58, 71 and 75), the graph is difficult to analyze further. 
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Figure 23: Network diagram with lines drawn only if there is a covariance value above 
0.5.  Note that nodes are arranged to show relationships clearly with highly connected 
nodes in the center. 

 

Figure 24: Network graph with lines drawn only if the covariance value 
between nodes is higher than 0.75.  Note that nodes are arranged to 
show relationships clearly with highly connected nodes in the center.  
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 This completes the network graph visualization methods section.  These graphs are useful as they 

involve no assumptions or model for the analysis and as will be shown later, can reveal networks of 

coupled positions.  However, one needs to choose particular, and what may seem to be arbitrary 

thresholds (although one may choose thresholds based on some statistical model) in order to visualize 

relationships as there are too many possible lines between points to show all the lines.  What I will show 

in the detailed analysis of specific protein families in chapters 4 and 5 is thresholds from the highest 

down to coupling values of 0.5.  In general, the interactions when considering lower thresholds are too 

numerous to visualize and different methods need to be used to include the contribution of weak 

couplings to the overall coupling pattern. 

  

Figure 25: A network graph showing all nodes with lines greater than 0.5.  The colors represent different 
coupling values.  Red is coupling greater than 1.  Green is coupling between 0.75 and 1.  Grey is coupling 
between 0.5 and 0.75.  With this type of visualization one can see clearly that residues 21-58-72-75 are 
linked by the highest coupling values. 
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Section 2: Hierarchical Clustering 

  Hierarchical clustering (referred to as clustering) is a simple concept although it can be difficult 

to implement in practice.  The idea behind clustering is to calculate for a set of data the differences 

between all the data points and then based on those distances calculate a tree of the data with the 

leaves of the tree reflecting the distances.   The goal of clustering is to group similar data together.  The 

problem with clustering is that both the distances and the tree building can be done in different ways 

which results in different groups being formed. 

 I will now give a simple example of clustering before moving on to an example for a covariance 

matrix.  The data consists of these numbers: [1-2-3-8-10-11-12-31].  The goal is to group these data into 

clusters.  The first step is to calculate the distance between individual elements in the data set.  There 

are many different methods of calculating distances and it is not always clear which method to choose.  

The methods that appear in this text are explained in Appendix A.   

Once a distance method is chosen, a distance matrix of the data is made using the metric as shown 

in Figure 26 using Euclidean distances.  Another way to calculate distance is shown in Figure 27 where 

standardized Euclidean distances ((the data points are divided by the variance of the set) are shown. 

  

 

 

 

 

 

 

 

 

 

 The next step is to calculate the linkage between the data using the calculated distances.  This is 

done by first finding the data point with the smallest distance.  In this example, the difference between 

1 and 2 is one which is the smallest.  Now a group consisting of 1 and 2 is made, called Group 1.  Group 1 

Figure 26: Distance matrix of the example data set 
(highlighted in blue) calculated as euclidean distances.  
The diagonal is shown in grey. 

 

 

Figure 27: Distance matrix of the example data set 
(highlighted in blue) calculated as standardized 
euclidean distances.  The diagonal is shown in grey.  
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can either be added to or a new Group is created.  To see whether additional elements should be added 

to Group 1, a second element, say element 3, is compared to Group 1.  And here lies the second 

problem with clustering: how does one measure the distance from one element to a Group which 

consists of several elements?  One method is to take the average of all possible distances between 

Group 1 and another element (this is called average linkage).  In this example, the distance would be the 

average of [2-1]+[3-1] which is (1+2/2)=1.5  Another method is to consider the shortest distance (called 

single linkage) between Group 1 and element 3 (which would be to compare 3 with 2) or the longest 

distance (called complete linkage) (which would be to compare 3 with 1).  Other linkage metrics are also 

possible and shown in appendix B.  If the number 3 is of equal distance as 2 and 1 to each other then 3 is 

placed in Group 1.  Otherwise a new group is made, called Group 2.  Other elements are then compared 

with Group 1 and Group 2 to see where the new element would fit or whether an additional group is 

created. 

 It is easy to visualize these relationships for this example data set by way of a tree.  I shall use the 

data using Euclidean distance to illustrate various tree formations using different linkage algorithms.  

The first linkage algorithm used is called ‘single’ and it calculates the shortest distance between 

elements and/or groups.  This is illustrated in Figure 28.  Close analysis of this tree shows that the 

numbers [1 2 3] are grouped together while [10 11 12] are grouped separately.  The number 8 is 

grouped closer to [10 11 12] and 31 is in its own group.  Another algorithm called ‘complete’, calculates 

linkage using the largest distance (Figure 29).  There are two things to note when comparing the two 

Figure 28: Dendrogram made using euclidean distances and 
single linkage 
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Figure 29: Dendrogram made using euclidean distances and 
complete linkage 
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figures.  Firstly, while the overall structure of the tree is similar the fine structure is different.  For 

example, [1 2 3] are not grouped in exactly the same way.  Secondly, the distance on the y-axis is 

different.  This arises because with single linkage the distances being considered are the shortest 

distance whereas in complete linkage the distances being considered are the largest distances.  In single 

linkage, 31 is being compared to 12 which is the closest to 31 with a distance of 19.  In complete linkage, 

31 is being compared to 1 which is the furthest from 31 with a distance of 30.  It is unclear which tree is 

more accurate or which groups cluster the elements better.  This uncertainty becomes more 

problematic with more complex data sets. 

 One way to tell which tree is better is by realizing that the distances calculated with the tree 

algorithm should correlate well with the distances calculated from the original data.  There is a measure 

that can quantify this which is to find the correlation coefficient of the data before and after clustering.  

In the example above, the correlation for the single linkage calculation is 0.958 and for the complete 

linkage calculation is 0.962.  These are both very close to one and so both can be considered excellent 

solutions although the complete linkage is closer to one.  Therefore when performing a clustering 

analysis one can create trees using different metrics and then find the one that is most consistent with 

the data as shown in Table 4.  However, as will be shown later, this cannot be the sole criterion for 

deciding what is the best tree. 

 The basic ideas and methodologies of hierarchical clustering are apparent with this simple example 

data set.  Applying this to the covariances of sequence data is more complicated.  With covariance data 

Table 4: Correlations for example data set between the tree distances and the actual data sets calculated with 
combinations of distances and linkages.  All methods yield close values for this simple data set.  
NaN means that the particular metric is not suitable for the data. 

    linkage methods 
    'average' 'centroid' 'complete' 'median' 'single' 'ward' 'weighted' 

d
is

ta
n

ce
 m

e
th

o
d

s  

'euclidean' 0.962 0.962 0.962 0.961 0.958 0.943 0.961 
'seuclidean' 0.962 NaN 0.962 NaN 0.958 NaN 0.961 
'mahalanobis' 0.962 NaN 0.962 NaN 0.958 NaN 0.961 
'cityblock' 0.962 NaN 0.962 NaN 0.958 NaN 0.961 
'cosine' NaN NaN NaN NaN NaN NaN NaN 
'correlation' NaN NaN NaN NaN NaN NaN NaN 
'spearman' NaN NaN NaN NaN NaN NaN NaN 
'chebychev' 0.962 NaN 0.962 NaN 0.958 NaN 0.961 
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Figure 30: Tree of PDZ domain covariances made using city block metric and complete linkage.  The numbers on the x-axis 
of the tree are distances.  The coupling matrices are shown with values colored according to the color scale in figure 14. 

 

Table 5: Correlation of tree distances with actual distances for the PDZ domain.    

 

    linkage methods 
    'average' 'centroid' 'complete' 'median' 'single' 'ward' 'weighted' 

d
is

ta
n

ce
 m

et
h

o
d

s  

'euclidean' 0.968 0.965 0.935 0.927 0.954 0.694 0.946 
'seuclidean' 0.892 NaN 0.681 NaN 0.810 NaN 0.844 
'mahalanobis' 0.433 NaN 0.301 NaN 0.154 NaN 0.382 
'cityblock' 0.914 NaN 0.442 NaN 0.908 NaN 0.888 
'cosine' 0.885 NaN 0.757 NaN 0.854 NaN 0.789 
'correlation' 0.723 NaN 0.427 NaN 0.670 NaN 0.629 
'spearman' 0.697 NaN 0.479 NaN 0.700 NaN 0.591 
'chebychev' 0.989 NaN 0.978 NaN 0.966 NaN 0.987 

 

there are many more pairs to consider as every position in a protein covaries with every other position.  

For example, the PDZ domain which has 92 positions in the alignment, has 4186 pairs that need to be 

considered (91*92/2).  Because of this large number it is not a simple manner to visually inspect the 

resulting tree and see if it makes “sense”.   

 In the next table (Table 5), I show a hierarchical analysis of the PDZ domain family done with 

different methods.  It is clear in this example that different methods have a big impact on the quality of 

the tree.  The tree shapes and the colored matrices for three different algorithms are shown in three 

figures (Figure 30, Figure 31, Figure 32).  These show different trees with tree/data distance correlations 

of (0.442, 0.989 and 0.935).  While all the trees contain groupings, it is difficult to conclude which is the 

best.  Thus other methods to aid in the identification of covarying groups will be discussed next. 
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Figure 32: Tree of PDZ domain covariances made using chebychev metric and average linkage.  The numbers on the x-axis of 
the tree are distances.  The coupling matrices are shown with values colored according to the color scale in figure 14. 

 

Figure 31: Tree of PDZ domain covariances made using euclidean metric and complete linkage.  The numbers on the 
x-axis of the tree are distances.  The coupling matrices are shown with values colored according to the color scale in 
figure 14. 

 

 

 Hierarchical analysis is dependent on the distance metric and the linkage method.  The resulting 

tree needs to be analyzed further to see if the resulting clusters are consistent with the original distance 

data and with possibly experimental data or other features of the data set that are independent of the 

actual distance data. 
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Section 3: Principal Component Analysis (PCA)  

A natural starting point when discussing principal components analysis (and the similarly named 

independent component analysis (ICA) is to think about how one can visualize and express data and 

what parameters can describe a data set.   

Consider for example a single variable data set.  The data can be characterized by the mean and 

the variance.  The variance describes the variability of the data.  The formula for the variance of a vector 

of dimension n containing x elements and with mean x is: 

2

1

( )
variance=

n
i

i

x x

n


  

The variance describes the spread of the data about the mean because each member of the 

data set is subtracted from the mean.  The sign does not matter because the difference is squared.  The 

standard deviation is the square root of the variance and is used to show the variance because it has the 

same units as the data.  Different data sets are characterized by different means and variances.  A data 

set with the same mean, if it has a substantially different variance, can be said to come from another 

population.  The mean and standard deviation for two different data sets is shown in Figure 33.   

Is the variance a meaningful measure when comparing data sets?  In general it is because it is 

unlikely that two variables which have the same variance are coming from different populations.  Also, it 

is even more unlikely that data with different variances are coming from the same population.  Though 

the variance is widely used to describe data sets, the suitability for a given data set would have to be 

determined after investigation of the data set.  For example, a data set with several large outliers could 

generate a high variance even though most of the data could be characterized by a small variance. 

Figure 33: Histograms for two sets of data showing the mean of each data set (green dot) and one standard 
deviation away from the mean in either direction (red dots). 
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Another parameter that can be used to describe single variables is the shape of the distribution.  

For example variables can be normally distributed, skewed to one side or have a sharp peak, be 

sinusoidally shaped, be uniform or have some other shape.  The shapes of the distribution are important 

when comparing data sets as comparisons are often valid only when comparing data sets of some 

known shape.  Also data sets with different distributions often mean that they are measuring different 

and possibly independent phenomenon.  Independent component analysis makes explicit use of the 

distribution shape and will be discussed further.  PCA does not use the distribution information but acts 

only on the variance as will be explained. 

  For single dimension data, the variance is a useful parameter.  For a data set with two variables x 

and y a related quantity called covariance can measure the relationship between the two variables (as 

described in Chapter 2 and repeated here).  The formula for covariance between vectors x and y is: 

1

( )( )
covariance=

n
i i

i

x x y y

n

 


 

To see how the covariance measures relationships between two vectors consider two sets of data, 

x and y shown as a scatter plot in Figure 34 and Figure 35.

 

 

Clearly,  the data in Figure 34 show a linear trend and the data in Figure 35 shows no discernable 

trend.  If two variables are linearly related then they will have a high covariance.  If they are not linearly 

related, they will have a low covariance.  In the above example, the covariance for Figure 34 is 77.7 

whereas the covariance for Figure 35 is -12.0.  Thus if one only had the covariance information one 

could come to the conclusion that the variables in the linear data set are much more related than the 

variables in the non-linear data set. 

Figure 34: Scatter plot showing a linear trend. 
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Figure 35: Scatter plot showing no trends. 
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 If there are more than two vectors in a data set, a covariance can be calculated between each 

vector.   A covariance can be calculated between a vector and itself as well but then it is the variance as 

the covariance definition shows.  The set of all covariances and variances in a data set is called the 

covariance matrix.  The diagonals of a covariance matrix are the variances while the off-diagonals are 

the covariances.  If the mean of each data set is zero (easily done for continuous data) then, using matrix 

algebra, the covariance can be calculated as the product of the data matrix (the data expressed in matrix 

form with the different variables in rows and different observations in the matrix columns) times the 

data matrix transposed: 

mean centered covariance matrix = TDataMatrix DataMatrix  

 The problem with analyzing multi-dimensional data sets is that one cannot easily see which 

variables are related to each other.  Furthermore, it is possible that several sets of residues each have 

similar trends and it is not possible to discern these in large data sets.  This is where principal 

components analysis is useful. 

 Principal components analysis developed In 1901 by Pearson [115]  transforms the data in such a 

way as to more clearly show the relationships among the variables.  PCA has its roots in linear algebra 

and so the linear algebra operations will be used to describe it. 

A data set can be represented as a matrix X.  It is possible to represent the data in X in another 

basis.  A basis is a set of vectors by which one can express every other vector in the vector space.  For 

example, consider the vector: [1,0] AND [0,1].  The set of these two vectors can be used to form any 

vector in a two-dimensional vector space.  For example:  the vector [5,9] can be expressed as 5×[1,0] + 

9×[0,1].  Similarly any vector [a,b] can be expressed as: a×[1,0] + b×[0,1].  The basis that was listed 

above |[1,0],[0,1]| is defined as the standard basis for a two-dimensional space.  Similarly, the standard 

basis for three dimensional space is |(1,0,0),(0,1,0),(0,0,1)|.  However this is not the only basis there is: 

there are an infinite numbers of basis by which one can express a vector.  The problem then is to find a 

basis that can express the data in a better way than the standard basis (or whatever basis the data 

happen to be in).   

Given the coordinates of a vector in an old basis, it is possible to find the coordinates of a vector in 

a new basis by the following matrix multiplication: 

Y (new coordinates) = P (new basis)× X(old coordinates). 

For PCA purposes, the question is what is P that when multiplied by X leads to a more 

meaningful representation of X. 
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To answer this question it is necessary to know what a more meaningful representation of X 

means .  In this case a more meaningful representation means that the data in the data set are grouped 

together so that the variance is maximized.  For example, consider a data set in which there is some 

noise and in which there is a linear trend.  Generally the linear trend data would exhibit large variances 

while the noise will have a small variance.  In fact, in order to make any sense of data at all, the variance 

of the interesting relationships in the data must be greater than the noise.   And the noise vs. data can 

be characterized as one of small variance vs. large variance.  Therefore a meaningful representation of 

the data is one that maximizes the variance.   

How is the variance maximized?  The variance is maximized if the covariance between the vectors 

becomes zero.  The covariance can be made zero by finding the correct basis to express the data as 

illustrated in Figure 36. The steps to find the basis are described next.  

 

 

To restate, the goal is to find a basis such that a covariance matrix is obtained in which all the 

covariances are zero.  The covariance matrix with zero covariance is called the transformed covariance 

matrix.  The transformed covariance matrix can also be written in terms of the data which in this case is 

not the original data but the data transformed in an as yet unknown way.  The expression for the 

transformed covariance matrix in terms of the transformed data can be written as: 

Transformed covariance matrix  =  𝒕𝒓𝒂𝒏𝒔𝒇𝒐𝒓𝒎𝒆𝒅 𝒎𝒂𝒕𝒓𝒊𝒙 (𝒕𝒓𝒂𝒏𝒔𝒇𝒐𝒓𝒎𝒆𝒅 𝒎𝒂𝒕𝒓𝒊𝒙)𝑇 

Next, substitute Y for the transformed matrix: 

=  𝒀 (𝒀)𝑇 

Figure 36: This figure illustrates how an axis can be rotated (dashed lines) so that the points lie only on one axis whereas it 
took two axes to show the data previously.  The covariance that existed between the variables becomes zero after rotation, 
while the variance is maximized.  This can be considered a reduction in dimension from two to one. 
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The transformed data matrix, Y, is formed by multiplication of the original data matrix, X, by the as 

yet unknown basis P. 

=  𝑷𝑿  𝑷𝑿 𝑇 

The transpose of two matrices can be written as the transpose of the innermost matrix times the 

transpose of the outermost matrix to give: 

=  𝑷𝑿 (𝑿𝑇𝑷𝑇) 

The terms can then be grouped together to give: 

= 𝑷(𝑿𝑿𝑇)𝑷𝑇 

 

A matrix times its transpose forms a symmetric matrix.  Call the symmetric matrix A. 

=  𝑷𝑨𝑷𝑇  

Now two theorems from linear algebra (described in any linear algebra textbook-Gilbert Strang’s 

book [116] is popular) are used.  One theorem, called the Real Spectral Theorem, states that if A is a 

symmetric matrix, then A is diagonalizable.  A matrix that is diagonalizable is one that can be written as 

follows: A=PDPT, where D is a diagonal matrix.  The second theorem is called the Fundamental Theorem 

of Symmetric Matrices and it says that if A is symmetric then it can be written as A=EDET.  This differs 

from the previous expression in that the matrix written as P is now the matrix of eigenvectors, E.  Given 

those theorems this means that A can be written as a diagonal matrix multiplied on each side with the 

eigenvectors of A.  

Now the goal is to find what P is.  Guess that P is equal to ET and see where that leads by 

substituting into the expression for A.  This leads to A=PTDP.   Then substitute A into the expression 

above to give: 

= 𝑷(𝑷𝑇𝑫𝑷)𝑷𝑇  

 Rearrangement yields: 

= 𝑷𝑷𝑇𝑫𝑷𝑷𝑇 

       Another theorem can be used here.  The eigenvectors of a symmetric matrix have a property that 

their transpose is equal to the inverse matrix.  This is a highly unusual property but applies here.  The 

solution to the problem of finding the right basis is at hand because using the property gives the 

following: 

= 𝑷𝑷−1𝑫𝑷𝑷−1 
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 A matrix times its inverse is the definition of an identity matrix.  So: 

= 𝑰𝑫𝑰 

 Again, by definition, an identity matrix times a matrix, X, is X: 

= 𝑫 

The problem of finding the basis that when multiplied by the original data results  in a diagonalized 

matrix is solved.  The basis is: the eigenvectors transposed of the original data matrix.  This means that if 

one has a data set, and one wants to diagonalize it, i.e. express the data in a different coordinate system 

so that the covariances between all the vectors are zero, all one has to do is find the eigenvectors,  and 

then multiply the original data matrix by the transpose of the eigenvectors.  With modern day 

computers this process is easily done although when Pearson wrote about it in 1901 he said that it is not 

hard to envision doing this for 4 or 5 dimensions. 

 One other property is at the core of PCA and that has to do with what is on the diagonals of the 

diagonalized matrices.  That property is that the diagonals of the diagonal matrix are the eigenvalues 

associated with the eigenvectors.  However, these eigenvalues are actually equivalent to something else:  

because the diagonalized matrix is formed as the transformed data matrix times the transposed data 

matrix, the diagonalized matrix is also a covariance matrix.  That means that the diagonals which are the 

eigenvalues of the transformed matrix are also variances of the transformed data matrix.   

Think about this for a minute with respect to what variances represent.  As I stated earlier in the 

chapter, the variances of a data set is an important property of the data set as the larger the variance 

the greater the spread of the data.  If the data set is composed of low noise relative to the signal, then 

the largest variances consist of the most interesting aspects of the data.  Therefore to find the most 

interesting behavior of a low noise data set, one powerful approach is to calculate the eigenvectors and 

eigenvalues and then sort the eigenvalues which are the variances of the transformed data set from 

high to low.  The eigenvector corresponding to the highest eigenvalue is called the principal component. 

The original data, if transformed with the transpose of the principal component, will place on one 

axis the contribution of all points towards that variance.  Typically however, one plots several of the top 

components against each other to see which ones yield interesting patterns or groupings of the data.  A 

simple example of PCA is shown in the next page as Figure 37.  
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Figure 37: An example of principal components analysis for a simple data set.  The steps are shown in sequence. 
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That example shows how PCA can rotate the axis so that the important variation in the data lies on 

one axis.  However, another use of PCA is not to rotate the axis but to group vectors based on their 

contribution to the variance.  This form of PCA is known as spectral clustering.  In the next example, I 

will show how PCA and spectral clustering works with data consisting of ten vectors.  The vectors are 

shown in Figure 38. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 38: Plots of ten data vectors 
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 Note that this is example is chosen so that one can see by eye that vectors 2, 3 and 6 are all linearly 

related while the other vectors are noise.  Next, compute the covariance matrix and the eigenvalues and 

eigenvectors. 

The covariance matrix is shown in Figure 39.  Note that the covariance between vectors 2, 3 and 6 is 

high relative to the covariance of other vectors. 

 

 The eignevalues of the covariance matrix are shown next in Figure 40.  Remember that the 

diagonals of the eigenvalues correspond to variances.  Also note that this matrix has zero for the value 

of the covariances between vectors indicating that the variances have been maximized.  A more useful 

way to look at the eigevalues is to show a histogram as in Figure 41.  Clearly one eigenvalue, 

corresponding to the tenth vector stands out. 

 The eigenvectors along with their values are shown in Figure 42. 

Figure 39: Covariance matrix of 10 vectors. 

 

1 2 3 4 5 6 7 8 9 10

1 1.03 -3.67 -3.69 -0.06 -0.19 -3.67 0.06 -0.22 -0.12 -0.07

2 -3.67 852.19 830.85 -0.73 0.89 850.35 -3.76 5.11 -0.24 5.37

3 -3.69 830.85 821.90 -0.61 1.08 836.17 -4.09 4.74 -0.10 4.63

4 -0.06 -0.73 -0.61 1.08 -0.04 -0.54 0.09 -0.02 0.16 0.13

5 -0.19 0.89 1.08 -0.04 1.25 1.57 -0.08 -0.11 -0.22 0.04

6 -3.67 850.35 836.17 -0.54 1.57 864.83 -3.15 4.95 0.14 4.84

7 0.06 -3.76 -4.09 0.09 -0.08 -3.15 1.13 -0.07 0.03 -0.15

8 -0.22 5.11 4.74 -0.02 -0.11 4.95 -0.07 0.97 -0.01 -0.06

9 -0.12 -0.24 -0.10 0.16 -0.22 0.14 0.03 -0.01 1.20 0.02

10 -0.07 5.37 4.63 0.13 0.04 4.84 -0.15 -0.06 0.02 1.08
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Figure 40: Eigenvalue matrix.  The eigenvalues correspond to variances. 

 

1 2 3 4 5 6 7 8 9 10

1 0.60 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

2 0.00 0.79 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

3 0.00 0.00 0.95 0.00 0.00 0.00 0.00 0.00 0.00 0.00

4 0.00 0.00 0.00 1.07 0.00 0.00 0.00 0.00 0.00 0.00

5 0.00 0.00 0.00 0.00 1.19 0.00 0.00 0.00 0.00 0.00

6 0.00 0.00 0.00 0.00 0.00 1.35 0.00 0.00 0.00 0.00

7 0.00 0.00 0.00 0.00 0.00 0.00 1.52 0.00 0.00 0.00

8 0.00 0.00 0.00 0.00 0.00 0.00 0.00 5.92 0.00 0.00

9 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 8.36 0.00

10 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 2524.92
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Figure 41: Eigenvalue histogram 

 

0 500 1000 1500 2000 2500 3000
0

2

4

6

8

10

Eigenvalue value

C
o

u
n

t



94 
 

 

 The eigenvalue matrix shows that eigenvector 10 has the highest variance.  Eigenvector 10 is also 

known as the first principal component.  Observation of eigenvector 10 shows that  it has three values of 

about 0.6 while all the other values are zero.   The weights of the eigenvectors reflect the contribution of 

each original vector to the variance.  Hence, in eigenvector 10, the original vectors 2, 3 and 6 

contributed most to that eigenvector.  If a scatterplot is made of eigenvector 10 vs. eigenvector 9 (the 

eigenvector with the second highest variance) as shown in Figure 43, it is clear that vectors 2, 3 and 6, 

are very far away from the remaining vectors.  Thus one could consider vectors 2, 3 and 6 to form a 

group.   In the next chapters I will perform the same analysis with sequence data where there are many 

more vectors, but the procedure is exactly as outlined here. 

 

 

 

 

Figure 42: Eigenvector matrix.  The vector is defined as a column.  Note that this is not a symmetric matrix. 

 

1 2 3 4 5 6 7 8 9 10

1 0.54 0.34 -0.06 0.21 0.48 -0.56 -0.05 -0.01 0.00 0.00

2 -0.02 0.06 0.05 -0.03 -0.01 0.00 0.01 -0.55 -0.60 0.58

3 0.06 -0.06 -0.01 -0.05 0.02 -0.01 -0.02 0.79 -0.18 0.57

4 -0.09 0.49 -0.45 -0.42 0.33 0.40 -0.31 0.00 0.02 0.00

5 0.38 0.23 0.34 -0.29 0.06 0.36 0.68 0.00 0.06 0.00

6 -0.04 0.01 -0.04 0.08 -0.01 0.00 0.00 -0.23 0.77 0.58

7 0.23 -0.46 0.09 -0.77 0.05 -0.29 -0.21 -0.09 0.08 0.00

8 0.58 0.03 -0.46 0.05 -0.65 0.10 -0.08 -0.03 -0.01 0.00

9 0.28 0.11 0.62 0.14 -0.05 0.34 -0.62 0.00 0.04 0.00

10 0.27 -0.60 -0.25 0.28 0.48 0.44 0.02 -0.07 -0.04 0.00
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Note that in the analysis of sequence data what is done with PCA is to look at the degree to which 

each position contributes to any given significant component.  Some positions will contribute more than 

others.  Positions that contribute similarly to a particular vector can be considered to be clustered as will 

be shown in the next chapter.  Also note is that the coupling matrix is considered  a covariance matrix 

and so the steps for calculating eigenvectors and eigenvalues are done directly on the coupling matrix. 

One additional note about PCA is that it is an exact solution to the variance maximizing problem.  A 

disadvantage is that it assumes the relationship between variables is linear.  Another shortcoming is that 

PCA merely decorrelates variables.  In some cases, what is interesting, are independent variables.  While 

independence implies decorrelation, decorrelation does not necessarily mean independence.  In the 

next section, I discuss a method called independent component analysis that finds vectors in the data 

that are independent. 

 

 

 

 

 

 

Figure 43: Scatter plot of the highest eigenvector with the second highest 
eigenvector.  The numbers refer to the weights that contributed to the 
vectors. 
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Section 4: Independent component analysis (ICA) 

 As stated in the introduction to this chapter, ICA has different assumptions from PCA and is trying 

to solve a different problem.  ICA tries to separate components that are independent whereas PCA only 

separates components that are uncorrelated.  For this section I draw on the works of James Stone [117, 

118] and of Aapo Hyvarinen and Erkki Oja [119]. 

A starting point for thinking about separating independent components is to think about the ways 

that samples can be mixed together and the ways those signals can be detected.  For example, if one 

was in a room with many people talking, all the voices, unless everybody was singing in concert, would 

be mixed together.  If one moved around the room one would hear different combinations of voices.  

Another example is if one is recording electrical signals from the brain.  The signals are typically complex 

wave forms coming from a multitude of independent neural processes and one can record from 

different areas of the brain to obtain different combinations of those waveforms.  So two common 

aspects of voices and electrical signals is that they are mixtures of independent events and that different 

recordings yield different combinations of the independent events.  

The mixing and recording of independent signals can be expressed mathematically.  If there are only 

two independent signals (denoted signal 1 and signal 2) then one can write the mixing process by 

multiplying signal 1 by a certain factor and signal 2 by another factor to give rise to the mixed signal: 

 signal 1 × factor 1 + signal 2 × factor 2 = mixed signal 1 

A second mixed signal can be obtained by changing the recorded position.  The new mixed signal 

can be written as: 

 signal 1 × factor 3 + signal 2 × factor 4 = mixed signal 2. 

It is possible to collect more mixed signals which is advisable if one does not know how many 

independent signals there are as for ICA to work the number of signals to be extracted cannot exceed 

the number of mixtures recorded.  That is for every different voice that one would like to record, there 

should be a different microphone recording.  In general, this means that one should collect as much data 

as possible if one does not know beforehand the nature of the recorded signals. 

Inspection of the above two equations shows that there are two known variables consisting of the 

two mixed signals, but four unknown variables.  There is no information about the factors (to be called 

mixing factors) or the signals (to be called source signals).  To solve for the source signals, knowledge of 
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the factors is needed.  However, though there is no specific knowledge of these factors or of the signals, 

there is some general knowledge about their form.      

This general knowledge is that the form of the mixed signals is different from that of the source 

signals.  Specifically the source signals are less Gaussian than the mixed signals.  The central limit 

theorem from statistics ensures this, even if the signals are non-Gaussian.  

 For ICA this implies that the source signals are less Gaussian than the mixed signals.  The feature 

that ICA can extract non-Gaussian data from Gaussian mixtures -while central for the success of ICA- 

introduces a limitation.  The limitation is that if both source signals are themselves Gaussian, then they 

cannot be resolved from the Gaussian mixture.  However, if the source signals are slightly non-Gaussian 

then they can be resolved from the mixed signal. 

The next step in ICA is to try to search computationally for signals and factors that when combined 

together yield the observed mixed signal.  In effect, this is a computational trial and error approach.  

One method to implement this is called maximum likelihood estimation (MLE). 

Maximum likelihood estimation is a widely used method to estimate the probability that parameters 

of a set of data describe the data given some model of the data.  In MLE, the data are known but the 

parameters used to describe the data are unknown.  In a trivial case of the probability of coin flipping, 

the MLE would be used to estimate the probability that the mean value of a coin flip given the actual 

observed numbers of heads and tails.  The model of coin flipping could be the binomial probability.  In 

the case of MLE of ICA, the known data are the mixed signals whereas the unknown parameters are an 

unmixing matrix that results in independent and non-Gaussian parameters. 

With MLE, a guess is made of signal 1 and signal 2 and then another guess of the factors and then 

the mixture can be calculated.  Then the guessed mixed signals can be compared to the observed mixed 

signals.  To reduce the search space, the signal guesses are based on non-Gaussian functions.  The 

process iterates until an acceptable level of agreement between the observed data and guessed signals 

is reached.   

To repeat the requirements of ICA: the number of mixtures should be greater than or equal to the 

number of signals, the signals must be non-Gaussian and the signals should be independent.  In vector 

form a signal can be written as a row vector like this: 

 1 1 2 3, , , , ns s s s s   

 Two source signals can be written as: 
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 On the other hand what is observed is x.  What is needed is s.  In that case one could write: 
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, where W is the called the unmixing matrix 

 In vector form, the search is to find the unmixing matrix coefficients in order to compute s. 

 As mentioned above, one can guess the unmixing coefficients, multiply that by the observed data, 

and compute a preliminary source signal, which I will call the guess signal.  How is one to know how 

close the source signal is to the guess signal? 

 This is where the non-Gaussian nature and independence of the signals comes it to play.  One can 

calculate the non-Gaussian properties and independence of the guess signals when different unmixing 

matrices are tried.  When the maximum non-Gaussian transform and independence is reached, or is 

close to being reached, one can conclude that the guess signal is close to the source signals.  

 To explain further before the mathematical details are given, the unmixing matrix is the inverse of 

the mixing matrix; the knowledge of one matrix can be used to calculate the other.  That implies that 

one can express MLE in terms of the mixing matrix, given a set of source signals, which is the 

implementation given here.  

The probability density function (pdf) is what describes the non-Gaussianity or Gaussianity of a set 

of signals.  The pdf is a histogram with infinitesimally small bins.  Given a set of signals (s) one can 

calculate the probability that any given value of the signals occurs.  This probability, that a signal has a 

particular value, t, is denoted as ps(st).  Different types of non-Gaussian signals have different 

probability density functions.  One would have to guess what type of probability function the signals are 

described by.  For example, if one is dealing with speech signals, they are characterized by a lot of 

silence and so have a flat signal with a sharp spike.   

Independence has a very specific statistical meaning.  If signals are independent then the pdf 

function of a pair of signals (the joint pdf) is the product of the individual pdfs (the marginal pdfs).  

Mathematically,
1 2s s sp p p  , if independent. 
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 To repeat, maximum likelihood estimation will attempt to find an unmixing matrix where the guess 

joint pdf is as similar as possible to the model joint pdf.  For the speech signal example, one would 

specify a model for the joint pdf of two independent speech signals where each speech signal would be 

non-Gaussian and then one would compare this model joint pdf to the pdf obtained with the guessed 

unmixing matrix. 

The relationship between the pdfs of the source signals and mixtures assuming the correct matrix is: 

( ) ( ) ,correct correct

x sp p


 


s
x s W W

x  

 The previous equation defines the likelihood (probability) of the observed mixtures given the 

source signals and the jacobian (the jacobian is a matrix of partial derivatives) of the unmixing matrix.  

 The source signal is the unmixing matrix, W, times the mixtures, x: 

( ) ( )guess guess

x sp px W W x W  

 This is the likelihood given a particular unmixing matrix.  The next two steps are to incorporate the 

independence and non-Gaussianity models. 

 If the source signals are independent then the joint pdf of the source signals, ps, is the product of its 

marginal pdfs.  Then one could write ps as: 

 
1 2 1 2( ) ( )s sp p p p p   S w x w x  

 Then if one substitutes that expression into the likelihood expression and takes the natural 

logarithm (the natural logarithm is used because addition is computationally more stable than 

multiplication), one gets: 

2ln likelihood=ln L( ) ln( ( ) ) ln
m n

T

s g i

g i

p N W w x W  

 The last thing to do is to put a non-Gaussian model for px.  One such model that can be used is one 

that is leptokurtic, which models speech signals.  In that case, the function 1-tanh(x)2 can be used so the 

completed likelihood expression will be: 

2ln likelihood=ln L( ) ln(1 tanh( ) ) ln
m n

T

g i

g i

N  W w x W  

 Then using optimization techniques, a computer iterates through various unmixing matrixes to 

obtain a point at which the above function reaches a maximum value.  In the example of having two 

independent source signals, there are four parameters of the unmixing matrix to guess.  If there are 
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three independent source signals then there are nine parameters.  The number of parameters goes up 

nn which is extremely quickly.  Therefore, it is not possible to sample exhaustively all possibilities of 

coefficients.  It is also important to choose algorithms that converge quickly.  As with all optimization 

techniques it is possible to get stuck in local minima or not to converge at any minimum.  

 In practice, one can simplify the ICA data set first by doing PCA on the data.  The use of PCA is called 

whitening.  If the reader will recall, PCA can express the data so that the components with maximum 

variance are grouped together.  One can then do ICA on a certain subset of the data that PCA has 

identified to be correlated, which is the approach that I will take in the next two chapters. 

 For the work that I will present, I have used freely available software called FastICA, developed by 

Aapo Hyvarinen and Erkki Oja.  The software developers use a method similar to maximum likelihood; 

the software implements four different non-Gaussian models: cubic called ‘pow3’ , leptokuritc called 

‘tanh’, super gaussian called ‘gauss’, and a skewed distribution called ‘skew’. 

 One problem with ICA is that there is no mathematical knowledge of how many independent 

signals there are.  It is up to the user to specify how many independent signals there are.  If the user has 

two mixtures then the maximum search can be for two signals.  If the user has three mixtures, then the 

maximum search can be for three signals (although one can search for two components as well).  Also, 

similar to PCA, the sign of the signals is arbitrary.  ICA will also fail if more than one of the signals is 

Gaussian, as ICA models looks for sources that are more non-Gaussian than the mixtures.  Another way 

ICA can fail to converge is if the assumption of independent components in the data does not hold.  One 

other problem with ICA is that since it is based on random seeding (guessing), every time it is run slightly 

different values are obtained.  This should be kept in mind when generating data as it is very unlikely 

that one will obtain the same results on subsequent runs.  Generally one can set the number of 

iterations to run as well as the threshold for convergence; time and computer constraints as well as the 

nature of the data should be considered in deciding the iteration and convergence thresholds. 

 Figure 44 demonstrates how ICA can find independent components.  Four signals are mixed up and 

then separated by ICA.  Note that it is not possible to determine the original order of source signals from 

the mixtures.   

In the next two chapters I will use ICA on the covariance matrix of sequence data.  The covariance 

of one position to another position is considered as a vector and ICA will search for combinations of 

weights that will result in independence relationships between the vectors.  The contribution of each 

position to the independent vectors can then be examined.  This will be shown in detail in the next two 

chapters. 
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Figure 44:  Demonstration of how ICA can separate mixtures of independent signals.  The original signals are mixed together 
resulting in the mixed signals.  ICA procedure is then done to recover the form of the original signals with a multiplicative 
factor. 
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Conclusion: 

 In this chapter I covered several methods to extract information about patterns of coupling from a 

coupling matrix calculated with SCA.  Network graphs depict the amino acids as nodes and the coupling 

between them as lines.  It is necessary to choose thresholds of coupling score to visualize the data but it 

is possible to easily see patterns of coupling if the number of nodes is not too high.  Hierarchical 

clustering calculates distances between the covariance vectors.  Distances can be calculated with several 

methods.  The distances are then used to construct clusters.  Clusters, like distances, can be defined in 

different ways.  The advantage of clustering over network graphs is that all positions are compared 

when calculating the clusters.  The disadvantage is that it is not clear what the best distance/linkage 

method to use is.  Principal components analysis is similar to clustering in that it considers the 

magnitude of correlations between positions; it is different  in that it re-expresses the data such that the 

variance between vectors is maximized and covariance between different vectors is zero.  The variance 

can be used to define groups of positions because one can easily observe how much a particular 

position contributes to that component’s variance; positions that contribute similar amounts can be 

grouped together.  Finally I also considered independent component analysis, which like PCA can also be 

used to obtain vectors of transformed data but in ICA the vectors are considered to be independent.  

One can, like in PCA, examine the independent vectors to see which positions contribute to the 

independence.  Positions with similar contributions can be thought of as comprising independent units.   

 Typically all the methods are used for analyzing protein families. The methods agree with each 

other.  Also under investigation in the lab are additional methods that can more robustly detect patterns 

of coupling in data. 

 

    

  



103 
 

Chapter 4: Statistical coupling analysis of The TonB dependent receptor family 

  

This chapter is divided into three sections.  The first section is a brief review of the TonB dependent 

receptors.  The second section describes the statistical coupling analysis (SCA) of the TonB dependent 

receptors.  The third section is experimental work done based on predictions of SCA. 

 This work was done in close collaboration with Andrew Ferguson in Johann Deisenhofer’s 

laboratory at UT Southwestern.  These results were published [55] as part of a larger study by Andrew 

Ferguson on this family. 

 

Section 1: Review of TonB dependent receptors: 

The TonB dependent family of receptors are membrane bound energy coupled transporters that 

exist in gram negative bacteria and transport metal binding compounds (siderophores), vitamin B and 

antibiotics among other substances [120].  The wide variation in the structure and size of the receptor 

ligands (see Figure 45) has resulted in a diverse family of receptors. 

Figure 45: Different molecules that bind to TonB dependent receptors.  The receptor names are in parenthesis. 
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 In contrast to the diversity of the ligands, the receptors are all structurally similar.  The receptors 

are 600 or more amino acids in size with two domains shared by most family members and an optional 

third domain by some family members.  The two core domains are called the barrel and the plug.  These 

domains are so named because structural analysis reveals a cylindrically shaped 22-strand beta sheet 

structure called the barrel that in the center has a structure composed of beta-sheets and helixes, called 

the plug [121].  The plug seals the interior of the barrel with no apparent way that ligands can enter.   

This is shown in Figure 46 with the iron transporter, FecA which binds ferric citrate. 

 

Figure 46: FecA structure (pdb 1KMO, Ferguson et al, 2002).  Different views of the same protein are shown. 
In this structure there is no ligand.  The black mesh and cartoon are the barrel and the blue surface is the plug. 
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The third domain found in some proteins such as FecA is called the signaling domain.  This domain 

is found N-terminal to the plug and is in the periplasm.  Its role is not in transport but in signaling: it 

triggers a signaling cascade that activates the transcription of some iron-transport related genes upon 

binding of the ligand.   

 The protein has a beautiful structure and an important function as iron and other metals are vital 

for the survival of organisms.  However, the way this protein functions is also intriguing.  Transport is an 

active process requiring energy.  The energy that drives transport comes from a protein complex (made 

up of TonB-ExbB -ExbD proteins) in which one member called TonB binds the receptor.  Upon binding of 

TonB, transport commences.  The signaling function that occurs in some proteins in this family also 

requires TonB. 

 Thus, these proteins have a fascinating energetic cycle: 

1. Upon binding of ligand, they communicate to TonB that they have a cargo to transport. 

2. Also, upon binding of ligand, they communicate to the signaling domain to activate the signaling 

process. 

3. The TonB protein then binds to the receptor and triggers the opening of the receptor so that 

ligand transport can occur. 

4. After transport, the receptor must then close and reset to be capable of binding another ligand. 

 

Certain structural changes observed in liganded and unliganded structures suggested how the 

protein functions [121].  As shown in Figure 47 and Figure 48 the ligand binds on the extracellular side, 

triggering conformational changes that result in the unfolding of a helix in the plug domain.   However, 

there is no hint from the structure as to what the allosteric pathway is nor does there exist feasible 

experimental assays that could determine this allosteric pathway. 

This is where statistical coupling analysis could be useful.   Allosteric pathways in proteins require 

that groups of residues work together to accomplish this function.  Thus, a statistical coupling analysis of 

this protein family could perhaps find this allosteric pathway or provide some clues as to what residues 

may constitute it.  The coupling analysis and part of the subsequent experimental assays was my 

contribution to this project. 
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Figure 47: Changes in the barrel of FecA upon ligand binding.  The unbound structure is in blue while the ferric 
dicitrate bound structure is in grey.  The ferric dicitrate is shown in red (note that the unbound structure does not 
have ferric dicitrate and is present there only for reference).  There is a helix that unwinds in the bound structure and 
a loop that changes positions.  These changes appear to seal the ferric dicitrate in the barrel prior to transport.  

 

 

Figure 48: Changes in the plug of FecA upon ligand binding.  The blue structure is unbound FecA while the grey is the bound FecA.  The 
red surface is the ferric dicitrate (shown only as a reference in the unbound structure).  Visible changes are present only in the N-
terminal part of the plug; a helix unwinds upon binding of ligand.  The overlay shows that no major changes happen anywhere else in 
the plug in this structure. 

 
unbound bound overlayNH2
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 The general approach taken for this protein family, which I will describe in detail in the next 

sections, was to obtain sequences of four structures, perform a psi-blast on the sequences, do individual 

and group alignments and compare the features, then make one large alignment with which SCA was 

done to identify coupled (important ) residues.  This, as will be described, proved to be a challenging 

process because these proteins have many transmembrane sheets which share little sequence similarity 

and it took many approaches to have some confidence in the final sequence alignment.   In addition to 

the barrel and plug alignments, some proteins have the extra signaling domain and a separate alignment 

was made for the signaling domain to identify functional sites there. 

SCA analysis resulted in the identification of a coupled network.  To test whether the coupled 

residues were functionally important, a mutational investigation was done.  Andrew Ferguson and I 

adapted an assay already described and worked out a protocol for its use.  I then performed the assay 

and analyzed the data.  The data confirmed that many of the predicted mutants showed a large effect 

on protein function.  A final interesting note on this work came with the publication by two other groups 

of the partial structure of TonB with the TonB dependent receptor [122, 123] which served to confirm 

our work as the binding surface predicted by SCA was the same as that observed by the structures.  
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Section 2: Statistical coupling analysis of Ton B dependent receptors: 

 

 The starting point of SCA is to make a diverse alignment of homologous sequences.  The strategy 

used to build the alignment is to take as the starting point the four protein sequences for which 

structures were solved.  This proved to be a very important step because the sequences themselves, 

without structures, were unalignable due to the low sequence identity in the transmembrane region.  

The sequences were those of FecA, Btub, FhuA and FepA.  The following table (Table 6) summarizes the 

characteristics of the sequences used to make the seed alignment. 

Table 6: TonB dependent receptors used as a basis for alignment 

Protein Transports gi number Pdb Liganded and 
Unliganded 

Signaling? Length Structure 
Reference 

FecA ferric dictitrate 20150926 1KMP Yes Yes 774 [121] 

FhuA ferrichrome 4389223 1BY3 Yes No 714 [124] 

FepA ferric enterobactin 6730010 1FEP No No 724 [125] 

Btub Vitamin B12 30749694 1NQH Yes No 594 [126] 

 

The challenge in building this alignment is due to the length, diversity, structure and number of 

these proteins in this family.  The length of these proteins is about 600-800 amino acids which is 

challenging when one is attempting to align hundreds of them.  The diversity of the sequences is also 

large.  The pairwise identity between the proteins above is shown in Table 

7.  Identities below 15% are what is expected from two random sequences 

and these sequences have pairwise identities ranging from 11.2% to 17.2%.  

Specifically, the barrel regions where there is a 500 amino acid residue 

stretch of low identity region is most difficult.  Many of the strands have 

very little conservation so that standard alignment programs that only use 

sequence information fail completely.  Aligning this family required 

structure and profile based methods.  After trying different software, I 

found that the NCBI program, Cn3D [127] remained stable and gave 

meaningful alignments.  Cn3D works because it incorporates structure information into making a profile 

based alignment.  Sequences can be aligned to this profile by sequential addition until all have been 

added.  Even after Cn3D alignment, extensive manual adjustment was necessary. 

 

 

 

Table 7: Pairwise identities between four 
sequences with structures 
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To obtain additional sequences, I used NCBI’s psi-blast search program [128].  Psi-blast works by 

constructing an amino acid profile of sequences after each iteration and then finding additional 

sequences that match the profile after multiple iterations.  This method has greater power to find 

distant homologues than the standard blast algorithm.  

 Each of the four proteins (FecA, FhuA, FepA, Btub) was used for a separate psi-blast search.   Then 

all the identified sequences were compared together.  The vast majority of found sequences were 

common to all four input sequences.  Non redundant sequences were pooled together to yield a set of 

~2300 sequences.  This large set of sequences was further filtered by removing sequences that are 

larger than 800 amino acids, removing homologues that were identified as putative or hypothetical or 

heme binding or transferrin binding and removing sequences with differently sized secondary structure 

elements.  The final alignment consisted of 541 sequences. 

As an additional check on the alignment quality, the identified sequences from all four proteins 

were individually aligned to obtain four alignments.  Inspection of these four alignments showed that all 

alignments contained the same motifs; or I should say there was no feature in one set of proteins that I 

could distinguish as coming only from that family.  Therefore, the structure and sequence similarity is 

sufficient grounds to include homologues of all proteins in the final alignment. 

During and after alignment construction two structures came out of the pyoverdine [129] and 

pyochelin [130]  transporters from Pseudomonas aerugionosa.  These sequences were in the final 

alignment I made allowing for an independent check of the alignment quality.  The alignment was 

excellent agreement with these two structures. 

As previously discussed, some transporters have a signaling domain.  The signaling domain is 

typically a short (~80 amino acid) sequence N-terminal to the plug.   To make this alignment I used the 

NMR structures obtained by Andrew Ferguson and colleagues [55] of the signaling domain of FecA and 

PupA (a TonB dependent receptor from Pseudomonas putida).   That alignment contains 296 sequences. 

With the alignment done, SCA analysis could proceed.  For this analysis, positions which contained 

more than 20% gaps were not considered; this has the effect of removing from the analysis poorly 

aligned positions.  I will show the SCA results using network graphs, hierarchical clustering, principal 

components analysis and independent component analysis. 

 Covariance analysis shows little coupling between positions making it difficult to make sense of the 

coupling pattern (Figure 49).  This is quantitatively shown as histograms of coupling values in Figure 50. 
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To see if any relationships can be discerned a network analysis is done (Figure 51).  Analysis of 

Figure 51 shows some interesting relationships.  First are two sets of positions in the plug: (209, 203, 210, 

211,192, 216) and (190, 193, 213, 166, 215, 217).  Then there is the large set of coupled positions in the 

Figure 49: The weighted covariance matrix (SCA matrix) for 588 positions in the TonB 
dependent receptor family.  Clearly most of the couplings are weak. 

 
Figure 50: Histogram of coupling values for the TonB dependent receptor family.  
Most values are very small and there are few high value couplings. 
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center (152, 511, 450, 402, 534, 517, 545, 249, 101, 728, 518, 535, 508, 566) that forms associations 

with other positions in the plug and the barrel.  What is striking about the network of coupled positions 

is that positions distant in sequence space are nonetheless coupled strongly.    

 A more extensive network consisting of 120 nodes is shown on the next page (Figure 52) with the 

cutoff being coupling scores of greater than 0.5.  Clearly it is difficult to distinguish relationships with 

this type of graph when the number of nodes is high.  Note that everything seems to be coupled 

together in this figure.  However, while this network contains 121 positions (20% of the aligned protein), 

they only comprise 0.3% of all possible couplings.  

 Greater insight into the pattern of couplings can be appreciated by plotting these positions onto 

the structure but this will be shown after analyzing the coupling pattern with other methods. 

Figure 51: TonB dependent receptor network analysis.  67 Positions that have a coupling score greater than or equal to 0.67 
are shown in the figure below.  Red lines show coupling values higher than 1.  Green lines show coupling values between 
0.75 and 1 and grey lines show coupling values between 0.67 and 0.75.  The black circles are positions that are in the plug 
and the blue circles are positions in the barrel. 
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Figure 52: TonB dependent network graph showing all 121 positions with coupling value greater than 0.5.  Color scheme is as 
in the previous figure. 
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The second approach to use is for analyzing the coupling matrix is hierarchical clustering 

method.  The purpose of this, as previously mentioned is to construct groupings of the data.  There 

may be one or more groupings.  The first thing I did with this method is to calculate which method 

gives the best trees.  As shown in Table 8, the Chebychev method with average linkage has the 

‘best’ tree (Figure 53).  

  The Euclidean distance with different linkage methods also works very well as the correlation 

scores range from 0.78 to 0.97.  The cityblock distances with complete linkage does not work as well but 

is still shows a correlation of 0.74 and in fact visual inspection shows a more compact grouping of 

positions (Figure 54) with the complete linkage/cityblock distance tree.  To obtain a list of the coupled 

positions, it is possible to zoom into the leaves of the trees and the matrix.  This is done for the 

cityblock/complete linkage scheme as the leaves are clustered together more (shown in Figure 55).  

While the highly coupled positions are easily read from the zoomed graph, it is still not easy to see what 

is coupled to what.  To further examine this, more analytical methods are presented next. 

 

 

 

 

 

 

 

Table 8: Hierarchical coupling analysis of the TonB dependent receptor family plug and barrel region.  Centroid, median and 
ward calculations can only be done on Euclidean distances. 

 

linkage methods
'average' 'centroid' 'complete' 'median' 'single' 'ward' 'weighted'

d
is

ta
n

ce
 m

e
th

o
d

s 'euclidean' 0.965 0.949 0.902 0.919 0.901 0.781 0.945

'seuclidean' 0.893 NaN 0.734 NaN 0.832 NaN 0.354

'mahalanobis' 0.220 NaN 0.027 NaN 0.063 NaN 0.195

'cityblock' 0.891 NaN 0.735 NaN 0.851 NaN 0.683

'cosine' 0.916 NaN 0.547 NaN 0.890 NaN 0.838

'correlation' 0.870 NaN 0.614 NaN 0.844 NaN 0.830

'spearman' 0.844 NaN 0.488 NaN 0.811 NaN 0.671

'chebychev' 0.996 NaN 0.992 NaN 0.984 NaN 0.989
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Figure 53: Hierarchical clustering of TonB dependent receptor family using chebychev distances and average linkage.  
The clustered matrix shows a regular pattern of small sets of clustered positions.  The tree reveals no major groupings. 

 

Figure 54: Hierarchical clustering of TonB dependent receptors using cityblock distance and complete linkage.  There is one 
coupled set in the lower right. 
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Principal components analysis as described in chapter 3 can be used to analyze covariance matrices.  

In order to obtain some confidence of what associations are due to random noise, it is necessary to look 

at the distribution of the eigenvalues of randomized matrices.  The eigenvalues of the original matrix 

that are of high magnitude are then considered significant.  This use of PCA is known as spectral 

clustering. 

The first thing to do is to calculate the eigenvalues of the SCA matrix for both the original alignment 

and a vertically scrambled alignment (Figure 57).  As is apparent, both the random matrix and the 

normal matrix have a single high value eigenvalue (at 57 for the normal matrix and 31 for the random 

matrix).  These values are expected because the covariance matrices are made from a set of non-zero 

mean data and with PCA, the first dimension of such a non-zero mean set of data is positive and the first 

eigenvalue reflects that.  This is demonstrated in Figure 56. 

 

 

Figure 55: Close up of hierarchical clustering (cityblock/complete).  The numbers on the left of the tree are 
the structure numbers of FecA. 
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Figure 56: The first eigenvalue correlates well with the magnitude of the coupling for both the random 
matrix and the normal matrix. 

 

 

 

Figure 57: Eigenvalue histograms of the coupling matrix and the random matrix.  The left panel shows the 
whole histogram and the right panel zooms onto the y-axis so that additional eigenvalues can be resolved. 
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Table 9: The positions with weights more than 
0.1 units from zero along the significant 
eigenvectors. 

 

Since the first eigenvalue and hence the first eigenvector does not carry the coupling information, it 

can be discarded.  The eigenvalue histogram with the highest eigenvalue removed is shown in Figure 58. 

Now it is clear that the random matrix has a high eigenvalue of magnitude 4.92 whereas the normal 

matrix has eight eigenvalues higher than that.  I will consider all eigenvalues higher than 5.0 to be 

significant and indicative of coupling.  This results in eight significant eigenvectors (excluding the first 

eigenvector).  An eigenvector in this case is a list of 588 numbers (also known as weights or factor 

loadings) that specify to what degree a particular position in the alignment contributes to the magnitude 

of the whole eigenvalue.   The farther a weight is from zero, the more the position contributes (see 

Figure 59 for distributions of the weights and Figure 60 for plots of the weights against each other).  If 

one takes weights that are 0.1 units away from zero in 

either direction (0.1 is at least two standard deviations 

away from the mean, see Figure 59), one obtains a list of 

positions corresponding to particular residues that are 

considered to be highly coupled (Table 9).  In the TonB 

family, this list has 72 unique amino acids, comprising 12% 

of the alignment positions.  These positions have been 

mapped onto the structure of the bound FecA in Figure 62 

and Figure 61. 

Figure 58: Eigenvalue spectrum discarding the top eigenvector 
for both the random and normal matrix. 

 



118 
 

 

Figure 59: Histograms of principal components of the TonB dependent receptor family.  The distribution of weights in each 
significant principal component is shown.  The green line is the mean of the distribution and the red dashed line is two 
standard deviations from the mean.  The black dashed line represents the cutoff used (0.1 units away from zero). 
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Figure 60: Weights of principal components 2-4 plotted against each other.  The number next to the points corresponds 
to the amino acids of FecA.  The blue dots are residues that come from the barrel and the black dots are residues that 
come from the plug.  Dashed lines represent the 0.1 threshold. 
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Figure 62: Mapping of coupled positions onto the structure of bound FecA.  The 
black cartoon is the barrel, the blue cartoon is the plug, the orange spheres is the 
ferric dicitrate and the red surface is the network of 72 coupled amino acids. 
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Figure 61: Additional views of the coupling network mapped onto the FecA citrate bound structure.  The black cartoon is the 
barrel, the blue cartoon is the plug, the orange spheres are the atoms of the ferric dicitrate and the red surface is the 
network of 72 coupled amino acids.  Selected positions are labeled. 
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What is striking about this network is how it extends in a physically continuous way from the region 

surrounding the binding pocket all the way down to what is known as the switch helix.  This is better 

appreciated with simplified view as in Figure 63.  There are also additional couplings whose significance 

was not apparent at that time.  One could imagine that some of these regions could be important 

interactions with the membrane that the receptor or with the TonB protein that provides the energy for 

transport. 

 

 

 

 

 

 

 

 

 

 

  

Figure 63: The coupled network with respect to the TonB box (yellow) and the ferric dicitrate 
(orange).  Note that this is a combination of two structures: FecA bound and FecA unbound.  The 
TonB box is disordered in the FecA bound structure and the dicitrate is not present in the FecA 
unbound structure.  The grey alpha carbon trace is that of bound FecA. 
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 The goal of ICA as explained previously is to identify independent components of the data.  This 

differs from principal components analysis in several important ways.  First, ICA finds statistically 

independent components whereas PCA finds decorrelated components.  Second, ICA is non-

deterministic owing to the fact that it uses maximum-likelihood methods in which one guesses the form 

of the data and then through iteration attempts from the guesses to get at the characteristics of the 

data.  Third, ICA can find at most one non-Gaussian independent component.  ICA and PCA are similar in 

one respect however, using both methods one cannot tell which are the important components.  This 

ambiguity is compounded with ICA because one often cannot tell which model of the data to use AND 

one must give the algorithm the number of independent components to use.  That is, I as the user would 

have to guess that there is some number of independent components and then analyze the output of 

the program and see if it makes sense. 

 The way I analyze ICA data is to plot the source signals.  The source signals are weights for each 

residue in the alignment so if one source signal is plotted against another (as in a scatter plot), the 

pattern of scattered points can reveal whether there is independence.  Specifically, if positions are 

orthogonal to each other in the scatter plot then they are considered to be statistically independent.  

The goal then of ICA analysis for sequence data is to see if there is any evidence that sets of positions 

could be independent. 

The results of ICA analysis on the TonB dependent family does not reveal any independent 

components.  As the network diagrams show, all coupled positions are about equally coupled to most 

other positions.  This is revealed in the ICA analysis as, whatever model or parameters are chosen, the 

vast majority of points lie on one axis.  This is shown in Figure 64 for the case where there are only two 

components.  The bulk of positions lie along one axis while only one position (558) appears to lie along a 

separate axis.  The same result holds if more components are added or if different eigenvalues are 

selected as shown in Figure 65 and Figure 66.   

From this I can conclude that the coupled sets of positions in the TonB dependent family do not 

show any evidence of consisting of independent sets of positions. 
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Figure 64: Independent two component analysis of the TonB dependent receptor family reveals no independent sets of 
positions.  The parameters used for ICA are shown in each graph.  In this example, different models are tried, while two 
components are searched for using the eigenvalues from 2 to 10.  The colors refer to the following:  
red: residues identified as coupled using the PCA analysis 
green: residues have at least one coupling score greater than 0.5.  Note that this includes all the red colored positions.   
blue: the remaining alignment positions.  Selected residues are marked using FecA structure numbering. 
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Figure 65: Independent three component analysis of the TonB dependent receptor family reveals no independent sets of 
positions.  The parameters used for ICA are shown in each graph.  In this example, different models are tried, while three 
components are searched for using the eigenvalues from 2 to 10.  The colors refer to the following:  
red: residues identified as coupled using the PCA analysis 
green: residues have at least one coupling score greater than 0.5.  Note that this includes all the red colored positions.   
blue: the remaining alignment positions.  Selected residues are marked using FecA structure numbering. 
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Figure 66: Independent three component analysis of the TonB dependent receptor family reveals no independent sets of positions.  
The parameters used for ICA are shown in each graph.  In this example, different models are tried, while three components are 
searched for using the eigenvalues from 2 to 9.  The colors refer to the following:  
red: residues identified as coupled using the PCA analysis 
green: residues have at least one coupling score greater than 0.5.  Note that this includes all the red colored positions.   
blue: the remaining alignment positions.  Selected residues are marked using FecA structure numbering. 
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Coupling analysis of the signaling domain was also performed based on a structure based alignment 

of 296 signaling domains.  The alignment was done separately from the barrel and plug domain and so is 

presented separately. 

The coupling matrix of 74 aligned positions is shown in Figure 67.  Clearly there are some coupled 

positions but this coupling matrix is not as ‘blue’ as the barrel and plug alignment.  This coupling matrix 

will be analyzed with a network graph, hierarchical clustering, principal components analysis and 

independent component analysis as previously described.  

 

 

 

 

 

 

 

 

 

 

Figure 67: Statistical coupling matrix of the signaling domain.  Matrix values are colored 
according to the color scale. 
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 The network graph shown in Figure 68 reveals a network of 41 coupled positions.  This represents 

most of the coupling of this domain (made up of 80 amino acids or 74 positions in the alignment).  The 

whole domain seems to be quite connected.  There may be two clusters of positions where one set of 

residues forms a dense network of high value contacts with each other.  The first cluster is made up of 

positions 7, 12 and 44 and the surrounding residues connected by green lines.  The second cluster could 

be made of positions 29, 56, 61 and 63.  Note though that the independence of these clusters is not 

absolute as position 12 of cluster 1 interacts weakly with position 56 of cluster 2. 

 

 

 

 

 

 

 

Figure 68: Network graph of the signaling domain of FecA.  Red lines are coupling values greater than or equal to one, 
green lines are coupling values between 0.75 and 1 and grey lines are coupling values between 0.5 and 0.75.  The 
numbers on the nodes are the signaling domain structure numbers. 
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After network analysis, hierarchical clustering is performed.  The clustering was done with different 

combinations of distance and linkage methods as shown in Table 10.  As was the case previously, the 

Chebychev distance with average linkage gave the best tree-data correlation score.  The cityblock 

distance with complete linkage gave a score of 0.71 which is still pretty good.  The tree diagrams are 

shown in Figure 69 and Figure 70 .  One can see that the trees are actually very similar as the groupings 

are the same except they are ordered differently. 

 

 

 

 

Table 10: Clustering of the signaling domain of the TonB dependent receptor.  Centroid, median and ward calculations can 
only be done on Euclidean distances. 

 

linkage methods
'average' 'centroid' 'complete' 'median' 'single' 'ward' 'weighted'

d
is

ta
n

ce
 m

e
th

o
d

s 'euclidean' 0.85 0.82 0.80 0.82 0.77 0.68 0.79

'seuclidean' 0.72 NaN 0.61 NaN 0.39 NaN 0.64

'mahalanobis' 0.49 NaN 0.22 NaN 0.16 NaN 0.43

'cityblock' 0.76 NaN 0.71 NaN 0.62 NaN 0.76

'cosine' 0.89 NaN 0.68 NaN 0.87 NaN 0.83

'correlation' 0.86 NaN 0.74 NaN 0.78 NaN 0.81

'spearman' 0.71 NaN 0.62 NaN 0.58 NaN 0.69

'chebychev' 0.97 NaN 0.94 NaN 0.94 NaN 0.95

Figure 69: Hierarchical clustering of signaling domain using chebychev distances and average linkage. 
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Next, principal components analysis is performed on the coupling matrix.  A randomized alignment 

is made and the coupling matrix calculated for the random alignment.  The eigenvalues of the original 

and random coupling matrices are plotted in a histogram form (Figure 71). 

Figure 70: Hierarchical clustering of signaling domain using cityblock distances and complete linkage. 

 

Figure 71: Eigenvalue histograms for PCA of TonB dependent receptor signaling 
domain. 
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 Again, the first eigenvalue reflects the fact that the matrix is composed of positive values (Figure 72) 

and means that the first eigenvector can be discarded.   If the first eigenvector of each matrix is 

discarded, the eigenvalue histograms reveal three eigenvalues with high values in the normal coupling 

matrix but not in the random alignment coupling matrix (Figure 73).  The histograms of the weights of 

the significant eigenvectors are shown in Figure 74. 

 

 

Figure 72: The first eigenvalue of the coupling matrix and the random coupling matrix are related to the magnitude of the coupling. 

 

Figure 73: Eigenvalue histograms when the first eigenvalue is discarded for 
the PCA of signaling domain analysis

 

 

Figure 74: Histograms of the weights of the three 
significant eigenvectors.  The green line is the mean; the 
red dashed line is one standard deviation and the black 
dashed line is at 0.1. 
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 It is possible to visualize all three significant eigenvectors with either a 3D plot or three 2D plots.  

These three 2D plots are shown in Figure 75.  The residues with weights higher than 0.1 are shown in 

Table 11.  In the plots one can clearly see that the positions that could represent different networks in 

the network diagram are in different regions in the PCA plot.  In the PC2 vs. PC3 graph one can see that 

positions 7 and 12 and 55 contribute along one axis differently than positions 60, 61 and 20.   

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 75: Weights of principal component 2-4 plotted against each other 
for signaling domain of TonB dependent receptors.  Dashed lines represent  
the 0.1 threshold. 
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 To see if these sets could be statistically independent, independent component analysis is done.  

Here I would like to determine whether there are two independent components to the data.  As the 

next figure (Figure 76) shows, there are no sets of positions that clearly lie on two different axis 

indicating that these data are probably not composed of independent components. 

 

Figure 76: Independent component analysis of the TonB dependent signaling domain.  Different methods do not reveal any points that are 
clearly on different axes.  The colors refer to the following:  
red: residues identified as coupled using the PCA analysis 
green: residues that have at least one coupling score greater than 0.5.  Note that this set includes all the red colored positions.   
blue: the remaining alignment positions.  Selected residues are marked using FecA structure numbering. 
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 Now that the analysis of the signaling domain is complete, the identified positions are mapped onto 

the structure as shown in Figure 77.  As many positions (35/80) are significantly coupled,  the 

connectedness of this structure is expected.  However it is interesting that there is a coupling to the 

strand that is linked to residue 80 of the protein.  Residue 80-85 makes up the TonB box which is the set 

of residues that contact TonB.  Selected mutations were made in the positions of the signaling domain 

(as well as the rest of the protein) and assayed for function.  These experimental tests are described 

next. 

Figure 77: Coupled positions identified by PCA of the FecA signaling domain. 
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Section 3: Experimental analysis of the coupled positions 

  

 Residues identified by SCA are interpreted to be important in the proper functioning of the protein. 

Experimental tests are required to support this point of view.  To test the effects of the coupled 

positions, several alanine mutants were studied of positions in the plug and barrel and signaling domain 

of FecA.  These mutants were then tested for their ability to affect the function of the receptor. 

 The particular function tested in this assay was the proper signaling of the receptor.  Remember 

that FecA has a signaling domain and the activation of signaling is dependent on the binding of ligand 

and the subsequent TonB activation of the receptor.  On the other hand the transport function and 

signaling function are independent as the signaling domain can be experimentally removed resulting in 

no loss of transport function.  This assay was used rather than a direct transport assay because the 

available transport assays are not very good due to the fact that there are a variety of transporters 

available and the difficulty of labeling the ferric dicitrate.   

 To observe whether signaling occurred, a GFP based assay was developed.  Expression of GFP was 

under the control of a promoter that becomes activated via the signaling domain.  Therefore, in 

principle the cells become fluorescent with increased signaling.   The plan was to incubate cells 

harboring a GFP reporter plasmid with 1 mM sodium citrate and monitor over time the expression of 

GFP in whole cells. 

Two conditions were tried to measure GFP fluorescence.  First, I tried measuring GFP fluorescence  

while growing the cells in the plate reader.  This method allows one to follow any change in GFP 

fluorescence over time as the cells grow.  The second method was to grow the cells in standard culture 

tubes and then periodically remove aliquots and measure GFP fluorescence in a plate reader.  This 

method, though more labor intensive, was chosen to collect all the data as the dynamic range is at least 

three fold higher than the first method (see Figure 78).  This is probably because growing cells in a plate 

reader is not optimal.  The data reported represent the fluorescence signal divided by the optical density 

at 600 nm (OD600) for each time point. 
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 Several control experiments were conducted to verify that the assay can accurately and 

reproducibly measure signaling in these cells (see Figure 79).  Inspection of the various panels reveals 

that cell growth is not inhibited by either a lack of citrate or absence of FecA. 

 To account for differences in growth, as previously stated, the fluorescence was divided by the 

OD600 at each time point.  This results in a normalized graph as shown in Figure 80.  Note that the 

profile is complex: there is a small lag phase, an exponential phase, a peak, and then a decrease in 

normalized fluorescence.  

 This experiment was then repeated for a set of mutants in the plug, barrel and signaling domain, 

with the normalized fluorescence data shown in Figure 81.  This data for the mutations in the coupled 

network along with other control mutations have been reported in Ferguson et al. 2007 [55] and are 

shown in Table 12 taken from that paper.  Mutations in the coupled positions affected the function of 

the protein in some cases completely disrupting the signaling activity.  This mutational data supports the 

idea that the coupled network mediates the allosteric function of this protein. 

Figure 78: Comparison of GFP fluorescence between cells grown in plate reader and cells grown in a laboratory 
shaker.  Error bars represent the standard deviation from three trials. 
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Figure 79: Positive and negative control experiments for measuring signaling of the FecA receptor.  Error bars are 
standard deviations of triplicate data.  Growth is similar for all conditions, while the cells become fluorescent only 
with the presence of FecA and addition of citrate. 
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Figure 80: Fluorescence data normalized for cell growth. Fec refers to FecA, CIT refers to sodium citrate, the 
ligand of FecA, and + or – refers to the presence or absence of FecA or sodium citrate. 
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Figure 81: The effect of FecA mutants on signaling.  The mutants were chosen based on having high coupling 
scores.  Note that the error bars (+/- standard deviation) are present and within the marker for each data point.  
Note that D45 in the signaling domain seems to be much slower at activating transcription. 
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Table 12: GFP fluorescence assay as described in the text.  The data is presented normalized to the expression of 
wild-type FecA (which is 1).  The range of wild-type is 1 +/- 0.2 so any effect above 1.2 or below 0.8 is considered 
significant.  FecIR is the negative control containing only the GFP plasmid while FecIRA is the positive control with 
wild type FecA.  The residues in bold are mutations in the coupled network.  
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Conclusion 

 This chapter discussed the identification of an allosteric pathway in the TonB dependent receptor 

family.  Constructing the MSA for this protein family and the subsequent SCA were the most technically 

challenging parts of this study.  The experimental assays and analysis were relatively straightforward and 

facilitated by Andrew Ferguson who was responsible for this project. 

 The results are quite interesting.  Statistical coupling analysis was able to identify a set of positions 

encompassing the binding pocket in the extracellular space all the way through the protein to the 

interaction site where the periplasmic protein TonB binds.  In addition, the signaling domain also 

contained a network of coupled residues.  Experiments of point mutants of these coupled positions 

validated the functional significance of these positions as many affected the signaling activity.  

Furthermore, after this work was complete, two groups [122, 123] published the structure of a 

truncated form of TonB with the TonB dependent receptor revealing the binding site where TonB binds 

to the receptor.  This binding site position was identified by SCA as being coupled although the 

functional significance of the coupling was not apparent at the time. 

 The identification of a coupled network of positions highlights the fascinating energetic nature of 

proteins and how much there is yet to learn about the detailed interactions within proteins.  The 

answers to the following would make for challenging projects: 

1. Physical mechanism of allostery from the ligand site to the periplasm  

2. Conformation of the protein in the open state 

3. Mechanism for TonB energizing the receptor 

4. Mechanism for signaling domain binding to the receptor 

5. Energetics of releasing the iron which is closely associated with the siderophore 

6. Examining the coupling patterns within other homologous proteins 

7. The actual transportation mechanism 

 

The network of positions identified with SCA could serve as a starting point to uncovering the 

complex cooperative interactions in the TonB dependent receptors. 
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Chapter 5: Serine Protease Family 

 This chapter is divided into three sections.  The first section is a brief review of the chymotrypsin 

class serine protease family (family S1A).  The second section describes the statistical coupling analysis 

(SCA) of the serine protease family.  The third section describes experimental work done based on 

predictions of SCA and further evolutionary analysis. 

  

Section 1: Review of the S1A family 

The chymotrypsin class serine proteases (Family S1A according to Merops classification [131]) are a 

large and ancient family [131] of hydrolytic enzymes which are characterized by a catalytic triad 

consisting of serine, aspartate and histidine [132].  This family has been the subject of much research as 

different enzymes with very similar tertiary structures hydrolyze different substrates while utilizing the 

same catalytic machinery [132].  The basis of this substrate specificity is not well understood and 

attempts to switch the specificity from one enzyme to another has either required many mutations or 

resulted in enzymes with slow rates [133-136].  Allosteric regulation has also been observed in certain 

types of these proteases [137-139].  These proteases also bind calcium ions [132], are expressed as 

inactive zymogens and are stored in acidic endosomes until secreted into the extracellular space [140, 

141].  The proteases of this family are involved in digestion of food, coagulation cascades, reproduction 

and immunity [142].  Their functional diversity and physiological importance makes them an interesting 

system to study. 

Families of proteases and family S1A 

 Proteases are enzymes that hydrolyze other proteins.  They comprise an extremely diverse and 

numerous set of proteins [143].  There are also at least six possible mechanisms by which proteases 

hydrolyze peptides giving rise to six functional classifications of proteases based on the nature of the 

catalytic residue:  aspartic, cysteine, glutamic, metallo, serine and threonine [143].  These are not 

evolutionarily based classes however, because, for example, the serine proteases contain two non-

homologous families (subtilisin family and chymotrypsin family that both use the exact same catalytic 

mechanism (constituting an example of convergent evolution) [[144, 145]]. 

 The family that is relevant to this project is the chymotrypsin class serine protease family also 

known as family S1A.  This family has representatives in all eukaryotic species.  The structurally related 

family S1B is also present in prokaryotes; however the level of sequence homology between families 

S1A and S1B is very low and in fact, running sequence similarity searches with family S1A does not result 

in identification of any sequences from family S1B).  Some examples of widely known S1A proteases are 
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trypsin, chymotrypsin, elastase, thrombin and enterokinase (a protease-misnamed as a kinase).  Note 

that these names do not refer to a single protein sequence and that each could have multiple isoforms. 

 While the protease function defines the vast majority of homologs of this family, some family 

members have lost the catalytic active site residues and carry out binding functions.  One example of 

this is haptoglobin which has evolved to bind heme [146, 147].  Other examples will be discussed later. 

 Most commonly, family S1A members are part of one domain.  However, some family members 

exist as multi-domain proteins as shown in Figure 82.  Furthermore physiologically important members 

such as some coagulation and complement proteases are part of multidomain or membrane bound 

proteins. 

Figure 82: Examples of trypsins with different domain architectures.  PDZ: a c-terminal peptide/protein binding domain.  
Pan-1: A protein or carbohydrate binding domain.   PPC: domain of unknown function.  VWA: domain that binds to von 
Willebrand factor.   The PFAM number is the number of sequences in the PFAM database  (Dec. 2008)  that contains the 
displayed domain structure.
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Proteolysis mechanism 

 The mechanism of proteolysis of trypsin involves  three important residues (serine, histidine and 

aspartate) at the catalytic core.  Studies have elucidated the general mechanism of trypsin proteolysis; 

however, additional studies continue with the goal of determining the molecular details.  The numbering 

of these amino acids is usually based on their occurrence in the sequence of chymotrypsin and so I will 

refer to the catalytic residues as S195, H57 and D102.  Figure 83 shows the catalytic triad on the 

structure of rat trypsin. 

The current model of the chemical mechanism is described below: 

Histidine 57 is thought to abstract a proton from the gamma oxygen of serine 195 resulting in the 

creation of a positive charge on histidine and a negatively charged oxygen on the serine.   The positively 

charged H57 is stabilized by D102.  The negatively charged oxygen atom acts as a nucleophile and 

attacks the carbonyl carbon of the peptide bond.  This results in a carbon with four bonds on it in a 

tetrahedral form (known as the tetrahedral intermediate).  The tetrahedral intermediate is stabilized via 

interactions with residues such as S214 and G193 at a site known as the oxyanion hole.  The tetrahedral 

intermediate, assisted by the positive charge of histidine 57, rapidly breaks down to give the first 

product which is the first peptide.  The enzyme is still covalently attached to the second peptide.  This 

intermediate with bound peptide on it is called the acylenzyme intermediate.  The second half of the 

reaction is known as the deacylation reaction.   Water, thought to be activated via H57 now serves as 

Figure 83: Catalytic triad of serine proteases mapped on the structure of rat trypsin (pdb ID 2AGE). 
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the nucleophile to attack the ester bond releasing the second product and regenerating the enzyme 

( [132] and reviews within). 

While this mechanism is generally accepted additional details have continued to emerge.   For 

example, a 2006 paper from Daniel Koshland’s group [148] captured the structure of real substrates in 

the active site of rat trypsin by quickly freezing the crystal after immersing it in substrate.  The structures 

they obtained were the first of native substrate and native enzyme.  The enzyme had reacted with the 

substrate forming an acyl intermediate.  The structures were of high resolutions (1.15 angstroms) and 

the authors obtained strong evidence that one particular water resolvable in the structures is the 

nucleophile in the deacylation reaction. 

Although understanding the chemical mechanism is important to uncover fully especially given that 

the rate acceleration is of the order of 1010, understanding  the substrate specificity is the primary goal 

within the field. 

Substrate Specificity 

An important feature of family S1A is that while the same catalytic mechanism is used, different 

enzymes bind and hydrolyze different substrates.  For example the trypsin protease cleaves most 

efficiently after lysine or arginine residues whereas chymotrypsin cleaves most efficiently after 

phenylalanine.  This selectively translates into a kcat/Km difference of 100,000 for peptide substrates [136, 

149].   The molecular determinants of this specificity have been the subject of much investigation [133, 

135, 136, 149-153].  The nomenclature used historically to describe the determinants of specificity [154] 

is based on assuming that a site on the enzyme (S) binds a particular site on the peptide (P).  The 

numbering of sites begins with one at the site of cleavage.  So site P1 of the peptide is bound by site S1 

of the enzyme.  Sites on the peptide’s N-terminus are incremented, while sites C-terminal are 

incremented with a P’.  This is shown schematically in Figure 84.  This scheme has to be considered 

Figure 84: S and P nomenclature of proteases. 
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approximate as multiple sites on the enzyme could bind the same peptide site and multiple sites on the 

peptide could bind to the same site on the enzyme when interactions are considered on a residue level 

and possibly at atomic level too (as atoms can form multiple interactions).  Nonetheless this 

nomenclature is used extensively in the literature. 

When the first structures of trypsin and chymotrypsin were solved it was thought that specificity 

could arise due to residue 189 which formed the S1 binding site for residue P1 of a substrate; the side 

chains of lysine/arginine for trypsin substrates and phenylalanine or tyrosine for chymotrypsin 

substrates interact with this residue (see Figure 85).  Most importantly, residue 189 is different in 

proteases with different specificities.  In trypsin residue 189 is aspartate and in chymotrypsin residue 

189 is serine.  The chemical rationale behind the specificity difference is that in trypsin aspartate binds 

the positively charged lysine and arginine whereas in chymotrypsin the serine with hydrophobic 

character can accommodate the large phenylalanine or tyrosine side chains.  This view however proved 

to be simplistic as the next experiment shows. 

The logical experiment to test this specificity model was to mutate residue 189 to either aspartate 

in chymotrypsin or serine in trypsin and measure catalytic rates to determine if specificity changed.  

These studies  was done in 1988 in William Rutter’s group [151] and they found that the D189S mutant 

in trypsin killed both the tryptic and chymotryptic activities (the tryptic activity kcat/Km was reduced 

57800 fold and the chymotryptic kcat/Km was increased 8 fold but this 8 fold increase was still low as the 

Figure 85: The association of a peptide substrate (Suc-Ala-Ala-Pro-Arg-PNA), shown in green, with residues from rat trypsin, 
D189.  The other residues present are the active site of rat trypsin.  This is based on structure 2AGE.  The mesh diagram shows 
how part of the substrate is embedded within the active site pocket (also known as the S1 pocket) of rat trypsin. 
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tryptic substrate with native enzyme was still 21000 fold less in kcat/Km than the chymotryptic substrate 

with S189).  As it turns out to transfer chymotryptic specificity to trypsin requires many more mutations.  

This work was done by Lizbeth Hedstrom again in William Rutter’s lab reported in 1992 [136]  and 1994 

[135, 149].  To get a trypsin swap that is within one percent of the activity of chymotrypsin on a PHE-

substrate it is necessary to mutate what is known as the S1 pocket (D189S, Q192M,I138T, +T219) and 

two surface loops termed Loop 1 or the 80’s loop(residues 185-188) and Loop 2 or the 20’s loop 

(residues 221-225).  To get within 15% of the activity of chymotrypsin required the addition of one more 

mutation, Y172W. The result is that it is necessary to make 14 mutations to switch the specificity of 

trypsin to chymotrypsin (up to 15%).  The following Figure 86 shows these positions. 

This work showed that switching the specificity of a serine protease is difficult to do and the 

mutations required not obvious from the structure.  Furthermore equivalent attempts to change 

chymotrypsin to trypsin [134, 150] or trypsin to elastase [133] were much less successful than that of 

the trypsin to chymotrypsin switch.  

One question that was addressed by Lizbeth Hedstrom and colleagues is what chemical step was 

improved in the mutant trypsin switch.  They addressed whether it was binding, acylation or deacylation.  

The data published in [135, 149] showed that it was improvement in the acylation step that most 

contributed to the switch with the Y172W mutation.  Furthermore, there is biochemical [149] and 

structural [155] evidence that the efficiency of good trypsin-chymotrypsin proteases is due to increased 

stabilization of the S1 pocket .  These studies have helped elucidate the cooperative nature of substrate 

binding in this family. 

Though trypsin and chymotrypsin have been the most extensively studied serine proteases, other 

family members with greater specificity to substrates have also been examined [156-158] based on 

crystal structures and mutations.  In general the more specific the substrate the more sites are used for 

binding to the protein. 
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Figure 86: Positions of rat trypsin that had to be mutated to the equivalent ones (based on alignments) to switch 
trypsin to chymotrypsin.  The structure used was 2AGE.  The green positions are from the covalently bound substrate 
(Suc-Ala-Ala-Pro-Arg). while all other positions are from rat trypsin. 
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Proteases as Zymogens 

 Another feature common to proteases is that they are first expressed as inactive zymogens and 

stored in the cell endosomes at low pH and then are activated by proteases outside the cell.  Proteolytic 

cleavage of an N-terminal region is necessary to convert the zymogen to an active protein.  The 

fragment removed is small; in the case of trypsin it is 18 residues in length whereas in chymotrypsin the 

cleaved fragment is 15 residues.  The zymogen is generally denoted by the addition of the suffix –ogen 

to the protease.  For example, the zymogen form of trypsin is called trypsinogen.  The zymogen form of 

chymotrypsin is called chymotrypsinogen.   

 Structurally, cleavage of the N-terminal pro-form of the protease results in changes that include an 

ordering of the S1 pocket and the oxyanion hole.  It is thought that interaction of residue 16 (based on  

chymotrypsin numbering) to D194 (adjacent to the catalytic S195) is responsible for turning the 

protease into the active form [132].  

 

Allosteric effects in Proteases 

There are two documented types of allosteric control in this family of proteases.  Both involve the 

modulation of function via ions:  one of the ions is sodium and the other is calcium. 

Sodium binding to the protease thrombin is important for its regulation.  Thrombin is the final 

protease in the coagulation cascade.  Binding of sodium to thrombin has been shown to increase the 

rate of proteolysis by thirty fold and to increase the range of substrates hydrolyzed by thrombin [137, 

159, 160].  Some of the molecular determinants of this have been identified [138, 161-163] and recently 

the allosteric control has been transplanted into trypsin via 19 mutations [164]. 

Calcium binds to all known proteases.  It has been shown that calcium stabilizes the trypsinogen 

form of the protease preventing autoactivation of the protease [165].  Preventing autoactivation is 

physiologically very important as life threatening conditions such as pancreatitis (where the pancreas 

digests itself because the proteases are prematurely activated) would occur if proteases become 

activated at the wrong time or location [140, 141]. 
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Section 2: Statistical coupling analysis of Family S1A 

 The important and complex functions of this protein family made it interesting to study via 

statistical coupling analysis (SCA).  The starting point of my analysis is to create an alignment of this 

family.  The alignment consists of 1470 sequences of family S1A members.  The alignment includes both 

vertebrate and invertebrates sequences as well as a few bacterial and fungal enzymes.  Psi-blast did not 

reveal any family S1B members.  All sequences were chosen so that they include only one domain 

proteins (all membrane bound or multi-domain proteins were excluded from the alignment as their 

function could be different). 

 The alignment was made by using profiles of 80 structures of this family with Cn3D [127].  Then the 

alignment was extensively adjusted manually.  Special consideration was given to aligning the loops 

which are not structurally conserved regions.  

 The diversity and quality of this alignment was significantly greater than the previous alignment 

constructed in the lab: it included many more invertebrate sequences and contained inactive proteins 

such as haptoglobins that are homologous to the active proteases.  This increased diversity was useful as 

it enabled the detection of various sets of residues as will be shown later.  

 The first step to perform SCA is to calculate the coupling matrix as shown in Figure 87.  The matrix 

reveals that this family has a sparse set of highly coupled positions as is typical of most protein families. 

 Next I will show the analysis via network graphs, hierarchical clustering, PCA and ICA. 

Figure 87: Coupling matrix of serine protease family

. 
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 The network graphs for all nodes with coupling values greater than one is shown in Figure 88 and 

for values greater than 0.75 is shown in Figure 89. 

 

 

Figure 89: Network graph of serine protease S1A family.  All nodes with coupling values 0.75 or greater are shown.  Couplings with 
values greater than 1 are shown in red and couplings between 0.75 an 1 are shown in green.  The node numbers are based on the 
structure of 3TGI. 

 

Figure 88: Network graph of serine protease S1A family.  All nodes with coupling values 1 or greater are shown.  The 
node numbers are based on the structure of 3TGI. 
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The two network graphs reveal a striking network topology unlike those seen in other protein 

families.  There is clearly sets of positions that form many more associations with each other than with 

other positions.  There are at least three such positions.   The sets are often bridged by particular 

residues.  For example, one set of positions (residues 136,201,157,104,105,81,71,124) on the left of 

Figure 89 is connected to another set in the middle (residues 189,214,183,191,228,176,226) via a small 

set of bridging residues (184, 29, 51, 27 and 22). 

 In addition to the two sets making up the bulk of the connections, there is clearly a third set made 

of positions 195, 57 and 197 and bridged to the second set via position 216.  What is striking about this 

set is that these positions are members of the catalytic machinery (S195 and H57) and absolutely 

conserved in the active proteases.  In fact if I expand this network graph to couplings of 0.5 or higher the 

full catalytic triad comes out as linked, shown in Figure 90. 

 

 

The biological significance of the catalytic machinery that appears out of the network graphs is 

evident.  The significance of the other two sets will be discussed after further analysis of the coupling 

matrix. 

 

 

 

 

Figure 90: Network graph of serine protease family S1A.  This graph shows all coupling greater than 0.5 but only a 
partial graph is shown focusing on the third set of positions which comprise the catalytic triad. 
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 The next stage of analysis is hierarchical clustering.  Again many types of clustering are done and 

the results displayed in Table 13.  As previously shown, the highest score correlation score is with 

Chebychev, average linkage whereas other types of distance and linkage methods give fairly good trees.  

The tree for cityblock distance and complete linkage is show in Figure 91. 

 

 

 

Figure 91: Cityblock distance with complete linkage tree for serine protease S1A family 

 

Table 13: Hierarchical clustering of serine protease family.  NaN means that the linkage or distance metric or a 
combination of linkage/distance does not apply to the data. 

 



153 
 

 The tree for cityblock distance/complete linkage shows at least two sets of coupled positions at the 

lower right which correspond to those observed in the network diagram. 

 I will now describe the principal components analysis. 

 The eigenvalue spectrum of the normal alignment and the random alignment (Figure 92) shows 

that there is one primary eigenvalue for each matrix that correlates with the magnitude of coupling 

(Figure 93). 

 

 

  

Figure 92: Magnitude of the eigenvalues of the coupling matrix and the random coupling matrix. 
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Figure 93: The first principal component correlates with the magnitude of coupling for both the normal coupling matrix and the random 
coupling matrix. 
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 If the first principal component is removed, as it is not related to coupling, then, by comparison to 

the random matrix histogram it is clear that there are five eigenvalues with high values (Figure 94).  I will 

take a close look at each eigenvalue.  For clarity I will label the sets of positions that were identified in 

the network graph analysis with different colors.  It will then be apparent if those sets occupy different 

regions of the variance space.  

The next five figures show the weights of the six eigenvectors plotted against each other.  These 

plots show what the network graphs and hierarchical clustering reveal (see for example PC2 vs. PC4 in 

Figure 96): that there are sets of residues that group together.   What PCA does is it groups residues 

which have similar variance profiles as explained in chapter 3.  It is clear that the set 1, set 2, set 3 and 

the bridge residues all occupy different regions of the variance maximizing space.  For the bridge 

residues, while they are significantly different from random they are not all grouped together in all plots 

indicating that they do not form a distinct group of positions.  Note also the position of residue 216 

which sometimes appears as part of the red set and sometimes as part of the green set.

               Figure 94: Eigenvalue histogram excluding the highest eigenvalue. 
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Figure 95: Histograms of the weights of the five significant eigenvectors.  The green line is the mean; the red dashed line is one 
standard deviation and the black dashed line is at 0.05. 
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Figure 96: Principal component analysis plots: PC2 vs. PC3 and PC2 vs. PC4.  Blue: set 2. Red: set 1.  
Green: set 3.  Black: bridge residues.  Yellow: All other residues. 
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Figure 97: Principal component analysis plots: PC2 vs. PC5 and PC 2 v s PC6.  Blue: set 2. Red: set 1.  
Green: set 3.  Black: bridge residues.  Yellow: All other residues. 
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Figure 98: Principal component analysis plots: PC3 vs. PC4 and PC3 vs. PC5.  Blue: set 2. Red: set 1.  
Green: set 3.  Black: bridge residues.  Yellow: All other residues. 
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Figure 99: Principal component analysis plots: PC3 vs. PC6 and PC4 vs. PC5.  Blue: set 2. Red: 
set 1.  Green: set 3.  Black: bridge residues.  Yellow: All other residues. 

 

-0.4 -0.3 -0.2 -0.1 0 0.1 0.2 0.3
-0.2

-0.1

0

0.1

0.2

0.3

0.4

0.5

0.6

Prinicipal Component 3

P
ri

n
ic

ip
a
l 

C
o

m
p

o
n

e
n

t 
6

 29

180  51
183

184
136

228
189

215

226

172

 22

123
 91

155

 40

 17

 30

195

191

230

188

212

 94

214

-0.3 -0.2 -0.1 0 0.1 0.2 0.3 0.4
-0.4

-0.3

-0.2

-0.1

0

0.1

0.2

0.3

0.4

Prinicipal Component 4

P
ri

n
ic

ip
a
l 

C
o

m
p

o
n

e
n

t 
5

 51
191

 30 40

 17

 31

 32

 29

 91

 94

 28
 16

 85

184

213
216

195

197
225

198

 57

 58 180

189



159 
 

  

Figure 100: Principal component analysis plots: PC4 vs. PC6 and PC5 vs. PC6.  Blue: set 2. Red: 
set 1.  Green: set 3.  Black: bridge residues.  Yellow: All other residues. 

 

-0.3 -0.2 -0.1 0 0.1 0.2 0.3 0.4
-0.2

-0.1

0

0.1

0.2

0.3

0.4

0.5

0.6

Prinicipal Component 4

P
ri

n
ic

ip
a
l 

C
o

m
p

o
n

e
n

t 
6

 29

 51
180

 30
 91

183
195

 57

197

216

213

 40

 94

 28

214

 31

-0.4 -0.3 -0.2 -0.1 0 0.1 0.2 0.3 0.4
-0.2

-0.1

0

0.1

0.2

0.3

0.4

0.5

0.6

Prinicipal Component 5

P
ri

n
ic

ip
a
l 

C
o

m
p

o
n

e
n

t 
6

180

 29

 51

 30

 40

 17

183

184 91

 94

230

189
 31

152

197

104



160 
 

 Although the PCA plots reveal that sets of positions cluster together, this is not evidence of 

independence.  ICA can help determine if sets of positions are independent.  ICA plots for one non-

Gaussian model are shown in Figure 101.  It is clear in the middle figure that set 3 (green ) is 

perpendicular to set 1 (red) and set 2 (blue).  On the other hand, the bottom plot shows that set 1 and 

set 2 are also almost perpendicular.  This indicates that set 1 and set 2 and set 3 are independent or 

close to being independent.  Other models for ICA also show the same trend (not shown).  Position 216 

seems to be part of both set 1 and set 3 and will be considered as a member of set 1 for mutation 

purposes.  Also, position 29, 30 and 91 seem to be separate from other positions and will be considered 

as not members of any set.  The positions in each set are in Table 14. 

 Now that there is evidence that set 1 and set 2 and set 3 are independent, these sets can be 

considered independently.  Also, the sets will be termed sectors by analogy to economists who define 

economic sectors via the PCA approach that was taken here [166].   

  

 

  

Table 14: List of positions in the different sets 

 

Set 1 Set 2 Set 3

17 21 19

161 26 33

172 46 42

176 52 43

177 68 55

180 69 56

183 71 57

187 77 58

188 80 102

189 81 141

191 104 142

192 105 184

215 108 194

220 118 195

221 123 196

226 124 197

227 136 198

228 153 199

157 213

201 214

210 216

229 225

237

242

245
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Figure 101: Independent component analysis of serine protease family S1A.  Blue: set 1. 
Red: set 2.  Green: set 3.  Black: bridge residues.  Yellow: All other residues. 
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 The next  two figures (Figure 102 and Figure 103) shows the sectors mapped onto the structure of 

bovine trypsin (pdb code: 2age).  Each sector is made up of contiguous residues.  

 It is striking to see that members of different sectors could be in close proximity to each other.  The 

biological function meaning of each sector will be discussed in detail in the next section. 

 

 

 

Figure 102: The sectors mapped onto the structure of bovine trypsin (2AGE).  Blue: sector 2.  Red: sector 1.  
Green: sector 3.  Yellow: substrate.  Magenta sphere: calcium ion.  Each structure is rotated 90 degrees relative 
to the axis indicated by the line. 
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Figure 103: The three sectors individually mapped onto the structure of bovine trypsin 
(2AGE).  The yellow surface is the surface representation of the covalently bound 
substrate.  Red is sector 1.  Blue is sector 2.  Green is sector 3. 
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Section 3: Biological meaning of the sectors 

 

 The evidence for the evolutionary independence of sets of positions is clear.  As the previous 

section shows, four different methods revealed that there are sets of positions where there are many 

more interactions within each set than with other positions in the protein.  Furthermore, mapping onto 

the structure of a representative member of this family reveals that each sector forms a physically 

connected set.   The evolutionary independence suggests strongly that each set may also be functionally 

independent.  If that is true, then an evolutionary analysis would have decomposed the protein into 

evolutionarily and functionally independent units or sectors. 

 To examine the function of these sectors I will make use of the extensive literature available on this 

protein family and then report the results of experiments targeted at understanding the function 

concluding with a sector based distance method. 

Literature study 

 First I will start with the third sector, shown in green in previous figures.  The most striking positions 

in this sector are residues 195, 57 and 102.  These are known members of the catalytic triad [132] where 

mutating any of them reduces the catalytic rate by a factor of 100,000 or more.  In addition, residue 214 

is part of the oxyanion hole because it plays a role in stabilizing the transition state of the reaction.  This 

residue has been sometimes called as the fourth member of the catalytic triad.  Some proteins have 

evolved mutations in these residues such as haptoglobin [146], hepatocyte growth factor [167], heparin 

binding protein [168] and clip-domain members [169] rendering them catalytically inactive.    

Residues 194, 196, 197, 198 and 199 are also included in the green sector and these surround the 

catalytic serine 195 residue.  Mutations in these residues (relative to the most frequent residue type) 

often confer resistance to natural inhibitors and are found naturally in brain proteases [170], snake 

venom proteases [171] and antifreeze proteins [172].  Residues 55 and 56 are also adjacent to the 

histidine 57 and may play a role in the orientation of that critical residue. 

Position 225 is an interesting residue too as it forms a network extending from the surface to the 

interior of the protein via position 216.  Extensive investigation by Di Cera’s laboratory has shown that it 

is involved in switching the state of some serine proteases (thrombin is one example) from a slow 

enzyme to fast enzyme via a sodium ion [137, 138].  Specifically 225 is a proline in many protease classes 

except in the Vitamin-K dependent clotting pathway and the complement pathway.  A member of the 

vitamin-K clotting pathway is thrombin.  In thrombin, 225 is a tyrosine and mutation of this tyrosine to a 
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proline renders the enzyme incapable of being affected by sodium [138].  Changes in sodium during 

wound healing is thought to be important for the regulation of the clotting cascade [173].  

The disulfide forming pair 42 and 58 is also interesting.  It has been shown by Craik’s group (a 

graduate from Rutter’s group) that converting a serine protease to a threonine protease is aided by the  

C42A and C58A mutations (possibly by enlarging the active site to accommodate the larger side chain of 

threonine).  Of note is that the threonine protease is still 100 to 10000 fold (depending on the substrate) 

lower in efficiency than the serine protease [174]. 

Information about the biological function of sector 1 (red) is also readily apparent from the 

literature and from looking at where the positions are on the structure.  

Structurally, sector 1 positions are in the vicinity of the substrate binding pocket.  Residues that 

make up sector 1 include residue 189 and 172 which are substrate specificity determinants.  More 

generally the region specified by sector 1 includes many of the amino acids that needed to be swapped 

by Hedstrom to turn trypsin into chymotrypsin (see Figure 104). 

 Figure 104: Hedstrom swap positions compared to Sector 1 positions.  The Hedstrom swap positions include both 
positions mutated and positions that were identical between rat trypsin and cow chymotrypsin in the S1 pocket region. 

 

Hedstrom swap
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180o
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Given that most sector 1 positions fall within the region required for specificity it is clear that set 1 

positions are specificity positions.  There are some positions (17, 161, 176, 177 and 180) that are not in 

the regions swapped by Hedstrom or considered as specificity determinants.  Determination of their role 

in specificity awaits further investigation. 

There is one more sector that requires functional characterization and that is the second sector 

(blue).  The second sector is not close to the substrate and it has a more distributed architecture.  It 

resembles somewhat a semi circle surrounding the protein.  However, two residues (229 and 104) are in 

close proximity to the catalytic D102 (see Figure 105) and the first hypothesis I had was that these 

positions (and the sector) could also affect catalysis. 

 

 

 

 

  

  

  

 

 

 

 

 

 

 

 

 However, a literature search turned up little data about the function of this set of residues.   My 

project then was to obtain data about the function of this second set.  Mutagenesis data has provided 

much insight into this protein family and so the strategy was to make mutants and assay for functions.  

Two functions were assayed: catalysis and fold stability.  The next part of this section will describe the 

experimental assays and results and show further evolutionary analysis of the sectors.  In the process of 

Figure 105: Sector 2 in relation to the catalytic triad.  Blue: Sector 2 positions.  
Orange: D102.  Yellow: Substrate covalently bound.  Structure used is 2AGE. 
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assaying the second sector, I also assayed the function of sector 1 (red) which in some cases was a 

repeat of previously published data and confirmed that my methods were at least consistent with prior 

work in this field. 

Experimental assays of protease function 

 The general experimental approach was to make alanine point mutants, express the recombinant 

protein in a yeast expression system, purify the active protein and then test the active enzyme for 

catalysis and fold stability.  The methods used will first be described followed by the results and then a 

discussion of the results. 

Mutagenesis and Cloning:  

Mutagenesis was done using PCR site directed mutagenesis with overlapping oligoes encoding a 

mutation in one or two codons.  Flanking primers amplified the full-length constructs.  The full length 

PCR products were digested and ligated into pGEX vector and transformed into E. coli.  Sequences of 

each construct were obtained.  The colonies were then digested again for subcloning into the expression 

vector (yPT).  The expression vector was then transformed into yeast. 

Expression and Purification of enzymes: 

Purification of recombinant wild-type and mutant rat trypsins were adapted from a protocol 

kindly supplied by Lizbeth Hedstrom.  Proteins were expressed in a Saccharomyces cerevisiae system 

(strain DLM101α) and induced via low glucose (1.5% w/v) where inactive zymogens are secreted into the 

culture medium.  The culture is centrifuged at 7000g for 30 min to obtain cell-free supernatant.  The 

supernatant is adjusted to pH 3.0 with 1 M HCL, gently stirred for 20 min at room temperature, and 

centrifuged for 120 min at 7000 g to pellet insoluble precipitates.  Two to four ml of Toyopearl SP-650M 

cation-exchange resin is equilibrated in Buffer A (100 mM glacial acetic acid, 2 mM sodium acetate, pH 

3.0) and added to the supernatant and stirred for a minimum of one hour.  The resin is allowed to settle 

by gravity and most of the supernatant is decanted.  The remaining resin + solution is loaded onto a 

Biorad polyprep chromatography column, washed with at least 100 bed volumes of Buffer A, and bound 

protein is eluted with 5 ml steps of Buffer A adjusted to pH 5.0, 6.0, 7.0 and 8.0 with 200 mM Tris pH 8.0.  

Eluted proteins are dialyzed for >8hrs into enterokinase buffer (50 mM Tris pH 6.5, 10 mM CaCl2).  For 

mutants that do not self-activate, enterokinase light chain (NEB) is added until 50% or more of the 

recombinant protein is activated.  Activation is followed by SDS-PAGE.  After activation, 1 to 3 mL of 

soybean trypsin inhibitor-agarose (Sigma-Alrdich) equilibrated in enterokinase buffer is added for at 
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least one hour with nutating.  The activated enzymes bind specifically to this resin.  After binding, the 

resin is loaded into a BioRad polyprep chromatography column and washed with 20-40 mL 50 mM Tris, 

pH 6.5 and 20-40 mL 50 mM Tris pH 6.5 + 0.5 M NaCl sequentially to wash away non specific binding.  

The protein is eluted with 2-4 ml of 0.1 M formic acid (pH 2.2).  Proteins are stored in this buffer at 4 oC. 

 

Catalytic assays: 

 Kinetic parameters of Vmax and Km were measured using pseudo-first order kinetics as previously 

described [135].  The reaction scheme and assay of wild-type is shown Figure 106.  The substrate used 

was Suc-Ala-Ala-Pro-Lys-PNA (Bachem) dissolved in dimethylformamide (DMF) to 50mM.  Enzymes 

hydrolyze this substrate releasing p-nitroaniline, followed by absorption at 410 nm to detect hydrolysis 

(extinction coefficient of 10204 M-1 cm-1).  The enzyme reactions were done at 23oC in 50 mM HEPES, 10 

mM CaCl2 and 100 mM NaCl, at a pH 8.0 (protease assay buffer, PAB).  The total volume of reaction was 

1 mL and the volume of substrate did not exceed 5%.  A maximum of 20 ul of enzyme (in 0.1 M formic 

acid) was added to the reaction.  In most cases, plots of initial velocity vs. substrate concentrations were 

fit to a hyperbola using non-linear regression to obtain Km and Vmax.  R-square for all regressions was at 

least 0.9.  To obtain kcat (as Vmax/active site concentration), active site concentration was measured by 

reacting the enzymes with 4-methylumbelliferyl p-guanidobenzoate (MUGB, Sigma-Aldrich), an enzyme 

inhibitor which releases a fluorescent compound, 4-methyl umbelliferone (4-MU) upon reacting with the 

enzyme.  A standard curve of 4-MU was constructed to relate fluorescence counts to fluorophore 

concentration.  Some enzymes did not react with MUGB and active site concentration was estimated by 

calculating the absorbance at 280 nm using the extinction coefficient of 33720 M-1 cm-1.  In some cases, 

the enzyme was not saturated with feasible concentrations of substrate so the approximation that 

Km>>substrate concentration was used to calculate kcat/Km as the slope of the line of initial rate vs. 

substrate concentration.   
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Figure 106: Description of catalytic assay.  A) The classical Michaelis-Menton scheme assumes a one step reaction.  B) The serine protease 
reaction is a two step reaction and the Km and Vmax reaction have different meanings in terms of the microscopic rate constants.  C) Assay to 
measure Km and Vmax of wild-type rat trypsin.  Dashed lines are the 95% confidence intervals.  D) Assay to measure active site concentration 
using mugB, a fluorescent inhibitor.  The text contains more details of the assays. 
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Fold stability assays: 

The fold stability was measured using thermal denaturation and monitoring the intrinsic 

tryptophan fluorescence of enzymes (rat trypsin has four tryptophans as shown in Figure 107).  Stability 

was assayed in 0.1 M formic acid (pH 2.2) to keep enzymes inactive and prevent proteolysis during the 

course of the assay [175, 176].  The fluorescence (excitation at 295 nm/emission at 340 nm) was 

measured in the range of 4oC to 85oC (at a rate of 4oC/min; sampling interval 0.1oC for most proteins) in 

a 3 ml quartz cuvette with stirring.  The total volume was kept at 2.1 mL to ensure that the rate of 

temperature change was the same across different assays.   Pre- and post-transition baselines were fit 

by linear regression, subtracted from the raw data, and the melting temperature, denoted  by Tm, was 

calculated by the differential method [177, 178].  Briefly, baseline subtracted data were smoothed by 

the robust lowess method (MATLAB, Mathworks Inc.), differentiated, and the Tm measured as the 

extremum of the differential melt.  C136A showed no observable transition in the temperature range of 

the experiment.  All data were collected at least in triplicate.  The steps for analyzing the fold stability 

curves are illustrated further in Figure 108. 

 One concern with using for a fold stability probe the tryptophans is that there are four tryptophans 

which means that it is possible to observe multiple transitions if different parts of the protein fold 

differently.  However, in the enzyme data shown, the stability curves show that there is one main sharp 

transition.  To confirm the suitability of this assay, I also performed differential scanning calorimetry 

(DSC) on selected mutants.  Conditions were similar to the fold stability assays except that the protein 

concentration for DSC at 20 to 80 uM was higher than the tryptophan fluorescence.  As shown in Figure 

109, the melting temperature for the DSC data correlated very well to the melting temperature for the 

fluorescence melts  (regression coefficient of 0.93).  This correlation is striking especially when 

considering two mutants, Q81A and Y228A which by both DSC and fluorescence showed two noticeable 

transitions but which nevertheless correlate with each other.  One thing to note about the fluorescence 

and DSC melting temperature is that the DSC melting temperatures are generally 2-3 degrees higher.  

One possible reason for this discrepancy is that the protein concentration is much higher in DSC than 

fluorescence (by a factor of at least 100) which could result in a stabilizing effect on the proteins.  

Regardless of the exact melting temperature, the DSC data confirms that tryptophan fluorescence is a 

suitable assay to monitor the folded state of the enzymes and to distinguish enzymes with different 

melting temperatures. 
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Figure 108: Analyzing tryptophan denaturation curves.  This figure shows the four steps involved in the analysis.  1) 
Collect tryptophan denaturation data (raw data curve).  Fit linear pre and post transition curves (extrapolated curves).  3) 
Subtract the raw data curve from the extrapolated curves (baseline subtracted curve).  4) Calculate the first derivative of 
the baseline subtracted curve.  The baseline subtracted curve and the derivative of the baseline subtracted curves have 
been normalized between 0 and 1.  The equation for subtracting the extrapolated linear lines  (y1 and y2) from the raw 
data (x) is:  x subtracted (i)=(y1(i)-x(i))(y2(i)-y1(i)).  The data shown here are smoothed. 
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Now that the methods have been explained, I will show in the next figures all the catalytic data 

(Figure 110 and Figure 111) and the fold stability data (Figure 112, Figure 113, Figure 114, Figure 115) 

for all the set of mutants tested.  The mutants are from the first and second sectors (red and blue 

respectively) as well as a small set of control residues that are not in the three major sectors (Q30A, 

K230A, Y29A).  There are also two mutants, G216A-Q210A and G216A-C157A in both the red and blue 

sectors to demonstrate independence between the sectors.  The fold stability curve of C136A is not 

shown as there is no transition.  The data for all mutants and all assays are summarized in Table 15 and 

Figure 116.  A discussion of the results follows after the data is presented. 

  

Figure 109: Correlation between melting temperature obtained with DSC and melting temperature obtained 
with tryptophan fluorescence.  The black line is a linear fit (regression coefficient of 0.93) while the grey line 
shows the 95% confidence interval.  The blue error bars show the standard errors. 
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Figure 110: Catalytic reactions for single mutants in the blue, red and control sectors.  The colors of the dots refer to the 
sector identity.  Red is sector 1.  Blue is sector 2.  White is non sector positions.  The errors are the standard errors.  The 
solid line is a non-linear regression fit.  The dashed line is the 95% confidence interval of the fit.  
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Figure 111: Catalytic reactions for double and multiple mutants.  The colors of the dots refer to the sector identity.  Red is sector 1.  
Blue is sector 2.  White is non sector positions.  The errors are the standard errors.  The solid line is a non-linear regression fit.  The 
dashed line is the 95% confidence interval of the fit. 
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Figure 112: Fold stability curves: M104A, L105A, Q210A, T229A, P124A and C157A.  Refer to Figure 108 for legend and 
explanation. 
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Figure 113: Fold stability curves.  G216A, G226A, C191A, D189A, V183A, Y29A.  Please refer to Figure 108 for legend and 
explanation. 
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Figure 114: Fold stability curves: Q30A, K230A, M104A-L105A, M104A-Q210A, M104A-T229A, L105A-Q210A.  Please refer to 
Figure 108 for legend and explanation. 
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Figure 115: Fold stability curves: L105A-T229A, Q210A-T229A, Hswap, G216A-Q210A, G216A-C157A. Please refer to Figure 
108 for legend and explanation. 
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Table 15: Fold stability and catalytic parameters for sector and non sector positions.  The errors in parenthesis are the 
standard errors. 
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Figure 116: Plots of catalytic activity vs. melting temperature.  A) Single mutants of sector 1 (red) and 
sector 2 (blue) and non-sector positions (white).  B) Double mutants of sector 2 (blue) and the Hedstrom 
swap (red).  C) Double mutants between the red and blue sectors.  The white circles are that predicted if 
the two sites act independently whereas the pink circles is the actual red/blue double mutant.  Errors 
depicted are standard errors of the mean of at least triplicate measurements. 
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Discussion of experimental data 

 Figure 116 illustrates several points that addressed the functional significance of the second sector 

(blue) and whether the second sectors acts independently of the first sector (red). 

 First, sector 2 positions clearly have little effect on catalytic function (A, Figure 116) including T229A 

and M104A which are in close proximity to the catalytic D102.  This is in sharp contrast to the positions 

comprising sector 1.  Even double mutants in the sector 2 (B, Figure 116) have little effect on catalytic 

function including the M104A, L105A.   

The fact that sector 2 positions did not affect catalysis was surprising to me because structurally, it 

seems that some positions would have to affect catalysis.  M104 and L105 are both near in sequence 

space as D102, an essential member of the catalytic triad.  Even the double mutant, M104A, L105A did 

not affect catalysis to an extent as some sector 1 positions. Similarly, T229 is in structure space adjacent 

to the D102 and appears to be in van der Waals contact; yet the T229A mutant alone or in combination 

with M104A or L105A did not result in great loss of catalytic power.  In fact, the data clearly indicate that 

no sector 2 positions affect catalysis to the extent that most sector 1 positions. 

On the other hand what the data show is that sector 2 positions have large effects on fold stability.  

Specifically many mutations destabilize the enzyme with one mutation, C136A, having no detectable 

transition.  This is especially noteworthy as the positions in sector 1 do not affect fold stability to any 

appreciable extent.  It seems clear then, that the positions in sector 2 affect fold stability but not 

catalysis whereas positions in sector 1 affect catalysis but not stability.  Double mutants in sector 1 also 

affect fold stability to a larger extent than the single mutants in some cases. 

An important test of the independence of sector 1 and sector 2 positions is shown by the data on 

the double mutants G216A-Q210A and G216A-C157A (C, Figure 116).  Both these sector 1/sector 2 

double mutants show effects very similar to that expected if they were acting independently.  Thus the 

data strongly suggests that sector 1 has a different and independent function from sector 2.  

Also shown in the previous figures is the effect of three non sector positions.  Q30A and Y29A have 

high, outlying coupling values yet they do not affect catalysis or fold stability to a large extent.  K230A, 

adjacent to T229A, also does not affect catalysis or fold stability.  This would argue that Q30A and Y29A 

and K230A do not belong in any of the sectors consistent with the PCA and ICA conclusions. 

The meaning of this apparent functional and evolutionary independence will be discussed at the 

conclusion of this chapter.  The next part will describe further analysis of the serine protease family with 

a new evolution-based method. 

 



182 
 

 

Evolutionary based distance analysis of the sectors 

 One shortcoming of the experimental data is that they only apply to one member of the serine 

protease family-rat trypsin.  However the serine protease family, as previously discussed, includes many 

diverse organisms and many functions other than digestion.  There are much data in the literature on 

the function and taxonomy of these proteases that could shed light on the meaning of the sectors if this 

information could be analyzed. 

 Following discussions with lab members at one lab meeting (in particular Chris Larson and Madhu 

Nataranjan), the idea was suggested to perform a PCA analysis on the distance matrix of the sequences 

but calculating distances based on the identified sectors.  Calculating distances between sequences is 

nothing new and that is what is done whenever an evolutionary tree is made.  The use of PCA analysis 

for sequence distance data is also not completely novel [179].  The usefulness of PCA for sequence data 

is to group sequences based on some unknown property encoded in their sequence.   The novel part of 

this approach is to calculate a distance matrix considering only positions identified by the sectors.  That 

is, three sectors are observed via the analysis presented before: one sector affects substrate binding, 

another affects stability and a third affects the catalytic machinery.  Each sector can be used to calculate 

distances and then a PCA analysis can be done on that distance matrix.  The idea is to see if separate 

groupings within each sector can be obtained which would make biological sense.  This process is 

illustrated schematically in Figure 117. 

 In order for this to work there should be a lot of data available with different features as the more 

sequences with known features the stronger the conclusions are. 

 To obtain known features I made use of the NCBI database.  I extracted for every sequence in the 

alignment the postulated substrate specificity as well as the taxonomy.  I also extracted where in the 

Figure 117: Schematic of sector based distance analysis 
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organism it was expressed (intestine, immune cell, blood, etc) if that information was known as well as 

what type of function (coagulation, complement, digestion, etc) and calculated the theoretical pI of 

every sequence. 

 Thus every sequence could have a feature set made up of substrate specificity, organism, general 

function, general expression site and isoelectric point.  Then for each of the blue and red sectors, I 

calculated distances using sequence identity metric and then performed a PCA analysis on the distance 

matrix.  I then colored each sequence based on the features above and visually looked for patterns.  Two 

features - substrate specificity and taxonomy showed visible clustering patterns- as depicted in Figure 

118 and Figure 119. 

 What those figures clearly show is that if one calculates distances based on sector 1 (the 

red/specificity sector) and then does a PCA based on those distances, (the first two components  

account for ~80% of the variance) one obtains a striking decomposition of sequences based on what 

specificity they have.  Chymotrypsins with their distinct specificity cluster together; trypsins, tryptases 

and most kallikreins cluster together based on their specificity for charged residues such as lysine and 

arginines.  Furthermore, granzymes which are a family of closely related immune proteases but which 

have different specificities [158, 180, 181] show different clusters within themselves.  On the other hand, 

coloring the positions by vertebrate/invertebrate reveals no clustering.  

 The opposite is true for sector 2 (blue/stability sector).  This sector shows no clustering based on 

specificity (with the exception of enzyme classes that exist only in vertebrates-but note that the 

granzymes have lost their specificity clustering) but a dramatic clustering based on phylogeny.  The 

second sector has some memory of the evolutionary history of the protein but has no knowledge of the 

specificity.  

 Finally as Figure 120 shows, calculation of distances based on all sequences does not reveal any 

specificity or phylogeny clusters. 

 These results strongly add to the conclusions reached from the experimental work in rat trypsin 

and the SCA based analysis-that there are functionally and evolutionarily independent sets of positions 

within this protein family. 

 Moreover, these results have implications for using proteins to calculate evolutionary relationships.  

The data reveals that there are different evolutionary pressures on different parts of a proteins.  

Therefore it is necessary to determine which part of the proteins reflects evolutionary time.  It is not 

clear from this work which sector or nonsector positions should be used but it is clear that different 

regions report differently on evolution. 
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Figure 118: PCA of distances calculated based on sector 1 (the red sector or the catalytic sector).  A) Sequences are colored 
based on specificity.  B) Sequences are colored based on whether they are vertebrate or invertebrate.  C) Sequence motifs 
made using Weblogo from regions of the plot with squares.  Open circles are proteases with unknown specificity. 
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Figure 119: PCA of distances calculated based on sector 2 (the blue sector or the stability sector).  A) Sequences are colored 
based on specificity.  B) Sequences are colored based on whether they are vertebrate or invertebrate.  C) Sequence motifs 
made using Weblogo from regions of the plot with squares.  Open circles are proteases with unknown specificity. 
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Figure 120: PCA of distances calculated using all positions.  A) Sequences are colored according to specificity types.  B) 
Sequences are colored according to whether they come from vertebrate or invertebrate organisms.  Open circles are 
proteases with unknown specificity. 
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Conclusion: 

 The evidence presented in this chapter for the serine protease family S1A supports the idea that 

this family is made up of distinct and cooperative sets of positions that are evolutionarily and 

functionally independent.  The data support the idea that one set encodes substrate specificity, one set 

encodes fold stability and a third set encodes the catalytic machinery.   The evidence for this comes 

from analysis of the correlations between positions, experimental evidence for the functional 

independence of positions and analysis of sector based sequence distances. 

 The work presented here represents a novel decomposition of proteins into functional sectors.  

One question is why should different cooperative structures evolve in one protein family?  As discussed 

in the introduction, cooperative systems are hard to build and harder to change as mutual constraints 

need to be fulfilled for function to be retained.  A protein family that evolves independent units is likely 

to find itself in diverse environments as the organism can adapt one member of this family to a new 

function much faster than evolution of a new protein.   In the serine proteases this is likely what 

occurred.  One computational study that is of relevance to this work was done by Uri Alon’s group.  They 

showed that evolving computer programs display modular architectures when the target being sought is 

changing [182].  While proteins are not programs, evolutionary principles identified by this work apply. 

    

 Further questions that arose from this work that could form the basis for future studies are: 

1. Analysis of family S1B (bacterial homolog of family S1A).  It would be interesting to see what 

changes, if any, occur in the coupling pattern of a system that has evolved independently for 1.5 

to 2 billion years. 

2. Improving the theoretical approach to extracting correlations between positions.  This work 

used several different ways to understand correlations within a system.  However, there are 

more methods that can perhaps be used. 

3. Calculating more accurate evolutionary trees in this protein family and others.  A central 

problem in the extraction of correlations that reflect functional constraints is that the 

evolutionary history is convoluted with the functional constraints.  Developing methods that 

could more accurately account for evolutionary rates would aid the deconvolution of function 

from evolutionary history. 
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4. Design of proteins with different specificities or stabilities.  The work presented here suggests 

that it could be relatively easy to evolve this protein family to have different specificities and/or 

stabilities.  Ongoing experiments by other lab members are aimed at this. 

5. Studying physical mechanisms of independence between positions.  One of the most challenging 

projects would be to understand the physical mechanism of coupling between positions.  

Perhaps one subject to explore is the dynamic nature of the amino acids of this protein family.  

Another project would be to understand the physical forces that act between residues such that 

different independent and cooperative units can exist.  The next chapter will look at some 

methods that could be useful in the future to understand the detailed physical basis of protein 

function. 
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Chapter 6: Understanding the physical basis of cooperativity  

 

 In the first chapter I discussed how cooperativity underlies the function of many proteins and the 

different ways cooperativity can be observed.  In the last four chapters I discussed the use of evolution 

based methods along with experimental verification to detect cooperative interactions within proteins.  

All methods, while capable of revealing cooperativity cannot address the mechanism by which atoms or 

amino acids form units of function.  In this chapter, I discuss what possible methods could be used to 

further increase the understanding of cooperativity. 

There are several experimental and theoretical methods that have the potential to allow detailed 

measurement or calculation of protein interactions.  The experimental methods I will discuss are two 

force measurement techniques and two femtochemistry based approaches.   Theoretical methods that 

could aid in the understanding of cooperativity are coarse-grained models of proteins that can model 

some cooperative features of proteins. 

Experimental Force Methods 

Atomic force microscopes were first developed only 22 years ago [183] from scanning tunneling 

microscopes (STM).  In a scanning tunneling microscope a sharp conducting tip is brought very close to a 

conducting surface upon which electrons tunnel across the gap and induce a current in the detector 

attached to the conducting tip.  The current flow through the tip is a function of the topology and 

electronic structure of the material being scanned.  To circumvent the need for conducting surfaces and 

to measure extremely small forces, the first AFM used an STM not to measure the surface under 

investigation but to measure the deflection of a tiny cantilever that contacts the surface.  The cantilever 

is affected by interaction forces with the surface.  The original 1986 paper suggested that the maximal 

force resolution could be on the order of 10-18 N and at room temperature on the order of 10-15 N.  Given 

that interatomic forces are on the order of 10-7 N for ionic bonds and 10-11 N for van der Waals forces, 

measuring interaction forces such as those that occur in proteins is well within the theoretical range of 

an AFM.  In liquids, a measurement as low as 10-11 N was reported as  water hydrogen bonds were 

broken [184].   Current methods use a laser focused on a mirror instead of an STM to measure the 

deflections of the cantilever. 

The use of an AFM to measure the formation of a chemical bond was first reported in 2001 [185] 

when a covalent bond between two silicon atoms was measured.  The authors to make this 

measurement had to operate at close to absolute zero to minimize the thermal noise that prevents 

precise measurements at higher temperatures.  The authors also needed to measure the van der Waals 
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force to subtract it out from the bond formation force.  AFM has also been used to identify closely 

related atoms based on their force profile [186], to measure the strength of a covalent bond [187], to 

measure magnetic properties of the system by making the tip magnetic [188], to measure the forces on 

atoms as they are being manipulated [189], to obtain time-resolved force spectra [190] and to obtain 

detailed force and energy spectra of fullerenes trapped in nanotubes [191]. 

Two recent studies from Julio Fernandez’s lab from 2007 and 2008 warrant some discussion as the 

authors apply an AFM to probe catalysis and coevolving residues.  In the first study [192], 8 titin domains 

with disulfide bonds between them were stretched with an AFM and the force of stretching was 

measured while thioredoxin, a disulfide bond reducing enzyme, was added to the media.  Only upon the 

addition of thioredoxin were specific signals obtained corresponding to the reduction of the disulfide 

bond.  The signals obtained were the lengthening of the polypeptide that could be measured with 0.1 

nm accuracy.  Furthermore, the authors tested the rate of disulfide bond breakage as the force was 

increased.  They observed that there were two distinct responses to the force: increasing the force 

decreased the rate of catalysis up to a certain point; further increases in force increased the catalytic 

rate.  They tested several force dependent catalytic mechanisms and found one model that best fit their 

data.  They proposed a model for thioredoxin catalysis that consists of two paths; one path involves 

substrate shortening and another path substrate elongation.  They further supported their model with 

mutational studies, molecular dynamics and available structural information.  I think this work was 

interesting because it was the first time that force was used on a substrate to understand the 

mechanism of the enzyme. 

The second study [193] follows up on the first but in this paper the authors mutated coevolving 

positions within the thioredoxin to see whether there is a relationship between the mutations of co-

evolving residues and the mechanism.  The authors had previously observed that a mutant has 

disrupted mechanism of catalysis.  They carried out a coupling analysis and found the residue that was 

most correlated to the mutated position and the residue that was most anticorrelated.  Both these 

residues were more than 10 angstroms away from the mutated one.  They then made a double mutant 

enzyme with both the negatively correlated and positively correlated residues mutated.  They then 

looked with the force experiments discussed previously at the mechanism of catalysis.  They found that 

negatively correlated residues moved the enzyme to one with non-wild-type mechanism whereas 

positively correlated residues moved the enzyme to one with a wild-type mechanism.  This paper is just 

as interesting as the previous one because it continues to try to understand in detail the mechanism of 

catalysis and how it is affected by mutations of co-evolving and therefore cooperative residues. 
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As the studies from the Fernandez lab show and the previously mentioned studies, AFM is a very 

versatile tool.  The experiments that would be most interesting  from the viewpoint in understanding 

the forces during protein function is if one can examine the force on a substrate as it undergoes catalysis 

or to measure the forces that act on a ligand as it approaches to and binds to its target receptor.  One 

can also potentially measure the dynamical features of proteins if one can control the thermal noise on 

the tip.  One experiment that would be interesting is to see if one could measure with an AFM the 

dynamic motions below and above the transition temperature of protein function (above and below 180 

K).  These experiments and others (see Carlos Bustamante’s review [194] would provide much more 

mechanistic data about protein interactions that are available with current methods. 

Optical trapping is another method, also developed in 1986, that can be used to apply and measure 

forces [195].   It works via a completely different principle than AFM however.  In an optical trap a beam 

of light from a laser (typically infrared light for biological systems) is focused onto the smallest possible 

spot.  A dielectric particle within that spot will encounter a force that steers it towards the center of the 

spot.  The dielectric particle can then be moved by moving the light source.  The dielectric particle can 

also be detected using the light scattered from the trapped particle and interferometry methods [196].  

Optical traps have an advantage over AFM in liquid solution because lower forces, down to 0.1 pN can 

be applied by manipulating the laser.  Optical traps have been most often used to understand the 

folding and function of DNA and RNA folding and function [196] as proteins are more easily studied with 

AFM methods.  However, optical trapping could be useful if a small substrate or ligand can be bound to 

a particle upon which the forces acting on that substrate or ligand during biological processes could be 

measured. 

Experimental femtochemistry methods 

Other experimental techniques distinct from force measurements are those that use 

femtochemistry methods to probe reactions [197].  The utility of these is that they can be used to 

directly measure the potential of reactions by observing bond formation and bond breakage as the 

reaction occurs.  This is possible via two major breakthroughs: the ability to synchronize multiple 

streams of atoms via quantum coherence and by being able to initiate the chemical reaction and then 

the detecting ‘strobe’ pulse with femtosecond light pulses [198].    

One notable application to protein biology is the examination of ligand binding to human serum 

albumin [199].  The authors were able to follow the binding event by using a fluorescent ligand and a 

fluorescent tryptophan at the binding site.  They could monitor the ligand and the tryptophan at 

different wavelengths.  They observed via femtosecond resolved anisotropy that the ligand shows no 
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diffusive motion when bound up to 500 ps suggesting tight binding and a rigid binding pocket.  This is in 

contrast to ligand motion in solvent which reorients itself with a half life of 45 ps.  They were also able to 

observe the dynamics of the binding process and state that the protein can guide specific proton 

motions so that binding is efficient.  

The Zewail lab has also used femtochemistry to probe the folding of DNA structures [200], water 

dynamics [201] and light activation of the photoactive yellow protein chromophore [202].  Continued 

development of these methods will lead to observing protein processes at their most basic level. 

Zewail’s lab has also, given their unique expertise in femtochemistry methods, adapted 

femtochemistry methods for electron microscopy [203-205].  Electron microscopes such as transmission 

electron microscopes are familiar to most biologists as they are used to image fixed cellular structures to 

nanometer resolutions.   Zewail’s group have built electron microscopes that can take femtosecond 

time-resolved images [206].  The rate of progress of these methods has been very fast leading in recent 

years to several publications [207-212].  Electron microscopy is also integrated with electron diffraction 

methods which are able to achieve atomic level resolution as x-ray diffraction [213-215].  Although 4D 

electron microscopy has not yet been applied to biological problems, the potential of these methods 

once they are used in biological systems is that they will be able to resolve protein dynamics at the limit 

of bond formation.  That would be as revolutionary as the invention of microscopes that allowed the 

visualization of cells. 

Coarse-grained protein models 

The previous methods that were presented were all experimental methods that promise to greatly 

increase our understanding of protein structure, function and energetics.  In parallel to all these 

experimental methods has been much theoretical work to model protein function.  Generally it is not 

possible to accurately calculate the interactions among all atoms starting from quantum mechanical 

principles.  It becomes possible only with certain approximations the validity of which is questionable for 

protein systems.  In addition, molecular dynamics simulations, due to computational constraints, cannot 

be carried out for the long periods of milliseconds where interesting biological functions such as 

catalysis or slow dynamics occur.  However, there are coarse grained models that treat the protein not 

as atoms but as nodes with a certain connectivity.  The remarkable aspect of these models is that they 

can predict some aspects of protein functions such as the B-factors that occur in proteins, aspects of fold 

stability and low frequency motions.  If what is thought of as complex protein function can indeed be 

reduced in complexity, then it is possible that theoretical methods would allow one to understand and 
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therefore design arbitrary protein sequences soon.  Of course, all atom molecular dynamics simulations 

would achieve the same goal but are limited by computational cost. 

The first indications that it is not necessary to have all-atom models of proteins came from the 

work of Ariel Warshel and Andrew Levitt who modeled a protein as one side chain node and one main 

chain node [216], Ken Dill who developed a polymer based statistical mechanical theory of protein 

folding [217] and Bryngelson and Wolynes  who treated proteins like spin glasses [218].  These authors 

showed that protein folding could be approximated by simplified representations.  It is interesting that 

all three used different representations suggesting strongly that it is not difficult to make proteins that 

fold.  Today, with experimentally verified predictions of coarse-grained folding models (reviewed in [27, 

219-221]) there is agreement that proteins can be represented as coarse-grained structures that will 

fold.  The essential characteristic seems to be the hydrophobic code of proteins in that the information 

in side chains can be reduced to hydrophobic or not hydrophobic. 

Another type of coarse grained model that has been used is models for slow dynamics of proteins.   

These models are known as Gaussian network models or elastic network models.  These models were 

developed to simplify the complicated and time consuming calculations of molecular dynamics for the 

purpose of calculating low frequency collective motions, known as normal modes.  Normal mode 

analysis is basically a principal components analysis of a set of frequency dependent trajectories of 

atoms.  The first normal mode describes the residues that move together at the lowest frequency.  The 

second normal mode describes the residues that move together at a higher frequency and so on.  The 

interesting feature of normal mode analysis is that the low frequency modes correlate with biologically 

relevant slow collective dynamics of proteins such as hinge motions or structure factors [222].  However, 

molecular dynamics are computationally difficult to so simplifications were attempted and proved 

successful. 

  The original study reported in 1996 by Monique Tirion [223]and further developed in 1997 by 

Bahar and colleagues [224, 225] showed that one can replace the complex potentials of molecular 

dynamics with a simple terms where interactions between atoms are treated as springs or Gaussian 

distributed fluctuations.  A cutoff is also chosen so that only nearby atoms are connected and all 

interactions between all atoms are treated in the same way.  The surprising results reported by Tirion 

and Bahar is that the low frequency normal mode analysis of these simplified potentials predicted the 

same low frequency motions as the normal mode analysis.  That means that it is possible using a much 

simplified view of proteins to model  cooperative behavior such as low frequency motions. 
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Both the Tirion and Bahar work calculate magnitude of motions without considering direction.  

Bahar’s group reported in 2001 a model called the anisotropic network models that in addition to 

magnitude of fluctuations calculates a directionality that can be more biologically relevant [226].  The 

results from this work provided no additional insights into biology and showed that the calculation of 

low frequency collective models is insensitive to the exact model used. 

The observation that normal mode analysis of a simplified model of interactions of proteins can 

model biologically relevant low frequency cooperative modes is worth pursuing further. 

In conclusion, both slow scale dynamics and folding of proteins can be modeled with non-unique 

simplified expressions indicating that for important, collective motions, the details of interactions are 

not important.  This makes the theoretical investigations useful as these models are not computationally 

expensive and their simplicity makes it easier to understand their features and to make predictions that 

one can test experimentally. 

 

Conclusion 

 Force measurements once applied to the direct measurement of interaction forces in proteins will 

enable exact quantification of hydrogen bonds, ionic forces, van der Waals forces and other interactions 

revealing much that is now speculation.  Femtochemistry based methods are potentially revolutionary 

because they enable the observation of chemical events on the time-scale of bond formation and can 

map chemical processes as they happen.  Finally, it is possible that before force or femtochemical 

methods become widely used, the cooperative interactions within proteins could be at least partially 

understood with simpler models of proteins. 

 It is likely that the analysis of protein cooperativity will require the contribution of multiple 

methods before it is possible to understand proteins well enough such that one could design a protein 

sequence to carry out an arbitrary function. 
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Appendix A: Distance metrics 

 

Different methods can be used to calculate distances between two vectors,  x and y with n components. 

Euclidean: 2 2 2

1 1 2 3( ) ( ) ( )n nd x y x y x y        

Standardized Euclidean: Similar to the euclidean distance except x and y vectors are first divided by the 

variance.  This is helpful when one vector is on average numerically much higher than the other which 

would result in the components of that vector dominating the distance calculation. 

Mahalanobis:  This distance measure takes into account the covariance between data points.  This is 

easily expressed in matrix form: 
1( ) ( )Tm   x y V x y , where V is the covariance matrix.  

Cityblock: This distance is also known as manhattan distance or the taxicab metric.  It represents the 

distance between points as if they were laid out on a grid with discrete distances.  The formula is 

1 1 2 2 n ncityblock x y x y x y        

Cosine: This is defined as 1 – [the dot product of two vectors of length n divided by the distance from 

the origin].  The formula is: 1 1 2 2

2 2 2 2 2 2

1 2 1 2

1 n n

n n

x y x y x y
d

x x x y y y

  
 

     



 
 

Correlation:  This is similar to cosine distance except it is shifted by the means of the vectors so that: 

correlation distance( , ) cosine distance( , )x y x x y y    

Spearman:  Spearman is a non-continuous distance metric.  First the points in the vectors are ordered 

and then the square of the euclidean distance between each of the ordered points is calculated.  One is 

subtracted from the square of the euclidean distance.  This distance is capable of detecting linear and 

non-linear correlations. 

Hamming: This measure treats the vectors as strings and finds the number of positions where the 

symbols constituting the string are different.  If there are many symbols that are different then the 

distance would be large.  The matlab implementation divides the distance by n. 

Jaccard: This is similar to the Hamming distance is that it treats vectors as strings.  It is more complex 

however.  The formula is: 1
A B

J
A B

 



 

Chebychev: This distance is the maximum of absolute differences between two vectors as in: 

1 1 2 2max , , n nd x y x y x y      .  
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Appendix B: Linkage methods 

 

This is a short description of linkage methods used in the text (based on the Matlab documentation): 

 

1. Average linkage: This is calculated by taking the average values of distances calculated between 

all pairs of elements in each group.  

2. Single linkage: The distance between the groups is the distance between the closest two 

elements. 

3. Complete linkage: The distance between two groups is the distance between the farthest two 

elements. 

4. Centroid linkage: This is calculated by taking the mean of each group and then computing the 

distance between the means. 

5. Median linkage:  This is similar to centroid linkage except the centroid means are weighted by 

the number of elements that make up each centroid. 

6. Weighted linkage: This is calculated similar to average linkage but if there are different number 

of elements in each group then the groups with more elements contribute more; hence the 

weighted term in the name of the method. 

7. Ward linkage: Ward linkage is the most computationally expensive of the methods here.   The 

method calculates a distance by minimizing the increase in variance that occurs after grouping 

two groups together.  It has similarities to analysis of variance (ANOVA). 
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