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Predicting phenotype from genotype represents the epitome of biological questions. As a 

multiscale problem, it starts from predicting exons and culminates with modeling of whole 

organisms. Focusing on the molecular level, I studied the relationship between sequences and 

protein spatial structures and analyzed proteins with similar sequences but different structures. 

To aid the assessment of structure prediction, I developed a method to rank the predictions of 

proteins with new folds, a very challenging problem that was previously addressed by expert 

inspection. Then, I developed a set of computer programs and scripts to predict various 

structural and functional properties of proteins from their sequences and implemented them as 

a public web-server. I applied these methods to important agricultural (citrus disease) and 



 

medical (Ebolavirus) problems. Moving on to organismal level predictions, I sequenced, 

annotated and analyzed complete genomes of butterflies and suggested hypotheses about 

genetic determinants of their behavior and other phenotypic traits. Taken together, these 

applications highlight the achievements possible today and challenges that lie ahead.  
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CHAPTER ONE 
General Introduction 

 
 

Understanding how the phenotype of living organisms is encoded in the genotype is probably 

the most fundamental and important problem in biological sciences. Despite decades of 

research and many fundamental discoveries, the major breakthroughs on this front lie ahead. 

Prediction goes hand-in-hand with understanding. Developing predictive approaches to deduce 

various phenotypic features from gene sequences is essential both for understanding and 

practical applications, like suggesting hypotheses for experimental tests. Connections between 

genotype and phenotype can be studied at all scales. One of the simplest phenotypic features 

is spatial structure of proteins encoded in their sequences. Prediction of 3D structure and 

learning the connection between sequence and structure is the most basic puzzle at the 

molecular level. The next step is to predict functions of proteins and study how they interact 

with each other. Such predictions can be done on genomic level to investigate functional 

landscape of individual genes. Finally, at organismal level, one can think about predicting 

morphology of animals from their genomic sequences.  

 

I studied the general problem of genotype-phenotype connection at all levels. I analyzed the 

data with existing software tools and developed new algorithms, applying them to specific 

problems of medical and agricultural importance. To address the problem at the level of whole 

organisms, I sequenced and analyzed complete genomes of butterflies and suggested 

hypotheses about their unique features and their functional implications. Here, I introduce 
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specific problems and summarize the results I have obtained, starting from the analysis of 

sequence-to-structure connection in proteins to genome-to-phenotypic traits connection in 

animals. 

 

Similarity between protein sequences is usually predictive of similarity in structures. However, 

in some rare cases protein domains with significant sequence similarity adopt different 

structures. Here, we carry out a survey of protein domain pairs with high sequence similarity 

(measured by HHsearch probability) and low structural similarity (measured by Dali Z-score), 

aiming to identify the reasons for this discordance. Besides methodological problems with 

either sequences or structures of domains, we find and describe novel examples of homologs 

with structural changes. 

 

Manual inspection has been applied to and is well-accepted for assessing CASP Free Modeling 

(FM) category predictions over the years. Such manual assessment requires expertise and 

significant time investment, yet has the problems of being subjective and unable to differentiate 

models of similar quality. It is beneficial to incorporate the ideas behind manual inspection to 

an automatic score system, which could provide subjective and reproducible assessment of 

structure models. Inspired by our experience in CASP9 FM category assessment, we developed 

an automatic superimposition independent method named Quality Control Score (QCS) for 

structure prediction assessment. QCS captures both global and local structural features, with 

emphasis on global topology. We applied this method to all FM targets from CASP9, and 

overall the results showed the best agreement with Manual Inspection Scores (MIS) among 
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automatic prediction assessment methods previously applied in CASPs, such as Global 

Distance Test Total Score (GDT_TS) and Contact Score (CS). As one of the important 

components to guide our assessment of CASP9 FM category predictions, this method 

correlates well with other scoring methods and yet is able to reveal good-quality models that 

are missed by GDT_TS. 

 

Computational sequence analysis, i.e. prediction of local sequence properties, spatial structure 

and function from the sequence of a protein, offers an efficient way to obtain needed 

information about proteins under study. Since reliable sequence analysis is usually based on 

many computer programs to derive consensus and integrate evidence, meta severs have been 

developed to fit such needs. Most meta servers focus on one aspect of sequence analysis, while 

others incorporate more information, such as PredictProtein for local sequence feature 

predictions, SMART for domain architecture and sequence motifs annotation and Genesilico 

for secondary and spatial structure prediction. However, as predictions of local sequence 

properties, structure and function are usually intertwined, it is beneficial to address them 

together. We developed a MEta Server for Sequence Analysis (MESSA) to facilitate 

comprehensive protein sequence analysis. For an input protein sequence, the server 

incorporates a number of select tools to predict local sequence characteristics, detect 

homologous proteins, assign the query into related protein families and identify spatial 

structure templates. MESSA is designed for experimental biologists to gain structural and 

functional predictions about their protein of interest. We tested MESSA on the proteome of 

Candidatus Liberibacter asiaticus. Manual curation shows that the results provided by 
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MESSA could predict the 3D structure of around 75% of the residues and annotate the function 

of over 80% of the proteins in this entire proteome. MESSA is freely available for non-

commercial use at http://prodata.swmed.edu/messa 

 

Candidatus Liberibacter asiaticus (Ca. L. asiaticus) is a parasitic Gram-negative bacterium that 

is closely associated with citrus greening, a worldwide citrus disease. Given the difficulty in 

culturing the bacterium and thus in its experimental characterization, computational analyses 

of the whole Ca. L. asiaticus proteome can provide much needed insights into the mechanisms 

of the disease and guide the development of treatment strategies. In this study, we applied 

state-of-the-art sequence analysis tools to every Ca. L. asiaticus protein. The results are 

available as a public website at http://prodata.swmed.edu/liberibacter_asiaticus/. In particular, 

we manually curated the results to predict the structure and function of all Ca. L. asiaticus 

proteins. This extensive information should facilitate the study of Ca. L. asiaticus proteins 

aimed at understanding the biology of the bacterium and the mechanism of citrus greening. 

Pilot studies based on the information from this website have revealed several potential 

virulence factors. 

 

Ebolavirus is the pathogen for Ebola Hemorrhagic Fever (EHF). This disease exhibits a high 

fatality rate and has recently reached a historically epidemic proportion in West Africa. Out 

of the five known Ebolavirus species, only Reston ebolavirus has lost human pathogenicity, 

while retaining the ability to cause EHF in long-tailed macaque. Significant efforts have been 

spent to determine the three-dimensional (3D) structures of Ebolavirus proteins, to study 
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their interaction with host proteins, and to identify the functional motifs in these viral 

proteins. Here, in light of these experimental results, we apply computational analysis to 

predict the 3D structures and functional sites for Ebolavirus protein domains with unknown 

structure, including a zinc-finger domain of VP30, the RNA-dependent RNA polymerase 

catalytic domain and a methyltransferase domain of protein L. In addition, we compare 

sequences of proteins that interact with Ebolavirus proteins from RESTV-resistant primates 

with those from RESTV-susceptible monkeys. The host proteins that interact with GP and 

VP35 show an elevated level of sequence divergence between the RESTV-resistant and 

RESTV-susceptible species, suggesting that they may be responsible for host specificity. 

Meanwhile, we detect variable positions in protein sequences that are likely associated with 

the loss of human pathogenicity in RESTV, map them onto the 3D structures and compare 

their positions to known functional sites. VP35 and VP30? are significantly enriched in these 

potential pathogenicity determinants and the clustering of such positions on the surfaces of 

VP35 and GP suggests possible uncharacterized interaction site with host proteins that 

contributes to the virulence of Ebolavirus.  

 

Predicting phenotype from genotype represents the epitome of biological questions. 

Comparative genomics of appropriate model organisms holds the promise of making it 

possible. We sequenced, assembled, and comparatively analyzed a genome of the Eastern 

Tiger Swallowtail (Papilio glaucus), a showy butterfly with remarkable biological traits and 

challenging speciation puzzles. This highly heterozygous 376 Mb genome was obtained from 

a single male using a new cost-effective protocol. Comparison of its 15,000 genes with 
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available butterfly genomes suggests the molecular basis of phenotypic traits: e.g., a uniquely 

expanded family of isoprenoid synthesis enzymes could produce predator-repelling terpenes 

secreted by the swallowtail-specific caterpillar organ osmeterium. Only 4% of genes show 

divergence between P. glaucus and its sister species, P. canadensis, offering insights into 

phenotypic differences between them: e.g., species-specific mutations decidedly enriched in 

all 4 key circadian clock proteins may be responsible for conditional versus obligate pupal 

diapause distinguishing the two species. We deduce that P. appalachiensis, a species originated 

by hybridization of P. glaucus and P canadensis, inherited 80% of its genes from the latter, 

including the circadian clock components and thus obligate diapause. However, 6-

phosphogluconate dehydrogenase, an enzyme linked to mimetic black female morph absent in 

P. canadensis, was among those inherited from P. glaucus. Finally, we propose several nuclear 

DNA barcodes, i.e., gene regions that can confidently identify closely related insect species, 

as a possible alternative to widely used mitochondrial DNA barcodes.  

 

For 200 years zoologists have relied on phenotypes to learn about the evolution of animals. A 

glance at the genotype, even through several gene markers, revolutionized our understanding 

of animal phylogeny. Recent advances in sequencing techniques allowed researchers to obtain 

complete genomes much easier, and opened unprecedented opportunities to study genetics and 

evolution. The genomic landscape of Heliconius butterflies challenged our view of speciation, 

and revealed inter-species hybridization as a powerful mechanism to shape adaptive evolution 

in butterflies. Comparison of complete genomes of closely related taxa is promising to shed 

light on speciation mechanisms and the link between genotype and phenotype. We assembled 
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a complete genome of the Cloudless Sulphur (Phoebis sennae eubule) from a single wild-

caught specimen. This genome was used as reference to compare genomes of 6 individuals, 3 

from the eastern populations (Oklahoma and North Texas), referred to as a subspecies Phoebis 

sennae eubule, and 3 from the southwestern populations (South Texas) known as a subspecies 

Phoebis sennae marcellina. While the two subspecies differ only subtly in phenotype and COI 

mitochondrial DNA barcodes, comparison of their complete genomes revealed consistent and 

significant differences, which are more prominent than those between tiger swallowtails 

Pterourus canadensis and Pterourus glaucus. The reasons for low (0.5%) mitochondrial 

divergence in Phoebis compared to its high (1.8%) nuclear divergence remain unclear. The 

two Sulphur taxa differed in histone methylation regulators, chromatin-associated proteins, 

circadian clock, and early development proteins. Phylogenetically, complete genomes place 

family Pieridae away from Papilionidae, which is consistent with previous analyses based on 

several gene markers. We sequenced and assembled the first genomes from the family Pieridae. 

Comparative analyses suggest that Phoebis sennae marcellina from the southwestern United 

States and Latin America and Phoebis sennae eubule from the southeastern United States, may 

both be considered species-level taxa, and revealed the mutation hotspots associated with the 

divergence between the two taxa. This work lays the foundation for Pieridae genomics and 

provides rich sequence datasets for comparative studies. 

 

Hesperiidae (skippers) was traditionally viewed as a basal group of butterflies based on its 

moth-like morphology and darting flight habits with fast wing beats. However, DNA-based 

studies suggest that Papilionidae is the basal group. The moth-like features and the 
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controversial position of skippers in Lepidoptera phylogeny make them valuable models for 

comparative genomics. We obtained the 310 Mb draft genome of the Clouded Skipper (Lerema 

accius) from a wild-caught specimen using a cost-effective strategy that overcomes the high 

(1.5%) heterozygosity problem. Comparative analysis of Lerema accius and another highly 

heterozygous genome of Papilio glaucus reveals difference in patterns of SNP distribution, but 

similarity in functions of genes that are enriched in non-synonymous SNPs. Comparison of 

Lepidoptera genomes reveals possible molecular bases for unique traits of skippers: 

duplication of electron transport chain components could result in efficient energy supply for 

their rapid flight; a diversified family of predicted cellulases might allow them to feed on the 

cellulose-enriched grasses; expansion of pheromone-binding proteins and enzymes for 

pheromone synthesis implies a more efficient mate-recognition system, which compensates 

the lack of clear visual cues due to the similarity in wing colors and patterns of many species 

of skippers. Phylogenetic analysis of several Lepidoptera genomes suggests that the position 

of Hesperiidae remains uncertain and the tree topology varied depending on the evolutionary 

models. This is the first genome of the Hesperiidae family. Comparative analyses reveal 

potential genetic bases for the unique phenotypic traits of skippers. This work lays the 

foundation for future experimental studies of skippers and provides a rich dataset for 

comparative genomics and phylogenetic studies of Lepidoptera. 
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CHAPTER TWO 
Structural Differences Between Proteins With Similar Sequences 

 
 

INTRODUCTION 

 
From the early days of protein structural biology, researchers have been surprised by the 

resistance of protein spatial structures to evolutionary changes [1]. This remarkable structural 

robustness combined with the limited number of available 3D structures has lead to a view that 

the abstract protein structure space is discrete, can be divided into a number of folds, and 

protein evolution mostly proceeds within the framework of the same fold [2]. Today, with the 

rapidly increasing number of protein structures, arguably, the majority of protein structural 

patterns have been experimentally determined and a new view of structural continuity of 

folding patterns is starting to emerge [3,4]. Many examples of proteins with statistically 

significant sequence similarity that display substantial structural differences have been 

documented [5,6]. Such phenomenon demonstrates the evolutionary bridges between 

structurally different proteins and profoundly influences our understanding of protein structure 

evolution. On one hand, the notion that protein structures are evolutionarily plastic and 

changeable has important applications in protein design. This idea opens new frontiers in 

engineering proteins that possess desired functional properties, such as potentially creating 

proteins with condition-dependent folds [7]. On the other hand, the existence of proteins with 

similar sequences but different structures hinders homology modeling methods, making our 

ability to detect such cases from sequence crucial. To study the mechanisms and paths of 

protein fold change in evolution, we undertook a comprehensive comparative analysis of 
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SCOP (Structural Classification of Proteins) [8] domains and found domain pairs with 

significant sequence similarity, but pronounced structural differences. The reasons for 

structural differences in sequence-similar pairs were analyzed. We found that many cases are 

caused by various technical problems with sequence or structure, but the remaining pairs reveal 

interesting evolutionary changes in structure or possible convergence in sequence. 

 
MATERIALS AND METHODS 

 
PDB-style files for SCOP (Structural Classification of Proteins) 1.71 [9] domains from 4 

classes: all α, all β, α/β and α+β were obtained from ASTRAL [10] and filtered for 40 percent 

sequence identity, resulting in 7805 domains. For these domains, all-to-all sequence 

comparison by HHsearch (Version 1.5) [11] (measured by probability) and structure 

comparison by DaliLite (version 2.4.4) [12] (measured by Z-score) were performed with 

default parameters. Profiles for HHsearch were built with PSI-BLAST [13] (E-value threshold: 

0.001; maximum iterations: 8; protein sequence database: NCBI non-redundant (nr)) using 

buildali.pl script generously provided by Johannes Soding. Domain pairs with high HHsearch 

probabilities but low Dali Z-scores satisfying the following conditions: (1) HHsearch 

probability > Dali Z-score / 30 + 0.9; (2) Dali Z-score > 0 were chosen for this study. All the 

resulting 1804 domain pairs fell into 120 SCOP superfamily pairs. The domain pair with the 

highest Dali Z-score was selected from each superfamily pair as a representative for the manual 

study. Briefly, sequence alignment was checked manually and sometimes confirmed by 

HHpred [14] and/or PSI-BLAST; structure and structure alignment were visualized in Pymol. 
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Besides, information from SCOP, ASTRAL, PDB (Protein Data Bank) [15] VAST (Vector 

Alignment Search Tool) [16], and literature were used.  

 
 

RESULTS AND DISCUSSION 

 
Relationship between sequence similarity and structural similarity in domain pairs 

To measure sequence similarity, a well-established protein profile-profile comparison tool 

HHsearch was used. Based on sequence profiles and secondary structure predictions, the 

probability estimate given by HHsearch is a more sensitive indicator of remote homology than 

simple sequence identity [11,17]. To measure structural similarity, Dali Z-score was used, 

because Dali is one of the best performing methods for structure comparison. 

 Among 25,109,240 (7085 * 7086/2 + 7085 = 25109240) domain pairs compared, the 

majority exhibit dissimilarity in sequence (HHsearch probability lower than 0.20) and structure 

(Dali Z-score lower than 3). A distribution of scores for a random sample of domain pairs with 

HHsearch probability above 0.2 is shown in Fig. 1a. While the HHsearch probability is 

positively correlated with the Dali Z-score for probabilities above 0.6, correlation is not 

obvious for lower HHsearch probabilities. To focus on domain pairs with comparatively low 

structural similarity, the region with Dali Z-score below 10 is shown in Fig. 1b.  

 Points in the upper left corner in Fig. 1b represent those rare cases of similar sequences 

adopting different structures. Unexpectedly, the narrow region with HHsearch probability 

above 0.9 harbors higher density than the region immediately below, indicating that many 

domains with significant sequence similarity are structurally different. A triangle area (in Fig. 

1b) delineates the 1804 domain pairs chosen for this analysis. The domain pairs with Dali Z-
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score 0 were not considered since preliminary analysis indicated that many of these pairs were 

structurally similar, but DaliLite failed to produce good alignments. This study set was further 

narrowed down by superfamily to 120 representative pairs for the detailed analysis (see 

Materials and Methods). The majority of these 1804 domain pairs (62.1%) belong to a single 

superfamily, P-loop containing nucleoside triphosphate hydrolases. This superfamily is a well-

characterized large group of domains that contain highly conserved NTP binding Walker A 

and Walker B motifs but adopt diverse structures. [18-21]   

 

Detailed study of the representative domain pairs 

For all representative domain pairs, the reasons for the discordance between the sequence 

similarity and structural dissimilarity were studied and classified into three categories 

(Summarized in Table I): (1) problems with the sequence or sequence alignment; (2) problems 

with structure or structure alignment; (3) events of interest for protein evolution and biology.  

 

1. Problem with the sequence or sequence alignment  

Three causes for sequence problems have been detected: 

1.1 Similar secondary structure pattern:  Occasionally, a pair of sequences is attributed a high 

HHsearch probability due to similar secondary structure patterns that biases amino acid usage. 

First, HHsearch explicitly uses secondary structure predictions in scoring [11]. Besides, the 

restriction on the amino acid frequency from secondary structure (amino acid propensity) may 

result in two sequences having higher probability to share similar amino acids due to amino 

acid bias [22-24] rather than homology. Such domain pairs have similar secondary structure 
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patterns but typically differ in topology and spatial alignment of these secondary structural 

elements, which suggests that they are not likely to be homologous. The aligned sequence 

segments, while being quite long (more than 50 residues) in most cases, do not show typical 

patches of aligned residues indicative of functional motifs.  

1.2 Profile corruption: PSI-BLAST can incorporate a non-homologous sequence or sequence 

segment into the position-specific score matrix (PSSM). In subsequent iterations, these 

sequences will promote further inclusion of non-homologous regions, causing the profile to 

deteriorate [25]. Domain A will get an unduly high HHsearch probability with domain B if the 

profile of domain A is largely corrupted by homologous sequences of domain B. Cases we 

identified as profile corruption share several common features: (1) the structures of the two 

domains are highly dissimilar (usually belong to different folds), suggesting that they are not 

homologous; (2) domain A is adjacent in sequence to a homolog of domain B (in 8 out of the 

total 10 cases, the homolog of domain B is inserted into domain A); (3) the alignment 

encompasses the boundary between domain A and domain B’s homolog. For instance, the 

structurally distinct GroEL intermediate domain (SCOP ID: d1kp8a3) is inserted into the 

middle of the GroEL equatorial domain (SCOP ID: d1kp8a1) [26], and thus both profiles are 

easily corrupted by each other.  

1.3 Artifact in sequence: non-homologous pairs can get high HHsearch probabilities just 

because of the inclusion of expression vector sequence. For instance, in one case, both domains 

are flanked by “GSSGSSG” at the N-terminus and “SGPSSG” at the C-terminus. Such 

contaminant sequences are aligned in HHsearch, making the high HHsearch probability 

meaningless.  
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2. problem with structure or structure alignment 

Four sources for structure problems have been identified: 

2.1 low quality of structure: Some clearly homologous pairs are supported by pronounced 

sequence similarity and a structural resemblance apparent in manual observation. DaliLite, 

however, fails to generate high Z-scores due to two reasons: (1) the structure quality is low, 

e.g. low resolution X-ray or poorly defined NMR structure (in 24 cases out of 27, NMR 

structure is involved), as revealed by loose packing of secondary structure elements and 

distorted α-helices. (2) domain size is too small (50-100 residues) to substantiate a high Z-

score. The two reasons usually coincide, so we did not discriminate them. An example of this 

category is shown in Fig. 2.[27,28] 

2.2 Incompletely defined domain: rarely, the boundary of one domain is incorrectly defined 

in SCOP, resulting in an incomplete domain composed of only a few (3 or 4) secondary 

structural elements. As a result, homologous domains with significant sequence similarity 

produce low Dali Z-scores due to insufficient number of alignable residues. In all cases we 

found, it was possible to extend the boundary of these incomplete domains to cover the full 

range and to obtain strong structural similarity as measured by the Z-score.  

2.3 Improper truncation: The N-terminal domain in a multidomain protein may be truncated 

as a result of false prediction of its start by gene finding algorithms. When cloned and 

structurally characterized, such proteins reveal distorted and partly disordered N-terminal 

domain structure due to the absence of some essential interactions. As a result, despite 

significant sequence similarity, such structures diverge from complete and well-structured 



15 

 

homologs. For example, the N-terminal segment of the DNA-binding protein Tfx [29] is 

composed of two short helices that do not appear compact (Fig. 3b). HHsearch matches this 

region to the C-terminal domain of Sigma factor sigma-28 [30], which is structured as an HTH-

containing helical bundle (Fig. 3c). Inspection of BLAST [31] hits for DNA-binding protein 

Tfx sequence reveals a 100% identity match that contains additional 16 residues at the N-

terminus. This longer variant is likely to represent the biological unit because the 16-residue 

segment matches the sequence of the N-terminus of HTH domain.   

2.4 Artifact in structure: while in most cases X-ray structures represent proteins in 

physiological conditions, in some rare instances, probably due to experimental conditions, 

structural changes occur. We found a single example, namely Pleiotropic regulator of virulence 

genes, SarA[32] and Hypothetical protein AF2008[33]. Both domains are from the “Winged” 

helix DNA-binding domain superfamily, but the structure of SarA (Fig. 4b) is not similar to a 

typical winged helix domain and does not resemble its close homolog Staphylococcal 

accessory regulator A homolog, SarR[34,35] (Fig. 4d). In accord with our finding, the workers 

that determined the SarA structure hypothesized that without a carrier protein or sufficiently 

long DNA, SarA might contain anomalously folded region [36].  

 

3. Interesting phenomena for protein evolution and biology 

This category can be divided into 3 sub-categories: 

3.1. Analogs adopting similar functional motif: The reason for significant sequence similarity 

can be either origin from a common ancestor (homologs), or convergent evolution (analogs) 

as a result of stringent functional requirements dictated by physics. Convincing examples of 
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analogy resulting in strong sequence similarity are hard to find[37,38]. They typically reveal 

domains with very different structures that bind metal ions or heme, as interaction with these 

cofactors requires a specific arrangement and chemical nature of the amino acids, causing 

sequence convergence. In contrast, if physical restriction on the sequence is not strict, which 

means there are several ways to carry out the function, it is most likely that similarity is the 

result of evolutionary descent. Three examples of possible sequence analogy were found and 

one of them is shown in Fig. 5. Both proteins are multiheme cytochromes[39,40]. Despite a 

short common heme-binding motif, distinct structures around the binding site and different 

topology argue for their convergence (analogy).  

3.2. Domain swap: Well-known exchanges of equivalent structural segments between domains 

exist in some oligomeric structures[41,42]. Many homologous families contain examples of 

both swapped and unswapped domains, and the Dali Z-score for a match between the swapped 

and the unswapped domain is frequently low. We place domain swaps in a separate category 

instead of among other homologs with structural differences, since they are extensively studied 

and result from interactions between domains rather than evolutionary changes within a 

domain.  

3.3. Homologs with different structures: This category includes the most interesting examples 

found in this work. Detectable sequence similarity in functionally important regions is reflected 

in local structural similarity and indicates homology. However, global structures of such 

homologs can be quite different due to deletions, insertions and significant structural 

rearrangements [5,43]. For instance, the P-loop (Walker A) motif was found by HHsearch in 

proteins from three SCOP folds: P-loop containing nucleoside triphosphate hydrolases, PEP 
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carboxykinase-like, and MurCD N-terminal domain. Because of significant structural 

differences between these domains, they are placed in different SCOP folds, but statistically 

supported sequence similarity suggests homology. Most of the 39 cases belong to this category 

(listed in table II) have been noticed before, and several interesting and novel examples are 

described here.  

 

4. Novel examples of homologs with different structures 

4.1. Ataxin-1 AXH and DnaB intein domains  

Ataxin-1 AXH domain [44] and DnaB intein domain[45] represent the SCOP superfamilies of 

“AXH domain” and “Hedgehog/intein domain” (Fig. 6). They are homologs and share 

significant sequence similarity detected by HHsearch (probability 99.8%) and PSI-BLAST. 

The ataxin-1 AXH domain sequence finds an intein domain (PDB ID: 1VDE) in the non-

redundant database (nr) with a significant E-value (6e-6) at iteration 4. However, the structural 

similarity of this pair is low (Dali Z-score: 2.6). Taken together, these data may point to a fold 

change resulting from several evolutionary events: extension, insertion, duplication, domain 

swapping and circular permutation. The common region, i.e. evolutionary core inherited from 

their common ancestor, is composed of 6 β-strands and it is colored in rainbow in Figs. 6b and 

c. In the AXH domain, the evolutionary core harbors an insertion of an α-helix between β5 and 

β6, and is extended with an α-helix and β-strands at the N-terminus. In the intein, the core is 

duplicated (Fig. 6c) and forms two subdomains: β1-β6 and β1’-β6’. These two subdomains 

swap a β-strand (β1 and β1’) with each other. The order of strands in the intein sequence is: 

β3’-β4’-β5’-β6’-β1-β2-β3-β4-β5-β6-β1’-β2’, while the AXH domain has the order: β1-β2-β3-
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β4-β5-β6. A circular permutation positioned β1’-β2’ at the C-terminus in the DnaB intein after 

duplication.  

 Homology between the two domains provides functional insights. The AXH domain is 

essential for RNA binding [46,47], and the colored β-strands (Fig. 6b) are likely to be 

responsible for such interaction as evidenced by: 1) the N-terminal β-strands and α-helix are 

buried at the dimer interface and are not accessible to RNA; 2) the β-strand packing resembles 

an OB-fold, a motif presents in various oligo-nucleotide binding proteins or nucleases[44,48]. 

The function of the intein domain is to excise itself and rejoin the remaining segments of the 

host protein[49]. DnaB intein carries a homing endonuclease domain inserted between β6 and 

β1’[45]. In the available DnaB intein structure, the homing endonuclease domain is not 

included. The full DnaB intein (the intein together with homing endonuclease) can recognize 

specific sites in DNA, cleave the DNA and trigger double-strand break homologous 

recombination[50]. Being a homolog of the nucleic-acid binding AXH domain, the intein 

domain might also assist the endonuclease in DNA binding. 

4.2. C-terminal subdomain of CPS large subunit ATP-binding domain and Acetyl-CoA 

carboxylase BC-C subdomain 

The carbamoyl phosphate synthetase (CPS) large subunit ATP-binding domain[51] and the 

acetyl-CoA carboxylase, biotin Carboxylase C-terminal (BC-C) subdomain[52] share 

significant sequence similarity supported by HHsearch (probability 98.9%). The biotin 

carboxylase middle domain (BC-M)[52], an adjacent subdomain to the BC-C, belongs to the 

same SCOP family as the ATP-binding domain. The combined structure of BC-C and BC-M 

subdomains (Fig. 7d) is remarkably similar to the ATP-binding domain (Fig. 7b). Such 
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evidence suggests that the ATP-binding domain contains two subdomains, which are homologs 

of BC-C subdomain and BC-M subdomain, respectively.  

 Notably, the aligned segments (shown in the same color in Fig. 7b and 7d) seem to 

differ in handedness: the red α-helix, the green and yellow β-strands form a left-handed unit in 

the ATP-binding domain, while the unit is right-handed in the BC-C subdomain. Since 

handedness is unlikely to change in evolution, we hypothesize that a deletion of the green and 

blue β-strands in the ATP-binding domain resulted in a partially incorrect alignment by 

HHsearch. The green β-strand in the ATP-binding domain should be aligned to the blue β-

strand in the BC-C subdomain, which keeps the handedness the same. To test this hypothesis, 

the C-terminal half (residue 491-527) of the aligned sequence is taken from the BC-C 

subdomain as a query for HHpred (the green and blue β-strands excluded). HHpred still finds 

the ATP-binding domain with a probability of 93.9%, indicating that the N-terminal half is not 

necessary to detect this similarity. Therefore the HHsearch sequence alignment in Fig. 7a was 

incorrectly extended towards the N-terminus because of the deletion. Compared to homologs 

in the same SCOP superfamily, the BC-C subdomain undergoes several deletions, making it 

more likely that in the ATP-binding domain, yet another deletion greatly changed the fold.  

4.3. Phthalate dioxygenase reductase C-terminal domain and Dihydroorotate 

dehydrogenase B, PyrK subunit  

The phthalate dioxygenase reductase (PDR) C-terminal domain [53] and the dihydroorotate 

dehydrogenase B, PyrK subunit [54] represent the superfamily pair of “2Fe-2S ferredoxin-like” 

and “Ferredoxin reducatase-like and C-terminal NADP-linked domain”. They share significant 

sequence similarity (HHsearch probability 96.4%). On the first glance, stringent requirements 
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on sequence and local structure within the binding site (boxed in Fig. 8a) imposed by 

interactions with the 2Fe-2S cluster might suggest analogy (refer to the example of analogs in 

Fig. 5). However, structural evidence strongly argues for their homology: besides a similar 

loop that binds to the 2Fe-2S cluster, the β-strands (the red and orange β-strands in Fig. 8b and 

8c) adjacent to the loop are also remarkably similar. Without apparent physical restriction on 

these β-strands that leads to evolutionary convergence, common ancestry is the likely 

explanation for this similarity. 

 The structural change (Dali Z-score 1.7) from the PDR C-terminal domain to the PyrK 

subunit might stem from a deletion of the segment in the black frame in Fig. 8b. This deletion 

causes a reorientation of secondary structural elements in the PyrK subunit and results in the 

unusual packing of β-strands shown in the black frame in Fig. 8c. Since the blue β-strand and 

green α-helix in the PDR C-terminal domain were possibly lost in evolution to generate the 

PyrK subunit, they should not be aligned to any PyrK sequence segment. Therefore, we 

excluded this sequence and selected only the C-terminal half (residue 266-295) of the initially 

aligned PDR C-terminal domain sequence (Fig. 8a) as a query for the online server of 

HHsearch, HHpred. The PyrK subunit was found with a probability of 97.8%, implying that 

the blue β-strand and the green α-helix do not significantly contribute to the sequence 

alignment and that they might be absent in PyrK subunit due to deletion. 

conclusions 

 
CONCLUSIONS 
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On the one hand, the dataset of structurally different proteins with strong sequence similarity 

is plagued with various technical problems, which encompass over half of representative 

domain pairs and make the examination a tedious task. These problems arise at all stages, from 

experiment (genetic construct, structure determination) to data processing (generating PDB 

file and SCOP domain) and data analysis (profile, alignment, structure superposition). On the 

other hand, careful investigation reveals interesting examples of homologs with distinct 

structures and advances our understanding of protein evolution. We see that insertions, 

extensions, and duplications decorate and expand the evolutionary core; deletions reduce the 

core, sometimes beyond recognition, potentially resulting in reorientation of structural 

elements. Topology and mutual arrangement of secondary structures may change due to 

circular permutation or domain swapping. Finally, combination of several such events makes 

for the largest structural differences between homologs.  
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CHAPTER THREE 
An automatic method for CASP9 free modeling structure 

prediction assessment 
 
 

INTRODUCTION 

 
Critical Assessment of protein Structure Prediction (CASP), is an experiment running for 16 

years that has been absolutely critical for evaluating progress (or lack of thereof) in prediction, 

spotting and encouraging most successful methods and stimulating discussions in the field of 

structure prediction (Kryshtafovych et al., 2005; Moult, 2006; Moult et al., 2009). For each 

biannual CASP prediction period, organizers collect sequences with 3D structures in the works 

and release them to predictors; predictors deliver structure models and assessors critically 

evaluate the quality of predictions after the experimental structures have been determined. By 

separating the process of prediction and assessment, CASP provides an objective basis for 

comprehensive evaluation of models (Moult et al., 1995).  

      Based on the availability of structural templates and the prediction difficulty, targets in 

CASP are currently divided into two categories: Template-Based Modeling (TBM) and Free 

Modeling (FM) (Kinch et al., 2011a). Without an easily detectable template, targets in the FM 

category are the most challenging and predicted models are usually of low quality. FM 

category models are traditionally evaluated by manual inspection (Ben-David et al., 2009; 

Jauch et al., 2007; Tai et al., 2005) because well-established structure comparison measures, 

such as RMSD or even GDT-TS may miss promising models (Jauch et al., 2007). For instance, 

GDT-like scores may emphasize on small but precisely modeled substructure (such as a long 
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α-helix) rather than decent general fold and topology. However, model evaluation by human 

experts is subjective and time-consuming, and it is impossible to carefully examine all the 

models within the time frame of a CASP experiment. A practical compromise (Ben-David et 

al., 2009; Jauch et al., 2007; Tai et al., 2005; Aloy et al., 2003) is to limit manual inspection 

to the top models selected by a scoring system (e.g. GDT_TS). However, this initial selection 

biases final results. To avoid the bias, recent CASP assessors utilized additional scores (e.g. 

Cα-Cα contacts or distances) to select candidates for visual inspection. Combination of 

different methods lowers the probability of missing reasonable models and improves the 

evaluation of structure prediction. 

      As the assessors of the CASP9 FM category, we introduced a novel automatic structure 

prediction assessment method named Quality Control Score (QCS). We suggest that the score 

is particularly useful to compare poor predictions. QCS reflects our manual evaluation 

experience and aims to capture global features of models defined by mutual arrangement of 

secondary structure elements (SSEs). Inter-residue contact component is included in QCS as 

to quantify the accuracy of modeling atomic details. Overall, QCS is in agreement with manual 

inspection and correlates well with GDT-TS. However, QCS can reveal models with better 

global topology that are missed by GDT-TS. QCS is not only suitable to select candidates for 

manual inspection in the CASP assessment, but can be used as an independent and subjective 

method to assess the quality of structure prediction with emphasis on the global topology. 

Moreover, QCS can be expanded as a fold comparison tool and applied to remote homology 

inference and protein fold classification. 
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METHODS 

 
CASP9 targets and models were downloaded from the prediction center web site 

(http://predictioncenter.org/). Representative evaluation units (T0531, T0534 domains 1 and 2, 

T0537, T0550 domains 1 and 2, T0561, T0578, T0581, T0604 domain 1, T0608 domain 1, 

T0618, T0621, T0624) from the CASP9 FM category (Kinch et al., 2011a) were assessed by 

manual inspection during CASP9 season. Briefly, for each target, a set of criteria (points) was 

developed based on the target structural features, including the size and orientation of SSEs, 

key contacts between SSEs, and any additional unusual structural features such as kink in the 

helix. Models were visually compared to the targets to evaluate whether the model agrees with 

the target on these criteria (points) without superposition. Expert Manual Inspection Scores 

(MISs) were recorded as a percentage of the maximum points assigned to each target (Kinch 

et al., 2011b).  

      Building on the experience in manual assessment, QCS (details described in RESULTS 

AND DISCUSSION) focuses on global features of models on the basis of SSEs (the SSE length, 

the relative position, angle and key interactions between SSE pairs and the handedness of the 

structure). To discriminate the local structure details between models, all inter-residue contacts 

were assessed as well. 

      All the evaluation units from CASP9 FM category (a total of 29 protein domains) were 

assessed by QCS, GDT-TS (Zemla et al., 1999b, 2001, 2003), CS, TenS (a consensus-based 

method used in CASP5 and CASP9), TM-align, Mammoth and SOV. To test QCS on easier 

targets, the 21 single domain TBM targets were assessed by both QCS and GDT-TS.  
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      The performance of QCS was first examined on the subset of FM models that were 

assigned nonzero MISs. The agreement between QCS and MIS was investigated and compared 

with other automatic methods by the general correlation and the overlap in top models. 

Comparison between QCS and other similarity scores was then carried out on all CASP9 FM 

targets and TBM representatives by investigating correlation and visually comparing the top 

models selected by various methods. Finally, we tested QCS on the Template Free Modeling 

category targets from CASP7 and CASP8 and compared the results to those obtained by 

previous assessors. 

 
 

RESULTS AND DISCUSSION 

 
Components of QCS 

QCS calculation uses only Cα atoms and it relies heavily on SSEs that defines protein’s 

architecture and topology. We used PALSSE (Majumdar et al., 2005), a sensitive secondary 

structure assignment program to define SSEs from the target 3D coordinates (Fig. 1A) and 

propagated these SSE definitions to models (Fig. 1C) by residue numbers. Thus, the target and 

the model were simplified to a set of SSE vectors (Fig. 1B and 1D). Several features were 

compared between them, and scores were assigned for each feature.  

3.2.1 The length of SSE vectors 

As we propagated the SSE definition from a target to models, we expect the length of a certain 

SSE in the model to agree with that in the target if the secondary structures of residues are 

modeled correctly. The SSE lengths in the model (Li(M), M indicates SSEs or measurements 

in the model) and in the target (Li(T), T represents SSEs or measurement in the target) were 
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used to calculate a length score (sLength (i), Eq. 1) for SSE i. The average length score over all 

SSEs weighted by number of residues in each SSE (Eq. 2) was applied to assess the secondary 

structure quality. 

 

                                                                                                                                                (1) 

 

                                                                                                                                                (2) 

3.2.2 The global position of SSEs 

The position of SSEs was evaluated by their pairwise distances and the distances were 

measured in two ways. In the first SSE position measurement (S1P), each SSE was divided into 

three equal segments and reduced to three points by averaging Cα coordinates. Position scores 

were assigned by comparing the distances between all these points (i and j, except points within 

one SSE) in the target (Di,j(T)) and in the model (Di,j(M)) (Eq. 3). In this measurement only 

models with correct alignment would be favored, as SSEs were defined only in the target and 

the definitions were propagated by residue numbers to the model. This meaningful dependence 

on correct alignment might over-penalize models based on correct template but erroneous 

alignment. To balance this effect, we introduced the second SSE position measurement (S2P) 

that is less sensitive to shifts in alignment. We compared closest Cα distances between SSEs i 

and j in the model (Di,j(M)) and in the target (Di,j.(T)) to assess their relative positions (s2Position 

(i,j), Eq. 5) Combining these two scoring functions resulted in a balance between rewarding 

reasonable structure traces (templates) and high quality of alignment. 
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                                                                                                                                                (3) 

 

                                                                                                                                                (4) 

 

                                                                                                                                                 (5) 

 

                                                                                                                                                 (6) 

 

                                                                                                                                                 (7) 

3.2.3 The angle between SSE vectors 

To assess angle between SSEs i and j, we transformed the 3D coordinates of the model so that 

one SSE vector (i(M)) is aligned in direction to the corresponding vector (i(T)) in the target 

and the centers of other two SSE vectors (j(M) and j(T)) are superimposed. After the 

transformation, the angle (Ai,j(M,T)) between j(M) and j(T) (illustrated in Fig. 2A) represents 

the discrepancy in angle. An angle score sAngle(i,j) was thus assigned as shown in Eq. 8. The 

average of angle scores over all SSE pairs, weighted by the residue numbers of the pair of 

SSEs (Ni and Nj) and the distance between central part of the two SSEs (Di,j) (Eq. 9 and Eq. 

10) was taken to evaluate the accuracy of the packing angles between SSEs. 

 

                                                                                                                                             (8) 
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                                                                                                                                             (9) 

 

                                                                                                                                            (10) 

3.2.4  Handedness  

When more than two SSEs are considered, handedness is the key to distinguish correct 

topology. Handedness defines the position of a third SSE (k) in relative to the plane specified 

by two reference SSEs (i and j). Fig. 2B explains our quantification of handedness. Handedness 

can be clearly defined when k(M) and k(T) are not very close to the reference plane. Moreover, 

when the reference SSEs are far from each other, reversal of handedness should not be 

penalized as much as when the reference vectors are directly interacting. Based on these 

considerations, we designed the handedness score as in Eq. 11, where the penalty negatively 

correlates with the distance (Di,j(T)) between i(T) and j(T) and positively correlates with the 

shorter distance between k(T) or k(M) and the reference plane.  

 

                                                                                                                                              (11) 

 

                                                                                                                                              (12) 

 

3.2.5 The interaction between SSE vectors 

Interactions between SSEs i and j were represented by the closest pair of residues with distance 

below 8.5 Å as a cutoff. Interacting residue pairs defined in the target (or certain model) were 
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interacting residue pairs could be different in the model from those in the target, resulting from 

either missing correct interaction or forming incorrect contacts. By comparing the Cα distances 

of the interacting residues in the target (Di,j(T)) and in the model (Di,j(M)), we assigned 

interaction scores (sInteraction (i, j)) for each pre-defined interactions (Eq. 13 and Eq. 14). The 

average of these scores, weighted by the product of the residue numbers of the SSEs was the 

final interaction score (Eq. 15). 

 

                                                                                                                                              (13) 

 

                                                                                                                                              (14) 

 

                                                                                                                                              (15) 

3.2.6  The contact score  

Scores based on inter-residue contacts or distances were another commonly used method by 

previous assessors (Ben-David et al., 2009, Jauch et al., 2007). We incorporated a Contact 

Score (Shi et al., 2009) into QCS to quantify the atomic details of the models. In concept, it is 

similar to our interaction scores for SSEs, except that it evaluates all C-alpha contacts in the 

target. Contact score (sContact (i)) was calculated as in Eq. 16 and 17, where Di(M) is the distance 

in model and Di(T) is the distance in target, N is the total number of defined contacts. 

 

                                                                                                                                            (16) 
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                                                                                                                                            (17) 

3.2.7  The QCS is the weighted sum of the six components 

The QCS was defined as a weighted sum of all 6 scores discussed above. The weight of each 

component could be adjusted to accentuate certain aspect of the models. In this work, by 

default, all the components were weighted equally. To adjust the scale of QCS, we performed 

a transformation per Eq. 19. The parameter a, specific for each target, was obtained from 

random models. Ten random models were generated by circularly permutating the target 

structure to abolish the correspondence between the sequence and the 3D coordinates. For 

CASP9 FM targets and TBM representatives, these random models acquired average QCSs 

from 28 to 45. By hyperbolic transformation and adjusting the value of a, we rescaled the 

average random QCS for each target to 20. As a result, the scores from different targets are 

comparable to each other. The transformed scores correspond to the final QCS. 

 

                                                                                                                                            (18) 

 

                                                                                                                                            (19) 

 

Agreement between QCS and manual assessment 

The traditional and well-accepted way to assess CASP template free structure prediction is 

manual inspection by experts. To test the performance of QCS, we first compared QCS with 

the MIS on CASP9 FM models that obtained a non-zero MIS (zero MIS means either the global 

topology of the model is completely wrong or redundant models). Only models that correctly 
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predicted at least part of the structure core would attain a non-zero MIS, and thus these models 

were of relatively good quality. On these models, QCS correlates well with MIS (shown in Fig. 

3) with Pearson correlation coefficient of 0.86.  

      QCS harbors the highest correlation coefficients with MIS among all the structure 

comparison methods we tested, including GDT_TS, CS, TM-align (Zhang et al., 2005) and 

other traditional methods for structure comparison (Ortiz et al., 2002; Zemla et al., 1999a) (see 

Table 1). It is within our expectation as several QCS criteria were derived from the experience 

of manual inspection and both QCS and MIS emphasize on the global features of the models. 

Notably, GDT_TS and contact score show satisfactory correlation with manual judgment as 

well, which is consistent with previous experiences from CASP assessment (Ben-David et al., 

2009; Jauch et al., 2007).  

      Three out of the four correlation coefficients listed in Table 1 (the Pearson's correlation 

coefficient (r), the Spearman's rank correlation coefficient (r) and the Kendall tau rank 

correlation coefficient (ic) for all pairs of models) estimate the agreement in both ranking 

models of one target and comparing the relative prediction quality among different targets. 

From both aspects, QCS agrees with MIS the best. The fourth coefficient (Kendall tau rank 

correlation coefficient (ιi) computed by comparing only models that are from the same targets), 

however, is the most indicative for the ability of ranking models for a particular target. QCS 

and MIS obtain a ιi of 0.49, suggesting for 75% of all cases, QCS and MIS agree in their 

judgments.  

      Other similarity scores acquire even lower ιi. Moderate agreement between MIS and 

automatic scores likely results from 3 reasons: (1) MIS works differently from all automatic 
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methods by design. On one hand, different from QCS (similar to GDT_TS and other 

superimposition dependent methods), MIS positively scores only SSEs appearing in a correct 

local mutual arrangement (e.g. a helical hairpin). On the other hand, different from GDT_TS 

(similar to QCS), MIS assigns scores on the basis of the whole SSEs, considering their packing 

and interactions. (2) Low quality of FM predictions and the similarity among models made it 

impossible to clearly discern a “better” model in many cases. The ranking was thus highly 

sensitive to the differences in the criteria implemented by different method. This effect was 

exaggerated as only the ranking of relatively good models were examined and the fact that 

many of these models were generated by refining or selecting the predictions from several 

well-performing servers. If we considered all models by including the zero MISs, MIS 

correlated with automatic scores much better and QCS displayed the highest ιi of 0.67. (3) MIS 

contains minor errors and the scores are sometimes inconsistent, as the time devoted to each 

model is quite short, limited by the time frame in the CASP season.  

      The correlation coefficients between QCS components and MIS are shown in Table 1. The 

contact score alone (SC) displays the best correlation with MIS. Although other components, 

taken separately, show lower correlation; taken together (S5 in Table 1) they correlate with MIS 

even better than contact score (shown in table 1). Similarly, none of the other components 

dominates the performance of QCS. Each individual component assesses a specific aspect of 

the model, and their combination evaluates comprehensive features required for a good model 

and lowers the possibility of assigning a favorable score to a poor model due to a random match 

to the target.  
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      In addition to combining all the component scores with equal weights, we optimized the 

weights on correlation coefficients with MIS. (QCSr, QCSr, QCStc, and QCSti in Table 1 stand 

for the optimized result on r, r, ic and ii respectively). Optimization can only boost the 

correlation slightly. This is firstly due to the absence of high agreement between any similarity 

score and MIS as discussed above. Moreover, as models of higher quality are usually favored 

by all the QCS components, change of weights does not lead to substantial change in QCS 

ranking (Kendall tau rank correlation between QCSr, QCSr, QCSic, QCSti and QCS are all 

above 0.82). 

 

The correlation between QCS and other methods 

We compared QCS with other assessment methods used in CASP9 and CASP8, including 

GDT_TS, CS, TenS, TenS components for CASP9 (Kinch et al., 2011b) and GDT_TS, 

Mammoth, Q scores for CASP8. QCS shows higher correlation with GDT_TS, Qcomb, TenS 

and CS (Kendall tau rank correlation coefficient above 0.65). These 4 scores are proved useful 

in previous CASPs (Kinch et al., 2003; Ben-David et al., 2009), and similarly to QCS, they 

balance between local and global features. 

      We compared QCS and GDT_TS on CASP9 TBM representatives, and the overall Kendall 

tau correlation coefficient is about 0.75. The general trend is that as the target becomes easier 

for predictors and thus the overall performance of all groups gets better, the correlation 

increases. This close correlation with GDT_TS for TBM targets indicates that the QCS method 

can also be applied to TBM model assessment. For the TBM category, even though most of 
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models get the global features correct, SI and SC in QCS still can reveal the difference in model 

quality. 

 

Ability of revealing best models 

An essential task of CASP assessment is to identify the best models. To focus on the ability of 

identifying best models, we studied the overlap between top models selected by automatic 

methods and by MIS. The top 5 models (including ties) were taken for comparison, and QCS 

top models overlap the most with MIS (43% overlap overall, shown in Table 2). Likewise, 

QCS ranks top models by MIS the highest, while GDT_TS and CS ranks them slightly lower 

than QCS did.  

      This moderate overlap is likely due to similar reasons as discussed in section 3.3. For 

T0534d1 and T0534d2, as all the models failed to predict the topology correctly, clearly best 

models do not exist. In contrast, for T0537 and T0550d1, many models were based on the same 

correct template and only precise measurement could differentiate the model quality. In both 

cases, the top models selected by MIS are questionably ideal. There are also a few cases where 

MIS top models are worse than top models detected by other methods after careful manual 

inspection. Without special attention to selecting the best few models, the models with highest 

MIS might result from subjective judgment without careful study in the limited time frame of 

CASP season.  

      In the development stage of QCS, we devoted special attention to ensuring the top 10 

models correspond to or are comparable with the best models by careful manual inspection. 
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Top 10 models selected by QCS and top 5 models according to MIS and other methods are at 

http://prodata.swmed.edu/congqian/casp_sum.html.  

      We designed QCS on the basis of our experience in CASP9 assessment. The criteria for 

assessing structure prediction we implemented could be different from the standard of others. 

In the CASP8 experiment, all the best FM models selected by the assessors corresponded to 

the ones with highest GDT_TS (Ben-David et al., 2009). This perfect overlap might either 

indicate their great emphasis on the model’s ability in superimposing to the target or reflect 

the bias placed by GDT_TS on the assessors: their manual assessors were likely to be aware 

of GDT_TS rankings and only a small portion of models ranked high by GDT_TS were 

manually inspected, which in some cases represent only a group of similar models (Ben-David 

et al., 2009).  

      In contrast, QCS agrees with CASP7 assessors’ manual inspection results better than 

GDT_TS and the contact-based score (named CMO) designed by CASP7 assessors. Even 

though GDT_TS and CMO top 25 models were used as candidates, the best models selected 

after 3 rounds of careful manual inspection are ranked higher by QCS than by either GDT_TS 

or CMO. Out of the 45 best models for 18 targets, 25 are in the top 5 ranks by QCS, while 15 

of them overlap with GDT_TS top 5 models and only 6 are among the CMO’s top 5 models. 

Moreover, for most targets, the average QCS ranks of the best models are higher or about the 

same as GDT_TS and CMO ranks. This good agreement between QCS selection and CASP7 

assessors’ manual inspection results independently supports the value of QCS in revealing the 

best models. 
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      For 3 targets (T0296, T0309, T0314), QCS ranked the best models lower than GDT_TS 

and CMO did. However, for T0296 and T0314, no predictions modeled the topology of the 

structure correctly (Jauch et al., 2007) and the best models selected by previous assessors are 

not clearly better than QCS top models. Only for T0309, the best manually selected models 

seemed to be of better quality than QCS picks. This target is a domain-swapped octamer. 

Manually selected models placed the strands that involve in oligomerization correctly, 

somewhat neglecting other parts of the molecule, while QCS preferred models that packed the 

rest of the molecule correctly. Manual inspectors paid more attention on the oligomerization 

strands since they form the core of the octamer. However, as the oligomerization strands are 

loosely packed in the monomer, QCS, by design laid less emphasis on them. Such a priority 

defined by the specific features of certain target is the unique advantage of manual inspection, 

and it signifies the importance of manual assessment. 

 

QCS reveal models of superior global topology 

Best models selected by QCS were compared with best models suggested by GDT_TS. In most 

cases the best models selected by both scores agree with each other (shown in Table 3). For 

some cases, QCS did reveal models with good features that were missed by GDT_TS. Three 

such examples are shown in Fig. 5-7.  

      The first example is target T0561 (Fig. 5A). QCS selects model TS295_2 (Fig. 5B) as the 

best model with a score of 62.4 and scores 46.9 for the other model TS324_5 (Fig. 5C), while 

GDT_TS favors model TS324_5 (GDT_TS: 39.4) over TS295_2 (GDT_TS: 31.5). GDT_TS 

favors model TS324_5 as its 3 helices at the N-terminus (colored in blue, green and yellow in 
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Fig. 5) can be precisely superimposed to the corresponding helices in the target. However, in 

terms of global topology, the two helices at the C-terminus of model TS324_5 (Fig. 5G) are 

packed in opposite orientations compared to the target (Fig. 5E). The incorrect packing of these 

helices in the model TS324_5 diminishes the quality of this model. On the contrary, the global 

topology of model TS295_2 (Fig. 5F) agrees exactly with that of the target. Moreover, out of 

the 3 key interactions (Fig. 5I, colored in magenta) defined in target, TS295_2 (Fig. 5J) predicts 

all of them correctly while in TS324_5 (Fig. 5K) only one of them is correct. Apparently, by 

paying attention to the global features, QCS has revealed models with superior global topology 

and interactions, which should be favored after closer inspection. 

      The model (TS096_4, Fig. 5D) selected by MIS also adopts correct topology (Fig. 5H). 

QCS ranks this model at 18 with a score of 58.0, after the cluster of models that assemble 

TS295_2. A superior feature of this model is that the N- and C- termini are placed close to 

each other as they are in the target. Nevertheless, the helices in this structure are over-predicted 

and thus the loop regions are inadequate to allow correct packing angles between the helices. 

Moreover, close study of the interactions shows that they are poorly predicted in this model. 

Such features downgraded the quality of this model and made it worse than TS295_2 by careful 

manual comparison.  

      The second example is the target T0618 (Fig. 6A). For this target QCS ranks TS386_4 (Fig. 

6B) as the best model (QCS: 61.3, GDT_TS: 39.6), which is visually identical to the best model 

according to MIS. And GDT_TS selects TS380_4 (Fig. 6C) as the first model (QCS: 53.3, 

GDT_TS: 41.9). TS380_4 is worse in topology as the green helix in a completely wrong 

orientation, leading to opposite handedness between the green, yellow and orange (or red) 



55 

 

helices. Moreover, different from the real structure, the C- and N-terminal helices in TS380_4 

are almost perpendicular and the shape of the whole protein is a poor representation of the 

reality. Comparatively, the best model selected by QCS almost correctly predicted the topology 

and the global shape of the model, promising an undoubtedly better model by manual 

inspection.  

    The third example is target T0621 (Fig. 7A). QCS favors model TS065_5 (shown in Fig. 

7B, QCS: 65.3, GDT_TS: 32.2) over TS002_5 (shown in Fig. 7C, QCS: 53.2, GDT_TS: 34.0). 

The core of this target is a jelly roll β-sandwich and the model favored by QCS positions all 

the β-strands in the β-sandwich correctly. However, the model favored by GDT_TS failed to 

pack the N-terminal and C-terminal strands, even though it may have better superimposition 

with target because of better details in the shape of the β-sandwich. Similarly to QCS, MIS 

ranked model TS065_1 (QCS rank it as 2nd) as the best, which is very similar to TS065_5 in 

global topology, with differences mainly in the inserted helices and hairpin colored in cyan in 

Fig. 6A.  

      These three examples illustrate general properties of QCS. Compared to the well-

established GDT_TS, this new method emphasizes more on the global topology, thus it can 

overcome the problem caused by domination of local features that is frequently revealed in 

GDT_TS. QCS defines all the SSEs and contacts in target and propagates these definitions to 

the model. Shift in the alignment will lead to incorrect definition of SSEs in the model and 

result in unfavorable QCS. As most structure prediction methods more or less take advantage 

of a template structure or template structure fragment, the correct alignment between the 
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template sequence and the target sequence during structure prediction procedure will be highly 

favored by QCS.  

      The best models selected by QCS and GDT_TS could be very different but both have 

certain advantages, one example is the target T0578 (Fig. 8A). This target has two hard to 

predict features: one is the unusual crossover between the green and yellow strands, which is 

predicted by none of the models. Another is the packing of the three helices. Model TS428_2 

is among the few models that packed these helices almost correctly and that explains the high 

MIS it obtained. However, this model only predicted half of the β-sheet in the target, and failed 

to adopt an elongated shape as the target. On the contrary, QCS's top model, TS065_3 correctly 

predicted the shape of the protein and the major part of the β-sheet while it failed to model the 

topology of the helices. QCS favors such model likely because we designed QCS to emphasize 

on strands by weighing the residues of a strand twice as much as residues in a helix.  

      In such cases, top models selected by different methods reveal different positive features. 

By combining them, we can generate a better pool of candidates for best models and provide 

better assessment of structure predictions and facilitating development of methods.  

 
CONCLUSIONS 

 
We developed an automatic method for structure prediction assessment that inspired the 

manual assessment traditionally carried out by CASP assessors. Not dominated by local 

features of the prediction, QCS emphasizes on the global topology. QCS is a good complement 

for superimposition based scores as GDT_TS and can be used for CASP in the future and 

generally for automatic structure prediction assessment. Moreover, QCS can be upgraded into 
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a tool for general structure alignment and comparison. With emphasis on global structure, QCS 

or the ideas presented could be useful for remote homology detection and structure 

classification of proteins. 
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CHAPTER FOUR 
MESSA: MEta Server for Sequence Analysis 

 
 

INTRODUCTION 

Every research project on a protein should start from computational analysis of its 

sequence. Well-designed sequence analysis is an efficient way not only to obtain predictive 

information, but also to prevent potential mistakes in the interpretation of experimental data. 

The widely known argument about the report of a plant G-protein coupled receptor (GPCR) 

[1], which subsequently was suggested to be a cytoplasmic lanthionine synthetase-like protein 

by both computational analysis and experimental verification [2-3], illustrated the value of 

sequence analysis.  

To serve the growing need for computational analysis of protein sequences, many tools 

have been developed. Such tools typically predict certain local sequence property, spatial 

structure or function of a query sequence. A reliable prediction usually requires the correct 

selection of tools and a broad incorporation of predictive information. A consensus based 

method that derives conclusion based on the consistent judgment among different predictors 

usually produces better results than individual tools it includes [4-5]. In addition, when 

independent pieces of information are combined together, errors in a prediction can be revealed, 

leading to even better performance. For instance, in the last Critical Assessment of Structure 

Prediction (CASP), even the top performing 3D structure predictors were not able to detect 

and remove the signal peptides in the target sequences [6], resulting in a negative influence on 

the prediction quality as a hydrophobic signal peptide would tend to be packed in the middle 
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of the structure. As a result, in order to generate a reliable hypothesis on the basis of 

computational analysis, one need to consult many predictors and analyze all the results together, 

making comprehensive analysis on a given protein a non-trivial task.  

Meta severs have been developed to reduce such difficulty by combining various tools 

and integrating their results. Most meta servers focus on one aspect of sequence analysis, for 

instance, Jpred for secondary structure [7], metaPrDOS for disordered region [8], metaTM for 

transmembrane topology [9], Pcons.net [10] and 3D-Jury [11] for 3D structure, JAFA [12] and 

ProKnow [13] for function prediction. Other web services incorporate more information to 

further accelerate sequence analysis, such as PredictProtein [14] for predictions of many local 

sequence properties, SMART [15] for identification of protein domains and special sequence 

motifs and Genesilico [16] that focuses on secondary and spatial structure predictions.  

However, as predictions of local sequence properties, structure and function are usually 

highly related, it is beneficial to address these questions together thus deriving more reliable 

conclusions from all information. For instance, the presence of certain local sequence motifs 

such as a transmembrane helix or a signal peptide and the predicted 3D structures provide 

essential clue for function interpretation. Thus we developed a MEta Server for Sequence 

Analysis (MESSA), which balances these predictions and provide results related to subcelluar 

localization (only for membrane protein and exported proteins), function, 3D structure 

templates and domain architecture. We tested MESSA on the proteome of Candidatus 

Liberibacter asiaticus (Ca. L. asiaticus) [17] and the results showed that MESSA provides 

extensive information about the structural and functional properties of these proteins, useful 

for understanding of and designing experiments on certain protein. 
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RESULTS AND DISCUSSION 

Interpretation of Results from MESSA 

Upon the submission of a single query protein sequence, MESSA runs a number of top-

performing programs and returns a webpage with results conveniently formatted for manual 

inspection. MESSA contains several time-consuming steps such as PSI-BLAST [18] and 

HHsearch [19], and thus for proteins from very large families, it might take several hours for 

the whole process to complete. However, as these time consuming steps are designed to detect 

remote homologs and the information is useful when closely related protein families or protein 

structures do not exist. Thus, to avoid the long waiting time, MESSA provides a friendly 

interface to allow integration and display of the available results at any time after submitting 

the job upon users’ request, while the time-consuming processes are still waiting in the job 

queue or running in the background. The users will be notified by email once the job is finished 

and the result of MESSA contains the following sections. 

Section I. Prediction of Local Sequence Features (Fig. 1A): Local sequence property 

predictions, such as secondary structure or disordered region, are helpful for predicting 3D 

structure, whereas, signal peptide and transmembrane helix predictions are suggestive of the 

protein localization and function. This section summarizes the predictions of secondary 

structure, low-complexity region, disordered region, coiled coils, transmembrane helices and 

signal peptides. Signal peptide is a sequence motif at the N-terminus of proteins characterized 

as a hydrophobic α-helical region flanked by a positively charged short region at the N-

terminus and several polar residues at the C-terminus. The programs used for each prediction 
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and the explanation of the results are described in details in Table 1. The result from each 

predictor is represented as one string made up of each residue’s predicted status. These strings 

are all aligned to the original protein sequence for easy comparison.  

Section II. Close Homologs: Close homologs or orthlogs usually preserve the same 

function inherited from the common ancestor, and thus the detection of them is useful for 

function prediction. MESSA shows the 10 closest confident homologs in the NonrRdundant 

(NR) and SWISS-PROT database detected by BLAST [20] or 2 iterations of PSI-BLAST [18] 

(E-value cutoff 0.005). On the one hand, NR database is the most comprehensive database 

consisting of almost all known sequences; therefore the best hits detected in NR will represent 

the closest sequences known in the protein sequence space. The taxonomy information of these 

hits is shown to provide hints to the evolutionary history of the protein and reveal horizontal 

gene transfer events. On the other hand, SWISS-PROT database contains a subset of the NR 

and all proteins are manually curated, and the close homologs from this database offers a more 

reliable resource for annotation transferring. 

Section III: Homologous Protein Families (Fig. 1B): Proteins can be classified into 

families according to similarity in sequences, structures and functions inherited from common 

ancestors [21-26]. Such classification and the extensive information of each protein family in 

the databases [21-26] assist in functional annotation greatly. In this section, we listed the 

homologous protein families and conserved domains identified by RPS-BLAST [27] (E-value 

cutoff: 0.005) or HHsearch [19] (probability cutoff: 90%) in the NCBI Conserved Domain 

Database [23]. For each detected protein family or conserved domain, the relevant information 

and the alignment to the query protein can be easily retrieved for convenient verification. This 
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section is the most instructive reference for function annotation. Close homology between an 

unknown protein and certain well characterized protein family usually indicates that the 

unknown protein should be assigned to this family and share similar functional properties with 

the protein family. 

Section IV. Homologous Structures and structure domains (Fig. 1C): Spatial 

structure prediction is an important aspect of sequence analysis. First, a 3D view of the protein 

can disclose the crucial residues and the mechanism for the protein to perform its function. 

Second, as 3D structure is much more conserved among homologous proteins than function, a 

reliable structure prediction is achievable for most proteins in a proteome [28], including many 

cases for which confident function predictions are not feasible. Third, the predicted structure 

is indicative of protein function: the presence of conserved active-sites and binding surfaces is 

useful in providing hypothesis about the protein function or validating the predicted function 

from sequence-based approaches. This section is designed for structure modelling. 

Homologous structures in the Protein Data Bank [29] and structure domains in the Structure 

Classification Of Protein (SCOP) database [30] detected by PSI-BLAST (e-value below 0.005), 

RPS-BLAST (e-value below 0.005) and HHsearch (probability higher than 90.0%) are shown. 

For each detected protein and protein domain, the alignment and the corresponding structure 

displayed by Jmol (an open-source Java viewer for chemical structures in 3D, available at: 

http://www.jmol.org/) can be retrieved. The conservation of protein structures among 

homologs allows these structures, in most cases, to represent the general topology of the query 

protein. These evolutionarily related protein structures can be utilized as templates for 

homology modeling to generate a 3D structure model of the query by MODELLER [31] or 
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SWISS-MODEL [32]. For structure domains detected in SCOP, we also provide the 

classification hierarchy of the domain, which gives insights in evolutionary history of the 

domain and suggests similarities to other proteins. 

The extensive information obtained by MESSA can help researchers to acquire 

knowledge and hypothesis about a protein and help them to interpret experimental results. For 

instance, part of the result produced by MESSA for the purported GPCR [1] (discussed in 

Introduction, refseq ID: NP_175700) is shown in Fig. 1. Most transmembrane topology 

predictors implemented by MESSA predict it to be a cytoplasmic protein without 

transmembrane helices. Only TOPPRED and HMMTOP detected transmembrane helices in 

the protein. However, TOPPRED and HMMTOP are designed to reveal the topology of a given 

transmembrane protein rather than distinguishing transmembrane proteins from cytoplasmic 

proteins, so they might recognize a buried hydrophobic helix in a protein as transmembrane 

helix and lead to a high false-positive rate in predicting transmembrane proteins. The protein 

family assignment and the 3D structure templates supported by multiple methods consistently 

suggest its close relationship to lanthionine synthetase. Moreover, the predicted 3D structure 

shows that the protein has 14 semi-parallel helices. Although the 7 helices buried in the middle 

of the structure appear to be hydrophobic, the surface of the protein is largely hydrophilic. 

MESSA definitively suggests potential problem in the function proposed by the authors [1]. 

The evidence obtained easily from MESSA could assist with experimental data interpretation 

and prevent hasty conclusion in such cases.  

 



76 

 

Comparison between MESSA and other similar meta servers 

Except for the broad incorporation of predicted features, MESSA has two additional 

important features. First, MESSA provides convenient display of the results. For instance, the 

local sequence feature predictions are all represented as one line and aligned to the sequence 

and the detected structure templates can be directly displayed on the result page. Second, it 

relies on confident homology inferred by sequence and profile similarity for structure and 

function prediction. Structure and function prediction without experimentally studied 

homologs, such as de novo folding and functional association analysis remains highly 

challenging. The conservative homology-based approach ensures the confident predictions in 

most cases. Moreover, the rapid growth in the numbers of experimentally studied proteins and 

available protein 3D structures has greatly increased the capability of homology-based 

structure-function annotation and ensures reasonable prediction coverage.  

Widely used web services similar to MESSA include PredictProtein [14], SMART [15] 

and GeneSilico [16]. Instead of focusing on one aspect of protein sequence analysis, such as 

function prediction or 3D structure prediction, these meta servers also incorporate a large 

variety of programs and aim at facilitating highly integrated sequence analysis. PredictProtein 

offers rich information about the local sequence features of a protein, such as the secondary 

structure, transmembrane helices, protein sorting signals and functional sites. Compared to 

MESSA, it lacks the function of detecting related protein families and pays limited attention 

to prediction of 3D structure. Moreover, due to the high volume of usage, PredictProtein only 

offers 3 free queries for academic users per year. SMART is specialized in annotating domain 

architecture. Moreover, it offers prediction of signal peptides, transmembrane helices, low 
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complexity regions and homologous structures detectable by BLAST. Compared to SMART, 

MESSA is featured by the ability to detect remote homologous protein family and protein 

structure and thus has higher ability in structure and function prediction at the cost of longer 

execution time for a query protein. We regard Genesilico meta server as the most similar work 

to MESSA. Although Genesilico is featured as a Fold Recognition meta server, it also offers 

information about related protein families, prediction of transmembrane helices and signal 

peptides. Different from Genesilico that emphasizes on 3D structure prediction, MESSA aims 

at offering well-balanced information to support integrative analysis of protein local sequence 

features, 3D structures and function. As a result, MESSA does not include that many tools for 

structure template identification except most well-performing ones. In addition, MESSA 

include prediction of signal peptides, conservation index of the protein and information about 

closely related proteins, which are helpful for function interpretation.  

 

Application of MESSA to the proteome of Candidatus Liberibacter asiaticus 

We tested MESSA on the proteome of the recently sequenced genome of Candidatus 

Liberibacter asiaticus [17], and the results are constructed as a website at 

http://prodata.swmed.edu/liberibacter_asiaticus/. In the genome sequence of C. L. asiaticus, 

the gene prediction pipeline from NCBI and SEED detected 1233 protein coding genes, with 

1046 of them predicted by both methods. In addition, 58 proteins that are identified by either 

of the single gene prediction pipelines show confident homology to other proteins in the non 

redundant database. We consider these 1104 proteins to be confidently predicted ones. The 

remaining 128 proteins exhibit a relatively small size (usually less than 60 residues), comprise 
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of low complexity sequence, lack similarity to any known protein, and are inconsistently 

predicted. These genes may represent falsely predicted open reading frames that may not exist 

in the bacterium.  

Based on the MESSA results, we manually analyze every protein. Among the 

confidently predicted proteins, 63 are likely to be extracellular proteins as they are predicted 

to harbor a signal peptide by no less than 2 methods, and they are not transmembrane proteins. 

197 of all Ca. L. aisaticus proteins are likely to locate to the membrane of the bacterium. 

Membrane localization is based on the consensus between no less than 3 out of 6 

transmembrane-helix predictors, as well as the topology of predicted 3D structures. As shown 

in Fig. 2, we were able to predict the function for 80.1% of these confidently predicted proteins, 

while NCBI and SEED annotated 68.0% and 70.8% of them respectively, 74.1% taken together. 

Moreover, out of the 220 proteins without function predictions, 37.3% are predicted to be 

secreted or transmembrane proteins, indicating their general function in communicating with 

the environment.  

 In addition, the information provided by MESSA offers homologous structures for 

template based structure modeling for Ca. L. asiaticus proteins. The confident structure 

templates (HHsearch probability above 90%, PSI-BLAST or RPS-BLAST E-value below 

0.005) in this website cover 74.3% of all residues in the Ca. L. asiaticus proteome. In addition, 

regions that are predicted to be disordered by no less than 2 predictors and they appear at the 

boundaries of protein domains count for another 5.8% of all residues. On the level of individual 

proteins, 65.9% of all Ca. L. asiaticus proteins exhibit greater than 80% coverage. It is 

important to note that we adopted conservative criteria for selecting structure templates, which 
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may underestimate the number of Ca. L. asiaticus proteins that can be confidently predicted by 

homology modeling. In summary, our results indicate that MESSA can help biologists to 

efficiently gain understanding about proteins and would be useful for biological studies. 

 

CONCLUSIONS 

We developed MESSA, a web service that integrated the results of a dozen of state-of-

the-art sequence analysis tools to provide predictions on local sequence properties, 3D 

structure and function of a given protein. MESSA offers a friendly user interface and display 

the results convenient for navigation. Our bench-mark study showed that MESSA was able to 

offer extensive information for most of the proteins in a genome and assist structure and 

function prediction. We hope MESSA can help biologists to gain understanding about proteins 

under study.  

 

METHODS 

Assemble computational tools 

MESSA assembles a dozen of well-established tools to perform analysis for an input 

protein sequence. First, it predicts the local sequence features (listed in Table 1) of a query 

protein by multiple predictors with default parameters. Second, it detects close homologs of 

the query in the NR and SWISS-PROT databases by 2 iterations of PSI-BLAST [18] with e-

value 0.005 as cutoff. Based on PSI-BLAST alignments, these PSI-BLAST 2nd iteration hits 

in the NR database filtered by more than 40 percent coverage and less than 90% sequence 

identity were used to construct the sequence profile and calculate the positional conservation 
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indexes by AL2CO [33]. Third, related protein families were detected from Conserved Domain 

Database (CDD) [21-26] by RPS-BLAST [27] and HHsearch [19]. Fourth, to detect 

evolutionarily related protein structures and reveal domain architectures, we used three 

protocols: 1) PSI-BLAST against the NR database, starting from the sequence profiles built by 

the buildali.pl script in the HHsearch package [19], 2) RPS-BLAST and 3) HHsearch against 

the 70% sequence identity representatives of all PDB entries [29] and SCOP (version 1.75) 

database [30] starting from the single protein sequence.  

Application of MESSA to the proteome of Candidatus Liberibacter asiaticus 

All the sequences of Ca. L. asiaticus proteins predicted by NCBI gene prediction 

pipeline [34] were downloaded from the Genbank database 

(ftp://ftp.ncbi.nih.gov/genbank/genomes/Bacteria/Candidatus_Liberibacter_asiaticus_psy62_

uid29835) and additional proteins that are detected by the SEED (Genome annotation web 

service on the basis subsystems, http://pseed.theseed.org/seedviewer.cgi) [35-36] but missed 

by NCBI were added. The relevant information about the Ca. L. asiaticus proteome was 

obtained from NCBI (http://www.ncbi.nlm.nih.gov/nuccore/CP001677), the SEED and Kyoto 

Encyclopedia of Genes and Genomes (KEEG, http://www.genome.jp/kegg-

bin/show_genomemap_top?org_id=las) [37]. Computational analysis by MESSA was 

performed on each protein and the results were constructed as a website at: 

http://prodata.swmed.edu/congqian/Candidatus_Liberibacter_genome_home.html. 

Based on the information in the website, we manually curated the functional assignment, 

predict the subcellular localization and selected structure templates for each protein. Functional 

annotations were mainly based on their close relationship to certain protein families or certain 
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protein that is curated manually in SWISS-PROT database. This relationship was verified on 

one hand by the statistical significance, coverage and alignment quality between the Ca. L. 

asiaticus protein and the identified families or domains, and on the other hand by the consensus 

between different methods and annotations made by other databases. In cases where agreement 

between methods is lacking or statistical support is marginal, identification of conserved 

sequence motifs, inspection of predicted structure and clustering of homologous proteins were 

applied to obtain function predictions. 
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CHAPTER FIVE 
Sequence Analysis of the Candidatus Liberibacter asiaticus 

proteins 
 
 

INTRODUCTION 

 
Candidatus Liberibacter asiaticus (Ca. L. asiaticus) is a Gram negative 

Alphaproteobacterium. It is closely associated with Citrus Greening (also called 

HuangLongBing, HLB), one of the most severe worldwide diseases of citrus. The ranking 

Candidatus is assigned to this bacterium as it cannot be maintained in bacterial culture. In 

nature, the bacterium is transmitted among citrus plants by the piercing-sucking insects, Asian 

citrus psyllids (Diaphorina citri Kuwayama). In the plant, Ca. L. asiaticus resides in the 

phloem tissue [1,2,3]. The infected citrus plants gradually develop symptoms such as yellow 

leaves, premature defoliation and aborted fruit, followed by the eventual death of the entire 

plant [4,5]. It is hypothesized that Ca. L. asiaticus infection could induce over-accumulation 

of callose in plant plasmodesmata pore units and sieve pores and inhibits phloem transport, 

contributing to HLB symptoms [1,2,3]. 

Ever since HLB was described, efforts have been devoted to understanding the plant 

response to the infection [1,2,6,7], to diagnosing HLB [8,9] and to controlling the disease 

[10,11,12]. However, a fundamental understanding of the mechanism of HLB or an ultimate 

way to save the citrus industry has yet to manifest. This lack of accomplishment is due in part 

to the limited success in culturing the bacterium [13], which makes carrying out experiments 

directly on Ca. L. asiaticus a challenge. 
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In 2009, the complete genome sequence of Ca. L. asiaticus was obtained [14] and 

verified [15]. With the sequences available, proteins from Ca. L. asiaticus can be studied in 

vitro or through heterologous expression. Such experiments have verified the function of a 

hypothetical ADP/ATP translocase [16] and identified a moderate inhibitor of the predicted 

secA gene product [17]. These findings demonstrate the possibility of understanding and 

controlling HLB at the molecular level. Given the genome sequence, computational analysis 

combined with manual curation can stimulate such research by predicting the structure and 

function of Ca. L. asiaticus proteins, identifying potential virulence factors and selecting drug 

targets to specifically inhibit the bacterium. 

The Ca. L. asiaticus genome is highly reduced relative to other bacteria in the order 

Rhizobiales, likely related to its intracellular lifestyle [18]. Gene prediction and annotation 

pipeline [19] from National Center for Biotechnology Information (NCBI) and the RAST 

(Rapid Annotations using Subsystems Technology) server from the SEED (a web service for 

genome annotation based on subsystem approach) [20,21] have predicted 1233 protein-coding 

genes in the entire genome. This relatively small genome size allows careful analysis of all the 

Ca. L. asiaticus proteins in silico and prediction of their structure and function. 

Protein sequence analysis relies heavily on homology inference [22,23,24]. The 

structures of homologous proteins provide templates for structure modeling, and the function 

of close homologs can be transferred in most cases to the protein of interest. Meanwhile, in the 

absence of confident homologs, the presence of certain functional motifs, the predicted 3D 

structure, the genomic context, the phylogenetic distribution, the known physical or functional 
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protein-protein interactions and the presence of certain local sequence features (eg. signal 

peptide and transmembrane helices) can still provide hints to the general function [25,26]. 

Here we report a database with extensive predictive information for all the 1233 Ca. L. 

asiaticus proteins. Information from various databases was gathered for each protein and 

essential sequence features, such as signal peptides and transmembrane regions, were predicted. 

Moreover, the evolutionarily related proteins, protein families, protein structures and protein 

domains detected by multiple procedures were identified and presented. This website aims to 

facilitate in-depth manual analysis of the Ca. L. asiaticus proteome, such as supporting and 

modifying function predictions, generating structure models, analyzing domain architectures 

and more importantly, identifying potential effectors of this pathogen and targets for 

controlling HLB. To illustrate the potential application of the database, we manually curated 

the results in the websites to predict the structure and function of each protein. More 

specifically, we analyzed the duplicated proteins in Ca. L. asiaticus proteome and studied the 

proteins whose closest homologs are from phylogenetically distant organisms instead of 

Alphaproteobacteria. These proteins with abnormal evolutionary history are candidates of 

horizontally transferred genes. As a result, we identified several potential virulence factors. 

Experimental study on these proteins may be helpful for understanding and controlling Citrus 

greening. 
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METHODS 

 
Construction of the website 

All the sequences of Ca. L. asiaticus proteins predicted by NCBI gene prediction 

pipeline were downloaded from the Genbank database 

(ftp://ftp.ncbi.nih.gov/genbank/genomes/Bacteria/Candidatus_Liberibacter_asiaticus_psy62_

uid29835) and additional hypothetical proteins that are detected by the SEED (Genome 

annotation web service on the basis subsystems, http://pseed.theseed.org/seedviewer.cgi) but 

missed by NCBI were added. The relevant information about the Ca. L. asiaticus proteome 

was obtained from NCBI (http://www.ncbi.nlm.nih.gov/nuccore/CP001677), the SEED and 

Kyoto Encyclopedia of Genes and Genomes [27] (KEEG, http://www.genome.jp/kegg-

bin/show_genomemap_top?org_id=las). For each protein, computational analyses were 

performed as follows. 

First, we predicted the local sequence features (listed in Table 1) of each protein by 

multiple predictors with default parameters. Second, we detected their close homologs by 2 

iterations of PSI-BLAST [28] from Non-redundant database (NR, 05/22/2011) with e-value 

0.005 as cutoff. Based on PSI-BLAST alignments, these PSI-BLAST 2nd iteration hits filtered 

by more than 40 percent coverage and less than 90 (or 70) percent sequence identity were used 

to construct the sequence profile and calculate the positional conservation indexes by AL2CO 

[29]. Third, related protein families were detected from Conserved Domain Database (CDD) 

[30,31,32,33,34,35] by RPS-BLAST [36] and HHsearch [37]. Fourth, to detect evolutionarily 

related structures and reveal domain architectures, we used three protocols: 1) PSI-BLAST 

against the NR database (05/22/2011), starting from the sequence profiles built by the 
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buildali.pl script in the HHsearch package [37], 2) RPS-BLAST and 3) HHsearch against the 

70 percent sequence identity representatives of all PDB entries (up to Jan, 2011), Structure 

Classification of Proteins (SCOP, version 1.75) database [38] and the Molecular Modeling 

DataBase (MMDB, up to Jan, 2011) from NCBI [39], with the single protein sequence as query. 

All the results and useful information from other resources (NCBI, SEED and KEGG) were 

parsed and represented in a web page (details described in Results and Discussion). All the 

web pages were assembled to establish a sequence analyses website for Ca. L. asiaticus 

proteome. 

 

Application of the website 

Based on the information in the website, we manually curated functional assignments 

for each protein and selected a structure template for homology modeling. Functional 

annotations were mainly based on their close relationship to certain protein families. This 

relationship was verified on one hand by the statistical significance, coverage and alignment 

quality between the Ca. L. asiaticus protein and the identified families or domains, and on the 

other hand by the consensus between different methods and annotations made by other 

databases. In cases where agreement between methods is lacking or statistical support is 

marginal, identification of conserved sequence motifs, inspection of predicted structure and 

clustering of homologous proteins were applied to obtain function predictions. 

Homologous proteins within the Ca. L. asiaticus proteome were identified among 

BLAST (e-value cutoff 0.005, NR database) hits. Ca. L. asiaticus proteins were grouped 

manually in a single-linkage manner [40] requiring grouped proteins to have similar predicted 
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function. All the homologous groups with more than one protein were studied manually, from 

which potential virulence factors were identified and analyzed in detail. The taxonomy 

information of the top confident BLAST hits (e-value cut off 0.005) were examined, selecting 

those belonging to organisms other than Alpharoteobacteria. These proteins were then 

investigated carefully with the emphasis on identifying potential virulence factors. 

 

RESULTS AND DISCUSSION 

 
Description of the website 

The results of computational analysis on all 1233 Ca. L. asiaticus proteins are presented 

as a website at http://prodata.swmed.edu/liberibacter_asiaticus/. The proteins are sorted by 

their position in the genome to allow easy analysis on their genomic context. A separate web-

page is devoted to each protein and it contains the following information. 

Section I. Basic Information (Fig. 1A): 

This section provides relevant information from and links to other databases. Several 

existing annotations were listed, including: gene description (definition line in NCBI Protein 

Database), COG prediction (from NCBI, based on homologous relationship to COG cluster), 

Pfam domain (based on the best RPS-BLAST hit from Pfam families), KEGG prediction and 

the SEED prediction. By connecting our website with external established databases, this 

section offers an easy reference to all available information. Combining and comparing the 

annotations from different resources provides the basis for functional assignments. 

Section II. Prediction of Local Sequence Features (Fig. 1B): 
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Local sequence property predictions, such as secondary structures or disordered 

regions, are helpful for predicting 3D structure, whereas, signal peptide and transmembrane 

helix predictions are suggestive of the protein localization. This section summarizes the 

predictions of local sequence features as listed in Table 1. The results from each predictor are 

represented as a string consisting of predicted status and aligned to the original protein 

sequence for convenient comparison. 

Section III. Close Homologs (shown in Fig. 1C): 

Close homologs or orthlogs usually preserve the same function inherited from a 

common ancestor, which is the basis for function prediction. Moreover, the phylogenetic 

distribution of these closely related proteins provides hints about the evolutionary history of 

the protein and reveals horizontal gene transfer (HGF) events. HGF has a profound impact on 

the evolution of bacterial pathogens and it is a common mechanism to gain virulence-

associated genes originated in other organisms [41]. Thus, the 10 closest confident homologs 

detected by BLAST or 2 iterations of PSI-BLAST (E-value cutoff 0.005) are provided in 

ranked order. On top of this section, a summery line for each close homolog provides links to 

relevant information, including the NCBI gi linked to the relevant protein page at NCBI and a 

bar graph alignment overview linked to the pairwise BLAST or PSI-BLAST result and the 

taxonomy information, which is on the bottom of this section. Moreover, we specifically 

detected and reported homologous proteins (if any) from the same organism (Ca. L. asiaticus) 

so that these duplicated genes can be compared and analyzed together (example discussed 

below). 

Section IV: Homologous Protein Family (shown in Fig. 1D): 
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Protein classification and the extensive information gathered for protein families in 

databases can assist in functional annotation. In this section, we listed homologous protein 

families and conserved domains identified by RPS-BLAST (E-value cutoff: 0.005) and 

HHsearch (probability cutoff: 90%) in ranked order. Information is summarized on top similar 

to that described in section III, with links to the external databases and the detailed alignments 

with the identified families listed on the bottom. 

Section V. Homologous Structures and structure domains (illustrated in Fig. 1E): 

Homology modeling remains the most reliable and effective way of structure prediction, 

and the detection of a homologous template is the key step for modeling the structure [24,42]. 

This section is designed for structure modeling. Homologous structures and structure domains 

detected by PSI-BLAST (e-value below 0.005), RPS-BLAST (e-value below 0.005) and 

HHsearch (probability higher than 90.0%) are listed in similar format as described in Section 

III. For each hit, the alignment and the corresponding structure displayed by Jmol (an open-

source Java viewer for chemical structures in 3D, available at: http://www.jmol.org/) can be 

easily retrieved. These protein structures can be utilized as templates for homology modeling 

to generate a 3D structure model. For structure domains detected in SCOP, we also provide 

the classification hierarchy of the domain, which gives insights in the evolutionary history of 

the domain and suggests similarities to other proteins. 

 

Overall prediction statistics on the Ca. L. asiaticus proteome. 

With the information from the website, in-depth manual analysis can be conveniently 

carried out to predict the structure and function of each protein. In the genome sequence of Ca. 
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L. asiaticus, the gene prediction pipeline from NCBI and SEED detected 1233 protein coding 

genes, with 1046 in common. In addition, 63 proteins that are identified by either of the single 

gene prediction pipelines reveal confident homology to other proteins in the non redundant 

database. We consider these 1105 sequences to be confidently predicted proteins. The 

remaining 128 proteins exhibit a relatively small size (usually less than 60 residues), include 

low complexity sequence, lack similarity to any known protein, and are inconsistently 

predicted. These genes may represent falsely predicted open reading frames.  

Among the confidently predicted proteins, 63 are likely to be extracellular proteins as 

they are predicted to harbor a signal peptide by no less than 2 methods, and they are not 

transmembrane proteins. 197 of all Ca. L. aisaticus proteins are likely to locate to the 

membrane of the bacterium, based on the consensus between no less than 3 out of 6 

transmembrane-helix predictors, as well as the topology of the 3D structure templates. 

Confidently identified homology to known proteins or protein families allows us to predict the 

function for 80.1% of all confidently predicted proteins, while NCBI and SEED annotated 68.0% 

and 70.8% of them, respectively (74.1% taken together). Moreover, out of the 220 proteins 

without function predictions, 37.3% are predicted to be secreted or transmembrane proteins, 

indicating their general function in communicating with the environment. 

Another application of the website is to identify homologous structures for template 

based structure modeling for all Ca. L. asiaticus proteins. The confident structure templates 

identified by programs (HHsearch probability above 90%, PSI-BLAST or RPS-BLAST E-

value below 0.005) in this website and confirmed by manual curation cover 74.3% of all 

residues in the Ca. L. asiaticus proteome. In addition, some regions are predicted to be 
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disordered by no less than 2 predictors and they appear at the boundaries of protein domains. 

These regions count for another 5.8% of all residues. On the level of individual proteins, 65.9% 

of all Ca. L. asiaticus proteins exhibit greater than 80% coverage by the structure templates or 

disordered regions (Fig. 3). It is important to note that we adopted conservative criteria for 

selecting structure templates, which may underestimate the number of Ca. L. asiaticus proteins 

that can ultimately be predicted by homology modeling.  

 

Other application of the website and potential virulence factors 

More specific analyses on the proteome can be performed conveniently with the 

assistance of this website. For instance, we analyzed groups of homologous proteins within the 

proteome and proteins with abnormal evolutionary history, placing emphasis on the 

identification of potential virulence factors. We refer to virulence factors as gene products that 

enable a pathogen to colonize in the host, battle with the defense system and cause damage or 

inflammation to the host[43]. Plants exhibit pathogen-inducible defense mechanisms and the 

basal defense could be elicited by the pathogen-associated molecular patterns (PAMPs). 

Known PAMPs include bacterial lipopolysaccharide, peptidoglycan, and flagellin [44]. The 

Ca. L. asiaticus proteome includes almost all components of the flagellar assembly, including 

flagellin (FliC: CLIBASIA_02090), which might be able to initiate PAMP-triggered immunity 

(PTI) responses in Citrus. Common PTI responses include callose deposition, ethylene 

production and induction of pathogenesis-related proteins that can halt the bacterium from 

further colonization [44,45]. The detection of accumulated callose in plasmodesmata pore units 

and sieve pores after Ca. L. asiaticus infection supports the existence of PTI in Citrus [3]. 
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Similar to other plant pathogens, Ca. L. asiaticus might produce virulence factors to interfere 

with PTI and escape from the plant immune responses. These pathogenic factors are the key 

to understanding the mechanism of HLB.  

Homologous protein groups within the genome 

Only 22% of Ca. L. asiaticus proteins have detectable homologs by BLAST within the 

same proteome, which is lower than the average (31%) for bacteria proteomes of similar size. 

Based on detected sequence relationships, we identified all the close homologous clusters 

within Ca. L. asiaticus proteome. The distribution of cluster size is shown in Fig. 4 (trivial 

clusters consisting of just one protein excluded). We further studied clusters of homologs with 

more than one protein and classified them into 3 categories according to our interpretation of 

the duplication events.  

The first category is Ancient Duplication events during the functional divergence 

of proteins. They represent either paralogs with similar function but different specificity and 

partners (such as ABC-transporters, GTP-binding proteins, amino acid-tRNA synthetases) or 

evolutionarily related proteins that cooperate with each other in the same pathway or complex 

(such as pilin component proteins or NADH dehydrogenase subunits). Such phenomena where 

paralogous proteins either cooperate with each other in the same process or participate in 

similar steps of different pathways are common during the evolution of protein function [46]. 

The largest cluster is the ABC-type P-loop ATPases. The ABC-type ATPase is the largest 

protein family in bacteria [47] and they mainly work together with a transmembrane permease 

to function as ATP-binding cassette transporters (ABC transporters) [48]. In this parasitic 
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bacterium, their roles of gaining nutrition, resisting harmful compounds in the environment 

and constructing outer membrane are crucial for the survival of the bacterium.  

The second category of duplicated genes are recent duplication likely caused by the 

integration of bacteriophage. This category includes protein pairs with very high identity 

(more than 90% and even 100%), indicating recent duplication events. Recently, the sequence 

of the SC1 Liberibacter phage and SC2 Liberibacter phage [49], which coincides with Ca. L. 

asiaticus and can integrate into the bacterial genome, reveals that the current sequence of Ca. 

L. asiaticus str. psy62 (GenBank ID: CP001677.5) harbors an integrated SC1 Liberibacter 

prophage. The SC1 Liberibacter phage genome sequence can be aligned to the Ca. L. asiaticus 

genome with over 98% identity in nucleotide sequence. Moreover, 42 of Ca. L. asiaticus 

protein coding genes consecutively located on the chromosome match exactly all the proteins 

in SC1 Liberibacter phage. Moreover, one SC1 Liberibacter phage protein can be aligned to 

two duplicated Ca. L. asiaticus proteins at their N- and C-terminal halves respectively. We 

hypothesize that these two proteins contain the sites where the phage integrated into the 

bacterial genome. Many proteins in the prophage region, such as SNF2 family DNA/RNA 

helicases, NAD-dependant DNA ligase and guanylate kinases, have close homologs in the 

bacterial proteome. And these are likely homologous recombination events caused by the 

integration of the bacteriophage. The proteins in the integrated SC1 Liberibacter phage region, 

especially proteins that are not related to the life cycle of the phage deserve special interest, as 

the bacteriophage is a common vector for transmitting pathogenicity islands among bacteria 

[50]. 
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Proteins that may contribute to the virulence of Ca. L. asiaticus are of primary 

interest, and thus we list them in a special category. Their suspected role in bacterial 

pathogenicity is supported by some of the following criteria: (1) presence of signal peptide, (2) 

lack of detectable homologs in other organisms, likely resulting from fast evolution, (3) 

homology to known virulence factor. The existence of multiple copies of similar virulence 

proteins may intensify the pathogenicity.  

One of the most unusual homologous groups is the von Willebrand factor type A 

(shown in Fig. 5) (vWFA) domain containing proteins. There are 5 copies of such proteins in 

the Ca. L. asiaticus proteome. Only von Willebrand factor type A CLIBASIA_05050 (gi: 

254781108) and CLIBASIA_05060 (gi: 254781110) are annotated as vWFA, however, all 

evidence suggests the hypothetical proteins CLIBASIA_01365 (gi: 254780388), 

CLIBASIA_03630 (gi: 254780833) and CLIBASIA_04165 (gi: 254780934) to include vWFA 

domains. Starting from any protein in this group, all homology detection methods we applied 

detect vWFA domain at the C-terminus of the protein with confident statistics (e-value below 

1e-5 for RPS-BLAST and HHsearch probability above 99.8%). Moreover, every protein in this 

group preserves a metal ion dependent adhesion site (MIDAS, shown in Fig. 5B), which is the 

signature motif of vWFA domain. Transmembrane helices were detected at the N-termini of 

these proteins and the vWFA domains are predicted to be on the extracellular side by most 

predictors. vWFA domains are mainly found as extracellular eukaryotic domains involved in 

cell adhesion, migration, homing, pattern formation, and signal transduction [51,52]. Although 

the function of vWFA domains in bacteria is still unclear, they have been detected in some 

repeat in toxins (rtx, typical virulence factors secreted by Type I secretion system) and are 
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proposed to be involved in the virulence of the human pathogen, Legionella pneumophila. [53] 

Similarly, these vWFA domains that are predicted to be exposed on the surface of Ca. L. 

asiaticus may utilize their MIDAS motif to interact with host proteins and contribute to the 

virulence of Ca. L. asiaticus. 

Another potentially harmful for the plant group contains four hypothetical proteins that 

are all predicted to harbor signal peptides (gi: 254780135, 254781007, 254780914 and 

254780929). These four proteins share above 90 percent sequence identity with each other, 

and they are highly likely to preserve the same function. No confident homologs can be 

detected for them from organisms outside the Candidatus Liberibacter genus, indicating that 

they are fast-evolving proteins that may have unique functions. The other bacterium in this 

genus, Candidatus Liberibacter solanacearum, which has one copy of this unknown protein, 

is the pathogen of “zebra chip” disease in potatoes [54]. Due to the lack of homologs outside 

the Candidatus Liberibacter genus, we cannot predict the structure or exact function of these 

proteins, but the fact that they are duplicated secreted proteins unique to two plant pathogens 

already suggests their possible virulence role in HLB. 

Interestingly, 1.0% of the Ca. L. asiaticus proteins (listed in Table 2) have detectable 

homologs (by BLAST or PSI-BLAST) only within this proteome (up to 05/22/2011, after the 

closely related Candidatus Liberibacter solanacearum was sequenced). Despite the possibility 

that they are “novel” genes originating in this bacterium, it is more likely that these genes have 

diverged from their homologs so fast that the relationship is hardly detectable. Fast evolution 

is considered to be an important character of virulence factors [55], and thus these “redundant” 

and fast-evolving proteins in a small genome might be related to the virulence of Ca. L. 
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asiaticus. Moreover, the surprising prediction result that many of them are either predicted to 

be secreted proteins or membrane proteins further signifies the possibility for some of them to 

be virulence factors associated with HLB. 

 

Analysis of proteins with abnormal evolutionary history 

The taxonomy information of the close homologs of a protein is an indicator of its 

evolutionary history. Thus, we inspected the taxonomic information for each protein’s first hit 

in NR database detected by BLAST. We excluded the closest bacterium, Ca. L. solanacearum 

as some HGF events we are interested in might happen before their divergence. As expected, 

most (77%) of Ca. L. asiaticus proteins have closest homologs from the same 

Alphaproteobacterium phylogenetic class. Only 11% of all proteins display closest homologs 

from other classes (including bacteria, viruses and eukaryotes) and the other 12% appear only 

in the Candidatus Liberibacter genus. (shown in Fig. 6). However, careful manual analysis of 

proteins with close eukaryotic homologs reveals that these proteins are more likely to be 

horizontally transferred to the certain eukaryotic proteomes from Alphaproteobacteria or 

simply be a contamination in the sequencing of certain eukaryotic protein. For example, the 

best BLAST hit (proteins from Liberibacter genus excluded.) of the flagellar biosynthesis 

protein FliQ (CLIBASIA_02030) is from Gossypium hirsutum (upland cotton). Given all other 

close homologs are from Alphaproteobacteria and FliQ is a clearly bacterial gene, it is likely 

this hit is a contamination or a HGF events from Alphaproteobacteria to Gossypium hirsutum. 

Proteins with closest homologs from viruses provide hints to the integration of 

bacteriophage into the genome. Most of them are from the recently integrated SC1 liberibacter 
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phage. It is important to note that the proteins from the integrated phage might be the product 

of bacterial genes captured by the phage. In addition, our analysis revealed 13 other phage-

related proteins that do not belong to the SC1 liberibacter phage. This result indicates that 

another prophage might have integrated into this genome, but its genome has been reduced 

greatly during long time of evolution.  

Out of these proteins with potentially abnormal evolutionary history, we identified 

several potential virulence factors. As an example, hypothetical protein CLIBASIA_03975 (GI: 

254780898), was analyzed in detail with the assistance of information from our website. 

Homologous families of CLIBASLA_03975 detected by BLAST, RPS-BLAST and HHserach 

consensually suggest its close relationship to the dual specificity phosphatases (DSP, protein 

serine/threonine and tyrosine phosphatase) protein family. Structure prediction also reveals 

phosphotyrosine protein phosphatases II fold proteins (shown in Fig. 7), with the functional 

motifs for DSP preserved and located in a shallow cleft on the surface of the structure. Protein 

Ser/Thr and Tyr phosphatase functions as typical components of eukaryotic signaling pathways 

[53], while bacteria usually utilize histidine kinase for signal transduction. Although these 

phosphatases can participate in a bacteria’s own signaling pathway [56], they likely act as 

virulence factors since they can easily interact with the signaling system of the host [53,57].  

There is no clearly predicted protein Ser/Thr or Tyr kinase in the Ca. L. asiaticus proteome 

that could function as a counterpart of a DSP, suggesting that this predicted DSP actually 

participates in a signaling pathway of the plant host, potentially interfering with immune 

reactions that involve protein kinase signaling cascades [45]. More strikingly, local sequence 

feature prediction reveals a signal peptide at its N-terminus of this protein by several methods, 
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suggesting this is a secreted protein and further increasing the possibility of it being a virulence 

factor.  

 

CONCLUSIONS 

 
We carried out computational analysis on all Ca. L. asiaticus proteins and presented the results 

as a website that shows computational analyses for each protein. With the assistance of this 

website, we performed manual curation to predict the function, selected structure template and 

identified potential virulence factors and drug targets. The website serves as an encyclopedia 

of the Ca. L. asiaticus proteome to help researchers characterize the bacterial proteins, 

understand the mechanism of Citrus Greening and guide the development of methods to control 

the disease. 
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Figure 1 (see previous page)  Illustration of the webpage 

(A) Section I: basic information, function predictions from different resources and links to 

other databases. 

(B) Section II: local sequence feature prediction. It contains the following information: (1) 

sequence (highlighted according to the property of amino acid) from NCBI database; (2),(3) 

secondary structure prediction by PSIPRED and SSPRO (H: α helix, E: β strand, C: coils); (4) 

Coil and loop (highlighted in pink) predicted by DISEMBL; (5) Flexible loop (highlighted in 

pink) predicted by DISEMBL; (6) Low complexity region (highlighted in light red) predicted 

by SEG; (7)-(9): Disordered region (highlighted in red) prediction by DISPRED, DISEMBL 

and DISPRO; (10)-(15) Transmembrane helix (highlighted in blue) prediction by TMHMM, 

TOPPRED2, HMMTOP, MEMSAT, MEMSATSVM, Phobius; (14)-(17) Signal Peptide 

(highlighted in green) prediction by MEMSATSVM, Phobius, SignalP Hidden Markov Model 

mode and SignalP Neural Network mode; (18) Coiled coils (highlighted in yellow) prediction 

by COILS; (19),(20) Sequence colored by conservation (highlighted from white, through 

yellow to dark red as the level of conservation increases) computed on the Multiple Sequence 

Alignment of homologous proteins filtered by 70% or 90% sequence identity. 

(C) Section III: top 10 homologs detected by BLAST or 2 iterations of PSIBLAST are listed. 

For each hit, the alignment and taxonomy information are provided. 

(D) Section IV: homologous protein family and conserved domains detected by RPS-BLAST. 

The confident hits detected by certain method are listed and the relative information of each 

protein family and its alignment to the C. L. asiaticus protein can be retrieved  
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(E) Section VI:  evolutionary related protein domains detected by RPS-BLAST in SCOP 

database. It includes a table summarizing all confident hits, followed by is the relative 

information, the alignment and the 3D structure for each detected structure domain. 
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CHAPTER SIX 
Predictive and comparative analysis of Ebolavirus proteins 

 
 

INTRODUCTION 

 
Zaire Ebolavirus, the pathogen for Ebola Hemorrhagic Fever (EHF) with a 25-90% fatality 

rate(1), continues to threaten people’s lives. The current (2013 - Jun. 2015) West African 

outbreak of EVD has infected more than 27,000 people and caused 11,000 deaths(2). The 

genus Ebolavirus contains five known species: Bundibugyo (BDBV), Reston (RESTV), Sudan 

(SUDV), Taï Forest (TAFV) and Zaire ebolavirus (ZEBOV)(3). The current outbreak is 

associated with ZEBOV(4). Four Ebolavirus species cause EHF in human, with the sole 

exception being RESTV(5). RESTV can cause EHF to long-tailed macaque (Macaca 

fascicularis). People who had contact with RESTV-infected monkeys tested positive for 

RESTV antibodies but did not develop symptoms associated with hemorrhagic fevers(5).   

    Ebolavirus belongs to the order Mononegavirales and the family Filoviridae(3). Its genome 

contains seven protein-coding genes that encode the following products: Envelope 

glycoprotein (GP), Nucleoprotein (NP), RNA-dependent RNA polymerase L (L), Membrane-

associated protein VP24 (VP24), Minor nucleoprotein VP30 (VP30), Polymerase cofactor 

VP35 (VP35), and matrix protein VP40 (VP40). The GP transcript can be edited(6), and the 

gene product can be processed by host protease, giving rise to four alternative forms of gene 

products: GP1,2; GP1,2delta; sGP and ssGP. Host furin can cleave the longest product 

translated from edited mRNA of GP and generate GP1,2, which consists of two peptide chains 

connected by a disulfide bond(7, 8), GP1 and GP2. GP1,2 is assembled on the membrane of 
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Ebolavirus and mediates the cell entry. GP1,2delta is the processed product after removal of 

the C-terminal transmembrane region of GP1,2 by host ADAM17(9). Other products of the 

GP gene, sGP and ssGP are translated from the unedited mRNA and alternatively edited 

mRNA, respectively (10, 11). These products share the N-terminal 295 residues with GP1,2, 

but differ in their short tails (69 and 3 residues, respectively). 

    In addition to serving as structural components, the Ebolavirus proteins play multiple roles 

in the virus life cycle. GP mediates cell entry(12, 13) and membrane fusion(14, 15) between 

the virus and host cell. NP encapsidates the genome and protects it from nucleases(16, 17). 

VP30 is a transcription anti-terminator(18, 19) and regulates the switch between transcription 

and replication(20, 21). VP35 acts as a cofactor of the polymerase(22, 23), and VP40 may also 

play a role in genome replication and transcription(24). VP24 and VP35 participate in viral 

nucleocapsid assembly(17), and VP40 is essential for virus budding and assembly(25-27). In 

addition, GP, VP24, VP30, VP35 and VP40 interact with multiple host proteins to complete 

the viral life cycle and to suppress the host immune response. 

    Three-dimensional (3D) structures are available for a number of Ebolavirus proteins. 

Interpreting available experimental data and sequence variation among Ebolavirus species in 

the context of the 3D structures not only allows researchers to understand detailed mechanisms 

for cell entry, virus assembly and immune suppression, but also provides promising leads for 

structure-based drug design. In the current study, we predict the 3D structure and functional 

sites for Ebolavirus protein domains that are not yet characterized. In addition, we compare 

sequences of Ebolavirus proteins’ interacting partners from RESTV-resistant primates with 

those from RESTV-susceptible monkeys. Elevated sequence divergence for GP and VP35’s 
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interaction partners suggests that these two viral proteins may be responsible for host 

specificity in RESTV. Finally, we compare the protein sequences from different Ebolavirus 

species to detect positions that are conserved among human pathogenic species but variable in 

non-pathogenic RESTV (RESTV-specific mutations). Mapping of these RESTV-specific 

mutations and known functional sites to the 3D structures reveals clusters of RESTV-specific 

mutations on the surfaces of GP, VP35 and VP24.  These clusters do not overlap with the 

known functional sites and may suggest novel interaction sites with host proteins.  

 

MATERIALS AND METHODS 

 

Sequence analysis of Ebolavirus proteins 

The protein sequences of Zaire ebolavirus were downloaded from the UniProt database(28) 

and submitted to the MESSA web server(29) to predict the secondary structure(30, 31), 

disordered regions(32-35), transmembrane helices(36-40), signal peptides(37, 38, 41), coiled 

coils(42) and structure templates(43, 44). The 3D structures are mostly known, except for 

protein L, the N-terminal zinc-finger domain of VP30 and the coiled-coil region of VP35. For 

proteins and domains without known structure, we considered putative structural templates 

detected by HHpred(44), iTASSER(45, 46) and known structures for proteins of similar 

function from other families of RNA virus in PDB and ECOD databases(47). Once a candidate 

structural template was detected, we further validated its relationship to the Ebolavirus protein 

by similarity in function, compatibility between the predicted secondary structure(48) of the 

Ebolavirus protein and the 3D structure of the template, conservation of residues in the 
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Ebolavirus protein that were aligned to the active sites of the template, and the consistency 

among multiple structural templates. Sequences of the structural templates and the ZEBOV 

protein were aligned by Promals3D(49, 50) and the alignments were manually adjusted to 

ensure that the corresponding secondary structure elements in different templates were aligned 

together. Based on these alignments and knowledge about functional sites in the template 

structures from literature, the active sites of uncharacterized Ebolavirus domains of were 

predicted. 

 

Identification of positions associated with human pathogenicity 

We downloaded protein sequences of 124 Ebolavirus samples from 5 Ebolavirus species(4) at 

www.sciencemag.org/content/345/6202/1369/suppl/DC1, aligned them using MAFFT (51), 

and evaluated the similarity between amino acids at a certain position using BLOSUM62 

scores(52). We considered a position in the sequence alignment to be associated with the loss 

of human pathogenicity if it satisfies the following two criteria. First, the similarity in amino 

acids at this position from pathogenic species is always higher than the similarity between 

RESTV and a pathogenic species. Second, the average similarity in amino acids at this position 

from four pathogenic species (BDBV, TAFV, SUDV and ZEBOV) is significantly (p-value < 

0.05) higher than that between RESTV and pathogenic species. In order to calculate the p-

value for each position, we obtained an estimate of the background distribution for the 

positional difference between average sequence similarity within a group of any four 

Ebolavirus species (all possible combination except the one with all four pathogenic species) 
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and the average sequence similarity between a fifth species and those in the group. This 

distribution suggests that a difference larger than 2 is associated with p-value less than 0.05. 

Enrichment of these pathogenicity-associated positions in each protein was measured by a 

binomial test (p = total number of positions/total length of all proteins, m = number of selected 

positions in this protein, N = length of this protein). These pathogenicity-associated positions 

and the functional sites reported in literature were further mapped to the known 3D structures 

of Ebolavirus proteins.  

 

RESULTS AND DISCUSSION 

 

3D structure and functional sites prediction for Ebolavirus proteins  

The domain diagrams of all the Ebolavirus proteins are shown in Fig. 1. The positions that are 

variable between different Ebolavirus species are marked as a black line above the domain 

diagram. The average sequence identity of these proteins between different Ebolavirus species 

ranges from 60% to 80%. Ebolavirus proteins contain a significant fraction (20%) of 

structurally disordered regions, and the fraction of variable positions in these regions is 

significantly higher (p < 0.01) than the structurally ordered regions. The 3D structures of 

globular regions are mostly known (53-70) except for the N-terminal zinc-finger domain of 

VP30, the coiled-coil domain of VP35, and protein L. Identification and analysis of structurally 

characterized homologs allowed us to predict the structure of the zinc-finger domain in VP30, 

the overall topology of NP, and the structure and catalytic sites for the catalytic domains of 

protein L.  
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The zinc-finger domain of VP30 

The zinc-finger domain of VP30 was shown to coordinate zinc (71) and it contains a conserved 

C-x8-C-x4-C-x3-H motif. A search using the VP30 zinc finger motif (residues 70-95) as a 

query against SUPERFAMILY(72) database with HHpred web server (MSA generation 

method: HHblits, Maximal MSA Generation iterations: 3, Score secondary structure: yes, 

Alignment mode: local) reveals similarity (Probability: 52.4; Identity: 35%; E-value: 2.2) to 

CCCH zinc finger superfamily (seed: SCOP domain d1m9oa_). This hit has the highest 

coverage and it is the only one (probability cutoff: 20) that contains all the zinc-binding 

residues. In addition, a scan of the PDB sequences with the conserved pattern C-x(8)-C-x(4)-

C-x(3)-H using ScanProsite(73) reveals exactly the same motif in CCCH zinc fingers (PDB id: 

2d9n). The confident hits detected by both methods belong to the “CCCH zinc finger” family 

in the ECOD database(47), and this family contains the N-terminal domain of the transcription 

antiterminator M2-1 from another Mononegavirales, Pneumovirus. In addition to their 

common function, the C-terminal domain of M2-1 and Ebolavirus VP30 share the same 

topology (Fig. 2a,b). M2-1 uses a C-x7-C-x5-C-x3-H motif to bind zinc, which is connected 

to an alpha-helix at its C-terminus. The VP30 zinc-finger domain very likely adopts a similar 

structure (Fig. 2c,d), as supported by the presence of a similar C-x8-C-x4-C-x3-H motif and a 

predicted alpha-helix following the motif.  
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The N-terminal domain of NP 

NP has two structural domains that are connected by a long disordered linker of about 240 

amino acids. The C-terminal domain (PDB id: 4QAZ) is shared among Filoviridae and is 

involved in protein-protein interaction(53). The N-terminal domain is likely shared among 

Mononegavirales. The known 3D structures of NP from several virus families(76-80) in this 

order possess the same topology (Fig. 3a-d). Structures from Rhabdoviridae and 

Paramyxoviridae families are determined in complex with ssRNA. (Fig. 3a, c), and both clamp 

around the RNA using positively charged grooves (Fig. 3g, h) between the two subdomains 

after a remarkable conformational change compared to the RNA-free form (Fig. 3c, d). The 

RNA-bound NPs oligomerize to form a ring (Fig. 3i, j), but the oligmerization interface could 

vary: Rhabdoviridae pack the single-stranded RNA (ssRNA) inside the ring formed by NPs 

while ssRNA binds on the outside of the NP oligomer in Paramyxoviridae. 

    We predicted that the N-terminal domain of Ebolavirus NP would adopt the same conserved 

topology and suggested that its structure is similar to the NP from Nipah virus (PDB id: 

4CO6(80)). The 3D structure of this domain was released while our manuscript was under 

review and it supported our prediction (Fig. 3e, f). The available 3D structures for Ebolavirus 

NP (70, 81) were all determined in the absence of RNA. But its similarity to the NPs of other 

Mononegavirales and the presence of a positively charged groove between the two subdomains 

suggest a similar manner for RNA binding.  

The RNA-dependent RNA polymerase catalytic domain of protein L 

Sequence analysis suggests that the N-terminal half of protein L functions as a RNA-dependent 

RNA polymerase (RdRP), and is responsible for both DNA replication and transcription. 
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HHpred (44) detects a the Bunyavirus RdRP (PDB id: 5AMR(82)) as a structural template 

(Probability: 84%). The alignment between Ebolavirus RdRP and Bunyavirus RdRP includes 

both the adenylyl and guanylyl cyclase-like catalytic domain (palm domain) and a helical 

bundle connected to its C-terminus, and these two domains are conserved among known 

structures of RdRPs from RNA viruses (83-87) (Fig. 4a-c). Known RdRPs from RNA viruses 

share the same topology except for Birnavirus RdRP, which has a circular permutation in the 

catalytic domain. This structural conservation of RdRPs across different groups of RNA virus 

suggests that the RdRP of Ebolavirus also adopts the same topology. Secondary structure 

prediction for the Ebolavirus RdRP is consistent with the topology adopted by most RNA 

viruses, but not with the circular permuted structure from Birnavirus (Fig. 4e).  

    Multiple sequence alignment and 3D structures suggest a conserved catalytic mechanism of 

RdRP from dsRNA virus and ss(+)RNA virus. Two conserved Asp residues that are used to 

coordinate Magnesium ions in the catalytic site are in the same position in the 3D structures(88) 

(Fig. 4). A sequence alignment of these RdRPs allows us to predict the catalytic sites for 

Ebolavirus RdRPs: D632D and D742. These two positions are conserved among close 

homologs of Ebolavirus RdRP detected by PSI-BLAST(89). The second conserved Asp 

residue immediately follows a conserved Gly residue, forming a GD motif. Another Asp 

residue after the GD motif also participates in coordinating Mg2+ in most of the templates (Fig. 

4d).  However, this residue is not conserved in Ebolavirus and Birnavirus RdRPs. Alternatively, 

Birnavirus RdRP has a Glu residue after the first conserved Asp (Fig. 4f), which is in the 

correct position to bind Mg2+. Similarly, a conserved Glu residue (634E) in the same position 
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in the Ebolavirus RdRP may participate in Mg2+ binding, and the arrangement of these active 

site residues likely resembles that in Birnavirus RdRP.  

 

The methyltransferase domain of protein L for mRNA capping 

Addition of a 7-methylguanosine cap to the 5’ end of mRNA is essential for its subsequent 

translation and stability in eukaryotic cells(90). The C-terminal half of protein L is responsible 

for mRNA capping, and it contains an S-adenosyl-L-methionine-dependent methyltransferase 

domain that likely works in this process. HHpred detects several structural templates (Fig. 5) 

for this domain with probabilities above 95%. A sequence alignment between the Ebolavirus 

methyltransferase domain and the detected templates reveals that three residues, K1816, 

D1927, and K1962, are aligned to the conserved catalytic residues in the templates(91). In 

addition, the “GEGAGA” motif at positions 1836-1841 of Ebolavirus protein L is aligned to 

the conserved S-adenosyl-L-methionine-binding motif in the templates. This motif is also 

conserved in sequences from Filoviridae, suggesting a similar function in co-factor binding.  

 

Interaction between Ebolavirus proteins and host proteins  

RESTV causes EHF symptoms in Asian cynomolgus monkeys (Macaca fascicularis), but not 

human and African green monkeys (Chlorocebus aethiops)(5). This difference in susceptibility 

between closely related hosts is likely due to the sequence divergence in the host proteins that 

interact with virus proteins. Therefore, comparing the interacting partners of virus proteins 

from different hosts may provide insight into how host specificity is determined and further 
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suggest the mechanism for RESTV’s loss of human pathogenicity. The known interacting 

partners in the host for each Ebolavirus protein are summarized in Table 1.  

    The known host proteins that interact with VP24, VP30, and VP40 are highly similar 

between the RESTV-resistant (Chlorocebus and human) and RESTV-susceptible species 

(Macaca), suggesting that they may not be responsible for the loss of human pathogenicity in 

RESTV. In contrast, seven most divergent host partners interact either with GP or VP35. Three 

of them (marked in Table 1) show significantly (P<0.05) elevated divergence between the 

susceptible and resistant species, including Hepatitis A virus cellular receptor 1 (TIM-1) and 

pathogen-recognition receptor CD209 that interact with GP and facilitates cell entry, as well 

as the interferon-induced, dsRNA-activated kinase PKR that is inhibited by VP35. 

    The elevated divergence level for interacting partners of GP and VP35 in the host suggests 

that VP35 and GP may play important roles in determining host specificity. This is consistent 

with some indirect experimental data. RESTV GP pseudotyped viruses show significantly 

lower ability to infect human cells and damage human endothelial cells than that of ZEBOV 

GP pseudotyped viruses(92).  In addition, RESTV GP shows lower ability to deplete T cells 

and down-regulate interferon-stimulated gene expression compared to ZEBOV GP(93, 94). 

Meanwhile, ZEBOV VP35 shows stronger Interferon inhibition than RESTV VP35 in human 

cells(67). However, direct studies of all RESTV proteins’ effect in cells from both RESTV-

susceptible and RESTV-resistant species are needed to prove our hypothesis.  
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Interpreting residues associated with RESTV’s loss of human pathogenicity in the 

context of 3D structure and known functional sites 

We define positions that are associated with the loss of pathogenicity in RESTV as those that 

are always and significantly more similar among pathogenic species (BDBV, TAFV, SUDV 

and ZEBOV) than between RESTV and the pathogenic species. We referred to them as 

“RESTV-specific mutations”. We identified 215 such positions (Table 2), and VP30 and VP35 

are significantly enriched in such mutations. 

    43 of the RESTV-specific mutations can be mapped to known 3D structures of Ebolavirus 

proteins. None of them overlap with functional sites that are proved to be crucial by 

mutagenesis and six of them overlap with interaction surfaces (summarized in Table 3) on 

these structures. They may affect the binding affinities but would not likely abolish the 

interactions. One loop (129-141) of VP24 at the boundary of the interacting surface between 

VP24 and KPNA5(50) contains four RESTV-specific mutations (T131S, N132T, M136L, 

Q139R, within the red circle in Fig. 6d). These mutations may affect the binding affinity 

between RESTV and KPNA5 in RESTV, resulting in a poorer immune suppression by RESTV.  

One mutation to GP (N514D) is at the boundary of its interacting surface with neutralizing 

antibodies from human survivor and this may affect the efficiency of the ZEBOV antibodies 

to antagonize the RESTV.  

    Mapping of the RESTV-specific mutations to the 3D structures revealed a couple of 

mutation clusters in GP and VP35, which may be related to RESTV’s difference in 

pathogenicity (Fig. 6). A first cluster is in the C-terminal subdomain of the GP Filovirus 

glycoprotein domain. The cluster consists of three mutations on the surface: Y261R, T269S, 
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and S307H (inside the blue circle in Fig. 6a). The functional role of this subdomain is not clear, 

and the cell entry of ZEBOV is mostly mediated by the interaction between N-terminal 150 

residues of GP and cell receptors like NPC1 and TIM-1. One possibility is that it may interact 

with other host proteins, such as lectins, that facilitate the infection of Ebolavirus. In contrast, 

another cluster of mutations (Q44K, and V45A, inside the magenta circle in Fig. 6b) may affect 

the interaction between GP and the receptors. Even more, mutation E156N is close to the 

functional sites that are shown by mutagenesis to be important to maintain the infectivity of 

ZEBOV. Therefore, they may cause a significantly lower infectivity in RESTV and contribute 

to the loss of human pathogenicity.  

    RESTV-specific mutations (A290V, A291P, V314A, and Q329K) in VP35 form a cluster 

(inside the pink circle in Fig. 6f) on the opposite side of the dsRNA-binding surface of VP35. 

Host immune suppression by VP35 is mainly related to its interaction with dsRNA, but the 

loss of dsRNA-binding ability does not completely abolish VP35-mediated immune 

suppression(95). This observation indicates the existence of other mechanisms for immune 

suppression by VP35, where the surface enriched in RESTV-specific mutations may play a 

role. One RESTV-specific mutation (T226A) is adjacent to the position in VP24 that is mutated 

(T50I) during adaptation to mice(96, 97) (orange circles in Fig. 6c). This adaptation site is not 

close to any known functional sites. But the clustering of the adaptation site and RESTV-

specific mutation suggests the possibility that they are at the interface of some uncharacterized 

interaction with other host proteins. 
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Table 1 Host proteins that functionally interact with Ebolavirus proteins, and their 
divergence level between RESTV-susceptible and RESTV-resistant species 
Name Host protein Functional implication Chlorocebus vs Macaca Homo vs Macaca  
GP NPC1(12, 13) Receptor for the virus 6 (99.5%) 28 (97.8%) 
GP TIM-1(98) 11 (96.5%)*** 56 (80.2%)*** 
GP CD209 (99, 100) Facilitate cell entry in specific 

cell types 
15 (95.9%)*** 31 (92.1%)*** 

GP CLEC4M (99, 100) Not available in Macaca and Chlorocebus 
GP CLEC10A(92) 5 (98.4%) 42 (86.7%) 
GP FOLR1(101) 3 (98.8%) 8 (96.9%) 
GP FURIN(7, 8) Process GP to GP1,2 1 (99.9%) 9 (98.9%) 
GP CTSB(102) Process GP1,2 and initiate 

membrane fusion 
2 (99.4%) 10 (97.0%) 

GP CTSL(102) 3 (99.1%) 14 (95.8%) 
GP ADAM17(9) Process GP1,2 to GP1,2delta 1 (99.9%) 3 (99.6%) 
GP Dynamin (multiple)(103)  Activates endothelial cells, 

reduces their barrier function 
0~1 (99.9~100%) 2~6 (99.3~99.8%) 

GP ITGAV(103) 2 (99.8%) 9 (99.1%) 
VP24 STAT1(60) Inhibit JAK-STAT pathway for 

interferon sensing 
0 (100%)  5 (99.3%) 

VP24 KPNA5(55) 0 (100%) 2 (99.6%) 
VP24 MAPK14 (p38)(104) Prevents phosphorylation and 

inhibit interferon sensing 
0 (100%) 1 (99.6%) 

VP30 PPP1C(20) Dephosphorylate VP30, control 
replication-transcription switch 

0 (100%) 0 (100%)  
VP30 PPP2C(20) 0 (100%) 0 (100%) 
VP30 Dicer(105) Antagonize the RNAi 

machinery that could target 
viral RNA 

5 (99.7%) 10 (99.5%)  
VP30 TRBP(105) 2 (99.5%) 3 (99.2%) 
VP35 Dicer(105) Antagonize the RNAi 

machinery that could target 
viral RNA 

5 (99.7%) 10 (99.5%)  
VP35 TRBP(105) 2 (99.5%) 3 (99.2%) 
VP35 ILF3 (DRBP76)(106) Inhibit the effect of interferon 0 (100%) 3 (99.7%) 
VP35 IKBKε(107) Block phosphorylation of IRF-3 

by TBK-1 and IKBKε, 
inhibiting interferon production 

4 (99.4%) 15 (97.9%) 
VP35 TBK-1(107) 2 (99.7%) 8 (98.9%) 
VP35 IRF-3(107) 2 (99.5%) 17 (96.0%) 
VP35 PACT(108) Inhibit its role as RIG-I 

activator 
0 (100%) 0 (100%)  

VP35 PKR(109) Inhibit the effect of interferon 42 (92.4%)*** 110 (80%)*** 
VP35 UBE2I(110) Use SUMO E2 enzyme 

(UBE21) and E3 ligase (PIAS1) 
to modify IRF7 and inhibits its 
function  

0 (100%) 0 (100%) 
VP35 PIAS1(110) 0 (100%) 0 (100%) 
VP35 IRF-7(110) 9 (98.2%) 35 (92.9%) 

VP35 DLC8(111) May regulate viral life cycle 1 (98.9%) 0 (100%) 
VP40 Sec24C(112) Virus utilize COPII vesicular 

transport system for life cycle 
7 (99.4%) 24 (97.8%) 

VP40 TSG101(27) Virus uses multi-vesicular body 
biogenesis pathway for budding 

0 (100%) 0 (100%) 

VP40 ABL1(113) ABL1 controls budding/release 
by phosphorylating VP40 

5 (99.6%) 13 (98.8%) 

VP40 NEDD4(114) NEDD4 facilitates budding by 
adding ubiquitin to VP40 

5 (99.5%) 28 (97.8%) 

VP40 Tubulin (multiple)(115) Virus utilize cytoskeleton in its 
life cycle 

0 (100%)  0 (100%)  
VP40 Actin (1 and 2)(116)  0 (100%) 0 (100%) 
VP40 IQGAP1(117) 2 (99.9%) 9 (99.4%) 
 
*** significantly (p<0.05) elevated divergence level 
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Table	 2.	 Positions	 in	 ZEBOV	 that	 are	 likely	 associated	 with	 the	 loss	 of	 human	

pathogenicity	by	RESTV	

Name	 ID	 Length	 P-value	 Mutations	associated	with	the	loss	of	human	
pathogenicity	

GP	 Q05320	 676	 0.457	

F31I,	 Q44K,	 V45A,	 E156N,	 S196A,	 L199A,	 S210T,	 Y261R,	
T269S,	T283P,	S307H,	T335P,	E337T,	H339N,	E345T,	H354L,	
E359T,	 A361E,	 A427M,	 G488K,	 R498K,	 R500K,	 N514D,	
D607S,	K622E,	I627K,	Q638H,	D642L,	W644L,	T659I	

L	 Q05318	 2212	 0.690	

V66T,	 E93T,	 Q109H,	 N120A,	 V128T,	 E130I,	 F132T,	 L146V,	
L179F,	N201T,	T202I,	A221S,	Q223L,	H227Q,	V229L,	P262V,	
V263D,	S274L,	L283V,	Y312F,	A326S,	T330D,	S343Y,	E350D,	
T361S,	L365F,	I402N,	Q447H,	P450S,	D465N,	R654H,	E689S,	
S847A,	 S868A,	 F896Y,	 L925F,	 A954S,	 S995T,	 T1024N,	
R1073K,	 A1119S,	 Q1149P,	 S1154L,	 P1163A,	 K1171D,	
D1189S,	 A1214S,	 R1217K,	 D1237E,	 Q1253N,	 Y1322L,	
R1354K,	 T1366A,	 I1408M,	 S1436N,	 K1461Q,	 S1473C,	
L1488Y,	S1506A,	A1538S,	V1562L,	E1564S,	T1571K,	Q1608I,	
H1619L,	 L1624Y,	 C1628S,	 D1744G,	 E1752P,	 S1769G,	
Q1782L,	 R1792H,	 W1822L,	 V1850T,	 R1916N,	 K1938Q,	
E1941R,	 V1955Y,	 Q2024G,	 P2038V,	 S2077T,	 K2078G,	
R2079L,	 E2098D,	 Q2105L,	 Q2108E,	 Y2131F,	 L2157V,	
R2168H,	R2175K,	L2177F,	M2186L,	L2203F	

NP	 P18272	 739	 0.587	

R4G,	T15G,	S30T,	R39K,	I52M,	R105K,	M137L,	F212Y,	K274R,	
S279A,	 K373R,	 K374R,	 A411L,	 K416N,	 Y421Q,	 D426E,	
D435N,	Q442L,	D443E,	T453I,	V458A,	D492E,	Q507S,	S511I,	
N551R,	T563S,	E633L,	S647K,	A705R,	T714Y,	D716N	

VP24	 Q05322	 251	 0.932	 T131S,	N132T,	M136L,	Q139R,	T226A,	S248L	

VP30	 Q05323	 288	 0.010	
G20P,	 V25S,	 Y39R,	 T52N,	 V53L,	 T63I,	 E93D,	 T96N,	 R98H,	
K107R,	S111I,	L116S,	N117Q,	A120S,	Q135S,	T150I,	Q157R,	
R196H,	E205D,	R262A,	S268Q	

VP35	 Q05127	 340	 0.019	
T5L,	 L25T,	 S26T,	 E48D,	 D76E,	 C79Y,	 N80V,	 E85K,	 S92M,	
V97T,	 Q98S,	 S106A,	 A154S,	 T159V,	 E160D,	 G167K,	 S174A,	
I258T,	E269D,	A290V,	A291P,	V314A,	Q329K	

VP40	 Q05128	 326	 0.786	 M14N,	 T46V,	 P85T,	 A128I,	 G201N,	 F209L,	 Q245P,	 H269Q,	T277Q,	V323H,	E325D	
P-value:	binomial	test	for	enrichment	of	residues	that	may	be	associated	with	RESTV’s	
loss	of	human	pathogenicity	in	each	protein.	
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Table	3.	Experimentally	characterized	functional	sites	in	Ebolavirus	proteins	
Name	Residues	 Function	 Experimental	evidence	
GP	 40	 Glycosylated	by	host		 N40D	loss	ability	to	infect(118)	
GP	 41-43,	503-511,	513,	514	 Interact	with	antibody	 On	the	interacting	surface	with	neutralizing	antibody	(54)	
GP	 51,	68,	86,	99,	109,	

111,	113,	122,	139,	154,	
159,	161,	162,	
171,176,183-185	

Maintain	the	
hydrophobic	core	
structure	

W86A,	Y99A,	Y109A,	H139A,	H154A,	F159A,	L161A,	Y162A,	
Y171A,	 F176A,	 F183A	 reduce	 expression,	 reduce	 viral	
incorporation	and	abolish	infectivity;	L111A,	I113A,	L122A	
reduce	 viral	 incorporation	 and	 abolish	 infectivity;	 L51A,	
L68A,	L184A,	I185A	abolish	infectivity(119)	

GP	 53,	108,	121,	135,	147,	
511,	556,	601,	608,	609	

Disulfide	bond	 C53G,	C108A,	C121G,	C135S,	C147S,	C511G,	C556S,	C601S,	
C608G,	 C609G	 reduce	 expression	 and	 abolish	
infectivity(118)	

GP	 55,	85,	103,	117,	178	 Hydrophilic	to	
maintain	the	structure	

E85A,	 E103A,	 E178A	 reduce	 expression;	 E85A,	 E103A,	
D117A,	 E178A	 reduce	 viral	 incorporation;	 D55A,	 E103A,	
D117A,	E178A	loss	ability	to	infect(119)	

GP	 529,	531-533,	535-537	 Fusion	peptide	 I529A,	 W531R,	 W531A,	 I532R,	 P533R,	 F535R,	 G536R,	
G536A,	P537R	loss	ability	to	infect(14)	

GP	 57,	63,	64,	88,	95,	170	 Cell	entry	 L63K,	 L63A	 reduce	 expression;	 L57A,	 L57F,	 L57I,	 L57K,	
L63K,	 L63A,	 L63F,	 R64E,	 R64A,	 F88E,	 F88A,	 K95E,	 K95A,	
I170A,	I170E	loss	ability	to	infect(119)	

VP24	 96-98,	106-121	 Interact	with	STAT1	 Show	reduced	hydrogen	exchange	rate	upon	binding(60)	
VP24	 113,	115,	117,	121,	124,	

125,	128-131,	134-141,	
184-186,	201-205,	218	

Interact	with	KPNA5	 On	the	interacting	surface	in	crystal	structure	with	KPNA5	
(PDB	id:	4U2X)(55)	

VP24	 50,	71,	147,	187	 Adapt	to	new	host	 T50I	mouse	adaptation(97);	M71I,	L147P,	and	T187I	guinea	
pig	adaptation(96)	

VP30	 179,	180,	183,	197	 Activate	transcription	 Mutation	 to	 Ala	 reduces	 interaction	 with	 nucleocapsid;	
K180A,	K183A,	E197A	block	transcription	activation(58)	

VP30	 143,	146	 Phosphorylation	 T143A,	T143D,	T146A,	T146D	inhibit	transcription(20)	
VP35	 239,	240,	309,	312,	319,	

322,	339	
Bind	dsRNA	 K309A,	 K319A	 reduce	 dsRNA	 binding;	 F239A,	 H240A,	

R312A,	R322A,	K339A	abolishes	dsRNA	binding(69)	
VP35	 239,	240,	309,	312,	319,	

322,	339	
IRF-3	inhibition	 K309A,	 K319A	 reduce	 IRF-3	 inhibition;	 F239A,	 H240A,	

R312A,	R322A,	K339A	greatly	reduce	IRF-3	inhibition(69)	
VP35	 235,	240	 Polymerase	cofactor	 F235A,	H240A	impair	replication	of	mini-genome(23)	
VP35	 312,	322,	339	 Bind	DRPB76	 Mutation	to	alanine	reduce	ability	to	bind	DRPB76(106)	
VP35	 309,	312	 Inhibit	RNAi	 K309A	and	R312A	lost	the	inhibition	effect(120)	
VP35	 305,	309,	312	 Inhibit	PKR	 Mutant	any	two	to	alanine	abolish	the	inhibition(121)	
VP40	 303-308	 Interact	with	Sec24C		 303-306A	and	305-308A	cannot	interact	with	Sec24C,	and	

reduce	virus-like	particles(112)	
VP40	 51-54,	96-101,	212-214,	

286-291,	303-308,	314-
316	

Release	of	virus-like	
particles	

51-52A,	53-54A,	deletion	of	96-101,	K212A,	L213A,	R214A,	
286-288A,	 289-291A,	 303-306A,	 305-308A	 reduce	 the	
release	of	virus-like	particles(112,	122,	123)	

VP40	 127,	129,	130,	283,	286,	
293,	295,	298,	309-317	

Membrane	localization	K127A,	T129A,	N130A,	P283L,	P286L,	I293A,	L295A,	V298A	
and	deletion	of	309-317	reduce	membrane	localization(26,	
124)	

VP40	 226-255	 Interaction	with	
microtubules	

Deletion	 of	 226-240	 or	 241-255	 abolish	 ability	 to	 protect	
microtubules	from	depolymerization(115)	

VP40	 213,	293,	295,	298	 Penetrate	membrane	 	Mutation	to	alanine	reduces	membrane	localization(125)	
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Figure 1. Domain diagrams for Ebolavirus proteins and coverage of the proteins by 
experimentally determined and predicted structures. The domains of each protein are 
represented by boxes on a thread and the positions that are variable among different species 
are marked by black sticks above the domain diagrams. The band below is aligned to the 
domain diagram and the color of this band indicates the prediction status of the corresponding 
region. The color codes are: green, regions that are structurally characterized and adopt 
globular structure; red, regions that are experimentally determined but intrinsically disordered; 
blue, regions with predicted 3D structure; yellow, coiled coil; cyan, transmembrane helix; 
purple, signal peptide; orange, predicted intrinsically disordered regions; grey, predicted 
regions that have a propensity to adopt secondary structure but 3D structure cannot be 
predicted;. Abbreviations: SP, signal peptide; FP, fusion peptide; TMH, Transmembrane helix. 
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Figure 2. Structure prediction for N-terminal domain of VP30. (a) 3D structure (PDB id: 

2I8B) for VP30 C-terminal domain; (b) 3D structure (PDB ID: 4C3B) for Pneumovirus M2-1 

C-terminal domain; (c) 3D structure (PDB ID: 4C3B) for Pneumovirus M2-1 N-terminal 

domain, which can be used as template to predict the structure for the VP30 N-terminal domain; 

(d) structure model for the Ebolavirus VP30 N-terminal domain. 
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Figure 3. Structures of Mononegavirales Nucleoproteins. The virus family is labeled below. 

(a-d) Monomeric structures (PDB IDs: 2GIC, 1N93, 2WJ8, and 4CO6) of Nucleoproteins from 



146 

 

Mononegavirales. The structures are colored in rainbow; (e, f) The electrostatic potential 

mapped on to the surface of Nucleoprotein structures (PDB ids: 2GIC and 2WJ8). Blue area 

corresponds to positively charged surface and the red area corresponds to negatively charged 

surface; (g) Structure model for the N-terminal domain of Ebolavirus NP; (h) Real structure of 

the N-terminal domain of Ebolavirus NP; (i) The electrostatic potential mapped on to the 

surface of experimentally determined N-terminal domain of Ebolavirus NP; (j, k) Structure 

complex of RNA and Nucleoproteins from Rhabdoviridae and Paramyxoviridae (PDB ids: 

2GIC and 2WJ8). 
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Figure 4. Structures of the catalytic domains of RNA-dependent RNA polymerases 

(RdRP) from RNA viruses and the structure model for Ebolavirus RdRP. The virus family 

is labeled below. The structures are colored in rainbow, with equivalent secondary structure 

elements from different structures colored similarly, except for the Birnaviridae RdRP, which 

has a circularly permutated topology. The functional sites used to coordinate Mg2+ are shown 

as sticks and colored in magenta.  (a-c) Overall structure of the core domains of RdRPs from 

RNA viruses (PDB IDs:  2R7O, 1GX5, and 5AMR); (d) close up view of the classic 

arrangement of functional sites for the core domains of RdRPs from RNA viruses; (e-f) overall 

structure and close up view of the functional sites for the core domains of RdRPs from 

Birnaviridae (dsRNA virus); PDB id: 2PGG; (g-h) structure model for the core domains of 

ZEBOV RdRP and close up view of the predicted active sites.  
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Figure 5. Structural model and templates for the mRNA capping methyltransferase 

domain in Ebolavirus protein L. The structures are colored in rainbow. Equivalent secondary 

structure elements from different structures are colored in the same color. The co-factor, S-

adenosyl-L-methionine, is shown as stick. (a) structure model for the mRNA capping 

methyltransferase domain of ZEBOV; (b-e) other methyltransferase domains.  
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Figure 6. Mapping of RESTV-specific residues, functional sites and interaction surfaces 

to known 3D structures of Ebolavirus proteins. The structure is shown in ribbon; the 

functional sites are shown as sticks; and positions with RESTV-specific mutations and 

alternate host (rodent) adaptation residues are shown as spheres. Carbon atoms of the 

functional sites and sites with RESTV-specific mutations are colored to show the property of 

that residue: RESTV-specific surface residues are in magenta; RESTV-specific buried residues 

are in white; RESTV-specific residues that belong to interaction surfaces are in cyan; known 
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functional residues are in yellow; disulfide bonded and alternate host (rodent) adaptation 

residues are in orange; predicted or indirectly shown functional residues are blue. Other atoms 

are colored as follows: oxygen (red); nitrogen (blue) and sulfur (orange).  Circles highlight 

sites with RESTV-specific residue clusters that are discussed in the text. (a,b) GP (PDB id: 

3CSY); (c,d) VP24 (PDB id: 4U2X); (e) VP30 (PDB id: 2I8B); (f) VP35 (PDB id: 3L26); (g) 

VP40 (PDB id: 1ES6). 
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CHAPTER SEVEN 
Tiger Swallowtail genome reveals hotspots for speciation and 

molecular basis for predator defense in caterpillars 
 
 

INTRODUCTION 

 
An organism in all its complexity of morphological and behavioral traits develops through 

interaction of its genetic makeup with the environment. Unraveling and predicting these traits 

from genotype chart the future of biological research. Success in such prediction depends on 

an ability to routinely sequence and analyze genomes of thousands of individuals from selected 

model organisms. In this quest, butterflies and moths with relatively small genomes but 

complex life cycles and diverse wing patterns, are emerging as powerful models. A new 

paradigm that gene exchange between species is pivotal in evolution of adaptation7, and 

anticipation of using comparative genomics to uncover molecular mechanisms responsible for 

complex traits are fueling excitement in the field8-10.  

 A showy North American butterfly, the Eastern Tiger Swallowtail, Papilio glaucus 

(Pgl, Fig. 1A,B), is honored as the state insect in five USA states. Pgl has remarkable 

morphological and behavioral features at all stages of development. Like other swallowtails, 

the caterpillar of Pgl possesses a fleshy fork-shaped osmeterium. Upon threat, this organ everts 

to emit malodorous predator-repelling terpenes1. Combined with the tongue-like osmeterium, 

two eyespots on the thorax complete the snake mimicry of the caterpillar. The Pgl chrysalis 

undergoes conditional diapause2. Female adults of Pgl are dimorphic between a yellow form 

and a melanic form to mimic the unpalatable Pipevine Swallowtail, Battus philenor3.  
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 Pgl and its sister species, Papilio canadensis (Pca), diverged just 0.6 million years ago4, 

and yet developed substantial differences in thermal preference, caterpillar food plants, body 

size, and female mimicry2. Unlike Pgl, Pca undergoes obligate pupal diapause. However, Pgl 

and Pca hybridize in a narrow zone where they meet. A hybrid species from the Appalachian 

Mountains, Papilio appalachiensis (Pap), was described recently5. These three species offer a 

 
Fig. 1 The Pgl genome is highly heterozygous. (A) dorsal and (B) ventral aspects of the sequenced Pgl 
specimen preserved after tissue sampling; (C) 17-mer coverage before and after error correction. The 
height of the two peaks in a similar graph for Pxy is estimated from Fig S3 in 9. (D) Percent of SNP in 
1000 bp overlapping windows.  
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model system to study evolution, hybridization and speciation, and these studies will benefit 

from decoding a Papilio genome. 

 

RESULTS AND DISCUSSION 

 
A cost-effective protocol for de novo sequencing and assembly of highly heterozygous 

genomes 

Despite rapid development of next generation sequencing techniques, assembly of highly 

heterozygous genomes remains a challenge. Many insects have large, widespread and 

morphologically variable populations with high heterozygosity11. Extensive, laboratory 

inbreeding was used to overcome this problem in the Heliconius melpomene (Hme)2 and 

Bombyx mori (Bmo)12,13 genome projects, while the highly hetergozygous Plutella xylostella 

(Pxy)9 genome was cloned into over 100,000 fosmids and required 114 Illumina lanes to 

sequence. These laborious and expensive procedures impede acquisition of numerous 

eukaryotic genomes for data-driven discoveries.  

 The Pgl genome is comparable to Pxy in heterozygosity (Fig. 1C) and size. However, 

our protocol allowed us to obtain the Pgl genome with quality comparable to other Lepidoptera 

using genetic material from a single wild-caught specimen and sequence data from a single 

Illumina lane. Briefly, we extracted DNA from a piece of Pgl adult thoracic muscle (Fig 1A,B). 

Pair-end libraries (250 bp and 500 bp) and three mate-pair libraries (2 kb, 6 kb, and 15 kb) 

made with a modified Cre-lox protocol14, were sequenced at both ends for 150 bp. After 

removal of low quality sequences and error correction, we used Platanus15 software designed 

for highly heterozygous genomes to assemble the reads. The primary assembly was larger than 
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expected and contained a number of shorter scaffolds with significantly lower coverage (Figs. 

S2, S3) representing divergent alleles in homologous chromosomes. Using in-house scripts, 

these scaffolds were merged to obtain the final assembly.  

 

Genome quality assessment and gene annotation 

We assembled a 376 Mb genome draft of Pgl and compared its quality and content with 

published Lepidoptera genomes (Table 1). The scaffold N50 of Pgl is 230 Mb, comparable to 

 
Fig. 2 Comparative analysis of Pgl and other Lepidoptera genomes. (A) Evolutionary tree based on 
the concatenated alignment of universal single-copy orthologs and arrangement of hox genes in draft 
genomes. Orthologs are shown in the same color; double boxes in the same position indicate 
duplications and “//” marks the boundaries between different scaffolds (B-D). Phylogenetic tree for 
expanded protein families in Pgl. Abbreviation of the species names and protein names are used as tip 
labels. (B) Opsins. (C) Eclosion hormones. (D) Farnesyl pyrophosphate synthase homologs. 
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other butterfly genomes, but shorter than the Pxy genome. However, despite a larger N50, the 

Pxy genome assembly is incomplete as measured by presence of CEGMA (Core Eukaryotic 

Genes Mapping Approach) genes16, Cytoplasmic Ribosomal Proteins (CRP) and 

independently assembled transcripts, while the Pgl genome is among the best in completeness. 

The residue coverage of CEGMA genes by single Pgl scaffolds is the same as the current Bmo 

assembly with an N50 of 3.7 Mb, indicating that the quality of the Pgl draft is sufficient for 

protein annotation and comparative analysis.  

 The Pgl genome is highly heterozygous with an overall SNP rate of 2%. The 

distribution of SNPs in the genome is prominently non-random (Figs. 1D, S4), with coding 

regions having an average of 0.8% SNPs. 505 protein coding genes have significantly more 

(false discovery rate < 0.1) SNPs than the average. Enriched GO-terms show that these genes 

mostly encode enzymes and proteins involved in the detection of stimuli. Repeats constitute 

23% of the Pgl genome, which is similar to other butterflies, but less than in moth genomes. 

We predicted 15,695 protein-coding genes in the Pgl and annotated the function for 11,975 of 

them. 

Table 1. Quality and composition of Lepidoptera genomes. 
 feature Pgl Dpl* Hme Bmo Pxy 
genome size (Mb) 376 249 274 480 394 
Heterozygosity (%) 1.80 0.55 ND ND ~2† 

Scaffold N50 (kb) 230 207 277 27(3700‡) 734 
CEGMA (%) 99.3 99.3 98.0 99.3 98.0 
CEGMA coverage by single scaffold (%) 85.6 85.6 85.9 85.6 81.7 
CRP (%) 100 100 95.7 98.9 94.6 
De novo assembled transcripts (%) 98 96 ND 98 83 
Repeat content (%) 22.8 16.3 24.9 44.1 34.0 
number of proteins (k) 15.7 15.1 12.8 14.3 18.1 

* Dpl: Danaus plexippus; † Estimated by comparing the distribution of K-mer coverage, 
as shown in Fig. 1C; ‡ The N50 for the improved assembly. 
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Comparative analysis of Lepidoptera genomes reveals genetic bases for morphological 

traits 

We compared the Pgl protein set with other Lepidoptera. Both phylogenetic trees built from 

alignment of the 3,858 universal single copy orthologs (Fig. 2A) and synteny of genes, group 

Pgl  with other butterflies. Except Pxy, the other four species share high synteny, with over 85% 

of proteins in micro-syntenic blocks. All the Pgl Hox genes that are expected to be linked are 

on the same scaffold (Fig 2A), indicating the good quality of Pgl assembly.  

 Pgl genome revealed expansion in several protein families. Previous studies 

characterized six opsins from Pgl17, while the genome assembly suggests nine. Pgl has more 

green light-sensitive opsins, which may indicate a more advanced color perception. The 

 
Fig. 3 Speciation hotspots and associated GO-terms. (A) Venn diagram showing speciation hotspots and 
highly variable proteins within species. (B) Enriched GO terms (biological processes) associated with 
speciation hotspots. GO terms are grouped in space by similarity in meaning and colored by the significant 
level. Annotations are shown for the most significantly enriched terms that passed the false discovery rate test. 
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identified opsins cluster into four groups (Fig. 2B): in addition to previously reported UV, blue 

and green light sensitive opsins, we find another group of putative UV-sensitive opsins similar 

to Drosophila Rh718. Other notable gene expansions include the eclosion hormone (Fig. 2C) 

that triggers the emergence of adults19, and circadian clock-controlled proteins that are 

involved in timing of the eclosion20. Different eclosion hormone copies may vary in their 

temporal-spatial distribution and impart complex regulation of eclosion, allowing Pgl to 

diapause conditionally in response to external stimuli.  

 The largest expansion (Fig. 2D) involves farnesyl pyrophosphate synthase (FPPS) 

homologs belonging to a family of isoprenoid biosynthesis enzymes that synthesize steroids 

and terpenes21. The 24 Pgl FPPS genes cluster at several genomic loci. The FPPS proteins are 

predicted to adopt an isprenoid synthase fold (Fig S11) with fully preserved catalytic sites in 

19 of them22 (Figs. S12, S13). Amino acids lining the FPPS substrate-binding sites are less 

conserved, implying diverse substrate specificity. RNA-seq data indicates that this gene 

expansion occurs in other Papilionidae species. The Papilio-specific FPPS enzymes form a 

clade in the evolutionary tree, and they could function in a pathway to synthesize predator-

repelling terpenes secreted by the osmeterium, a Papilionidae specific organ among butterflies.  

Speciation between Papilio glaucus and Papilio canadensis23  
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We have built an isolation-with-migration model24 for Pgl and Pca. The model predicts that 

they diverged about half a million years ago and have undergone dramatic increases in the 

effective population size, resulting in high DNA variability. The model also suggests high gene 

flow between Pgl and Pca, consistent with their successful mating in the lab and the discovery 

of a hybrid species, Pap.  

 At the whole transcriptome level, Pgl and Pca are clearly distinguishable. Combining 

all 8,230 transcripts shared among the Pgl and Pca specimens, the average variation rate and 

 
Fig. 4 Circadian clock system may explain differences in diapause between Pgl and Pca. (A) Domain 
diagram of CLOCK, CYCLE, PERIOD, and TIMELESS. Mutations within species are marked by green 
flags and positions that are conserved within but differ between species are marked by red flags. (B) 
Circadian clock system. CRY: cryptochrome proteins. (C) Map of inter-species mutations on the spatial 
structure template (PDB id: 4F3L) of CLOCK/CYCLE complex. The mutations are marked by red 
(CLOCK) and pink (CYCLE) dots and the approximate position of disordered loops is shown as black beads 
on threads. 
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dN/dS ratio within species are significantly lower (P<10-4) than the inter-species values. 

However, due to the closeness of intra- and inter- species variation rates, these two species are 

indistinguishable by most individual genes. Only 351 (4.3%) transcripts display higher inter-

species variation in both protein and DNA. Therefore, only a small fraction of genes, termed 

“speciation hotspots”, dictate speciation and adaptation to different environments. The 

speciation hotspots are mostly conserved within species (Fig. 3A). Overlap between speciation 

hotspot and positively selected loci in Pgl and Pca is small (11.1%), since 97.5% of these loci 

reflect adaptive evolution within either Pgl or Pca.  

The speciation hotspots show a significant (P<10-2) enrichment in 57 GO-terms (Fig. 3B). The 

GO-terms suggest that Pgl and Pca differ in defense against xenobiotics (GO:0009410 et al.), 

insecticides (GO:0017143 et al.), and bacteria (GO:009617 et al.), which agrees with that they 

are exposed to different food plants, insecticides, and bacteria.  

 The GO term, “eclosion rhythm” is among the most significantly enriched. This GO 

term is associated with four speciation hotspots that are the central players in the circadian 

clock system: CLOCK, CYCLE, PEROID, and TIMELESS25 (Fig. 4A,B). These proteins 

regulate the timing for adults to hatch from pupae (opposite to diapause) and the temperature 

preference rhythm in Drosophila26,27. Mapping amino acid differences between species to 3D 

structure templates shows that these mutations concentrate on one side of the CLOCK/CYCLE 

complex28, forming clusters on the surface (Fig. 4C). Similar mutation site distribution is 

observed in PERIOD. The surface clustering of mutations suggest that they likely modify 

interactions between circadian clock proteins and other regulators. Differences in modulation 

of this timing system could determine obligate diapause vs. conditional diapause.  
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 Proteins involved in lipid metabolism (e.g. GO:0006629 et al.) and regulation of 

transcription factors (GO:2000678 et al.) are also among speciation hotspots. Many insect 

pheromones are derivatives of metabolites along the fatty acid synthesis and degradation 

pathways and they play essential roles in insect social and mating behavior29. Therefore, 

differences in enzymes of lipid metabolism could result in pheromone divergence and have a 

profound impact on speciation. Similarly, differences in the regulators of transcription factors 

affect many downstream genes and have a significant influence on an organism. 

New nuclear DNA barcodes for insect identification 

The widely used mitochondrial DNA barcode encoding part of Cytochrome c oxidase subunit 

1 (COI) is routinely used for insect identification and cryptic species discovery. However, 

maternally inherited mitochondrial DNA may have history different from the whole organism 

and can be transferred between species via cellular symbionts30. Consequently, tests with COI 

barcodes need to be supplemented with work based on nuclear barcodes. Commonly used 

nuclear markers for insects include 18s rRNA, wingless, EF1a genes and non-coding ITS1 and 

ITS2. However, these genes fail to distinguish closely-related species such as Pgl and Pca, 

which are cleanly separated by COI barcodes. In a quest for nuclear barcodes, we searched for 

long (> 150 bp) exons that: (1) are present in most genomes as confidently identifiable and 

alignable single-copy orthologs; (2) differ between many pairs of closely related insect species, 

but are less variable within species.  

 Out of 22,731 long exons shared by Pgl and Pca specimens, only 236 can confidently 

(p<0.05) distinguish the two species, and only 41 have higher discriminating power than COI 

barcode in either binomial tests or inter-species divergence level. We used 56 insect genomes 
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forming 460 close species pairs to further reduce the candidate list. Finally, 11 nuclear 

barcodes were selected (Table 2). In addition to their ability to distinguish sister species, most 

of them represent phylogeny of insects better than the COI barcode.  

Reference genome provides new insights into hybrid species, Papilio appalachiensis. 

Using the Pgl genome as a reference, we compared transcriptomes of Pap and its parental 

species (Fig. 5A), Pgl and Pca. Based on the 7410 shared transcripts, Pap is more similar to 

Pca than to Pgl. The two Pap specimens differ less from each other than homologous 

chromosomes of a single Pgl specimen, not to mention different specimens of either parental 

species. Low variability of Pap specimens agrees with it being a distinct species with a smaller 

effective population size, rather than a result of presently continuing hybridizations between 

Pgl and Pca.  

 High intra-species variation hinders attribution of a Pap gene to its parental species by 

marginally higher sequence identity alone. We attribute a Pap gene origin to a particular 

species if its sequence is similar to those from this species but is different (p<0.05) from the 

other species, and detected 207 Pca-originated and 70 Pgl-originated transcripts. Stringent 

 
Fig. 5 Reference genome supports Pap as a hybrid species. (A) Variation within and between species over all 
common transcripts; (B) Venn diagram of Pap proteins originated from Pca or Pap and proteins that are 
significantly different between Pca and Pgl; (C) Percent of Pgl-like proteins (0.2% or more similar) in the 
neighborhood of confident Pgl-originated proteins is significantly (P<0.01) higher than those near randomly 
selected samples. 
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tests with Bonferroni correction show similar hybrid composition of Pap genes. Despite the 

small number of confidently assigned genes, they represent a majority (86%) of genes that 

significantly differ between Pgl and Pca (Fig. 5B). Only 8 Pap genes are significantly (p<0.05) 

different from both parental species. 

 We used the Pgl assembly to analyze the distribution of statistically supported Pgl-

originated genes in the genome. These genes are significantly (p<10-7) more likely to be 

clustered compared to randomly selected gene sets of the same size. Neighborhoods of these 

Pgl genes are enriched in genes with higher similarity to Pgl (Fig. 5C). Clustering is even more 

prominent for Pca genes (Figs. S30, S31), which agrees with a model of hybridization followed 

by limited gene recombination.  

 The results support a hybrid origin of Pap with about 72% genes inherited from Pca, 

explaining the higher morphological and behavioral similarity between Pap and Pca. For 

instance, Pap with obligate diapause has all four speciation hotspots involved in the circadian 

clock system inherited from Pca, offering additional evidence for the proposed functional role 

of these genes. In contrast, the Pgl 6-phosphogluconate dehydrogenase (6PGD), which was 

shown to be closely linked to the melanic female-enabling gene on the Z chromosome31, is 

inherited from Pgl. This link could be relevant to the observed Pgl-like black females in Pap 

from West Virginia, where the two Pap specimens were collected23. Two putative 

transcriptional factors in the neighborhood of 6PGD are candidate regulators of melanic female 

phenotype.  
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CHAPTER EIGHT 
Speciation in Cloudless Sulphurs gleaned from complete genomes 

 
 

INTRODUCTION 

 
Butterflies and moths (Lepidoptera) are some of the best-known and best-studied insects. Their 

colorful wings and complex life cycles attract wide attention from both researchers and the 

public. Despite this popularity, little is known about the genetic makeup of Lepidoptera, and 

compete genomes are available for less than a dozen species [1-11]. However, small genome 

sizes and extensive knowledge about the morphology and life histories of Lepidoptera offer a 

promise to further our understanding in genetics, molecular evolution, and speciation by 

comparative genomics. Among butterflies, representative genomes are currently known for 

only three families: the swallowtails (Papilionidae), the brushfoots (Nymphalidae), and the 

skippers (Hesperiidae). The brushfoots have been prevalent in genomics studies, with research 

on Heliconius and the Monarch (Danaus plexippus) leading the field [12, 13]. For comparative 

genomics of butterflies, it is essential to sequence complete genomes of all major phylogenetic 

groups.  

 The family Pieridae (Whites and Sulphurs) may be the prototype for the name 

"butterfly". A common yellow European species, the Brimstone (Gonepteryx rhamni), was 

called the "butter-colored fly" by early naturalists [14]. This family includes some of the very 

few butterflies known as crop pests, such as the Cabbage Whites (Pieris rapae and Pieris 

brassicae) and Alfalfa Sulphur (Colias eurytheme). Pierids are particularly well known for 

using pterins as pigments on their wings [15]. While most swallowtails diapause as pupae, 
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many Pierids overwinter as adults and enter reproductive diapause in the fall. Due to 

similarities in pupae, Pierids were previously hypothesized to be a sister family to the 

swallowtails (can you put ref. 16 here instead of ???), a view not supported by recent molecular 

studies [16, 17]. To help understand genetic bases for morphological traits of Pieridae and to 

clarify its phylogenetic placement, we sequenced the first complete genome from this family. 

We chose a large and showy American species, the Cloudless Sulphur (Phoebis sennae), which 

is similar in size and color to the European Brimstone butterfly. 

 The Cloudless Sulphur is a large yellow butterfly distributed from the southern regions 

of the United States through the Neotropics. Its caterpillars feed on Senna plants and close 

relatives from the Pea family (Fabaceae). Adults are highly vagile but do not survive cold 

winters. Eastern USA populations are known as subspecies Phoebis sennae eubule, and 

southwestern populations that range throughout Central and most of South America are 

attributed to subspecies Phoebis sennae marcellina [18]. Both subspecies are present in Texas. 

The two subspecies are morphologically distinct, with P. s. eubule being typically less 

patterned on the underside of the wings and P. s. marcellina females characterized by 

pronounced dark spots along the margin of hindwings above (Fig. 1). In addition, their 

caterpillars show somewhat different foodplant preferences. P. s. eubule mostly feeds on 

partridge pea (Chamaecrista fasciculata), while P. s. marcellina prefers Senna species. 

However, their COI mitochondrial DNA sequences show small divergence, no more than 0.6% 

[19]. The divergence in nuclear genes, that likely cause the morphological differences, has 

remained unclear.  
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 We obtained a complete reference genome of P. s. eubule from a single male collected 

in southeast Texas. To compare genetic divergence between the North American Phoebis 

sennae subspecies, we sequenced genomes of two more P. s. eubule specimens (from north 

Texas and Oklahoma) and of three P. s. marcellina specimens from south Texas. In contrast 

to mitochondrial DNA, their nuclear genomes revealed unexpectedly large divergence (nearly 

2%), larger than that between the two sister species of Tiger Swallowtails (Pterourus 

canadensis and Pterourus glaucus), suggesting that the two subspecies of Phoebis sennae are 

better treated as species-level taxa.  

 
RESULTS AND DISCUSSION 

 
Genome quality assessment and gene annotation of the reference genome 

We assembled a 406 Mb reference genome of Phoebis sennae (Pse) and compared its quality 

and composition (Table 1) with genomes of the following Lepidoptera species: Plutella 

xylostella (Pxy), Bombyx mori (Bmo), Manduca sexta (Mse), Lerema accius (Lac), Pterourus 

glaucus (Pgl), Papilio polytes (Ppo), Papilio xuthus (Pxu), Melitaea cinxia (Mci), Heliconius 

melpomene (Hme), and Danaus plexippus (Dpl) [1-11]. The scaffold N50 of Pse genome 

assembly is 257 kb. The genome assembly is better than many other Lepidoptera genomes in 

terms of completeness measured by the presence of Core Eukaryotic Genes Mapping Approach 

(CEGMA) genes [20], cytoplasmic ribosomal proteins and independently assembled 

transcripts. The average coverage (87.4%) of CEGMA genes by single Pse scaffolds is 

comparable to the coverage by the current Bmo assembly with an N50 of about 4.0 Mb, 

indicating that the quality of the Pse draft is sufficient for protein annotation and comparative 
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analysis. The genome sequence has been deposited at DDBJ/EMBL/GenBank under the 

accession XXX. The version described in this paper is version YYY. In addition, the main 

results from genome assembly, annotation and analysis can be downloaded at 

http://prodata.swmed.edu/LepDB/. 

 We assembled the transcriptome of Phoebis sennae from the same specimen. Based on 

the transcriptome, homologs from other Lepidoptera and Drosophila melanogaster, de novo 

gene predictions, and repeat identification, we predicted 16,493 protein-coding genes in the 

Phoebis sennae genome. 67% of these genes are likely expressed in the adult, as they fully or 

partially overlap with the transcripts. We annotated the putative functions for 12,584 protein-

coding genes.  

 

Phylogeny of Lepidoptera 

We identified orthologous proteins encoded by 11 Lepidoptera genomes (Plutella xylostella, 

Bombyx mori, Manduca sexta, Lerema accius, Pterourus glaucus, Papilio polytes, Papilio 

xuthus, Melitaea cinxia, Heliconius melpomene, Danaus plexippus, and Phoebis sennae) and 

detected 5143 universal orthologous groups, from which 2106 consist of a single-copy gene in 

each of the species. A phylogenetic tree built on the concatenated alignment of the single-copy 

orthologous groups using RAxML placed Pheobis as the sister to Nymphalidae clade. This 

placement is consistent with the previously published results based on molecular data [11, 17], 

as expected in the absence of genomes from the families Lycaenidae and Riodinidae.  

 In addition, our analysis placed Papilionidae as a sister to all other butterflies, including 

skippers (Hesperiidae). Such placement contradicts the traditional view based on 
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morphological studies, but is indeed reproduced in all maximum-likelihood and Bayesian trees 

published recently [11, 21]. All nodes received 100% bootstrap support when the alignment of 

all the single-copy orthologous groups was used. To find the weakest nodes we reduced the 

amount of data by randomly splitting the concatenated alignment into 100 alignments (about 

3670 positions in each alignment). The consensus tree based on these alignments revealed that 

the node referring to the relative position of skippers and swallowtails has much lower support 

(68%) compared to all other nodes (above 90%). Thus, the placement of swallowtails and 

skippers within Lepidoptera tree remains to be investigated further when better taxon sampling 

by complete genomes is achieved.  

 

Six genomes of Phoebis sennae 

In addition to the reference genome of P. s. eubule from southeast Texas, we sequenced the 

genomes of five Phoebis sennae specimens and mapped the reads to the reference. Two 

specimens were P. s. eubule from north-central Texas and southern Oklahoma and three were 

P. s. marcellina from south Texas. The coverage by the reads and the completeness of these 

genomes are summarized in Table 2. The sequencing reads for all the specimens are expected 

to cover the genome 10-12 times, and about 97% of coding regions in the reference genome 

can be mapped by reads from each specimen. However, fractions of the noncoding region that 

can be mapped differ significantly (p < 0.001) between specimens. Reads from specimens of 

the same subspecies as the reference genome can map to 88% of the positions in the reference 

genome while reads from the specimens of a different subspecies can map to only 83% of the 
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positions. This indicates a higher divergence in the non-coding region and a substantial 

difference between the two subspecies in the non-coding region.  

 We identified SNPs in these genomes compared to the reference genome using Genome 

Analysis Toolkit (GATK) [22]. There are 1.2% heterozygous positions in the reference 

genome, and the heterozygosity levels (about 1.4%) for two other P. s. eubule specimens are 

comparable to the reference genome. The southwestern population shows a higher 

heterozygosity level (about 2.2%), which agrees with the expected larger population size of P. 

s. marcellina. In all the genomes, the percentage of SNP in the coding regions (0.91% ~ 1.00% 

for P. s. eubule and 1.45% ~ 1.56% for P. s. marcellina) is lower than that for the non-coding 

regions (1.23% ~ 1.46% for P. s. eubule and 2.21% ~ 2.32% for P. s. marcellina), which is 

likely due to the potential deleterious effect of SNPs in the coding regions.  

 We clustered all 6 specimens based on their genotype in positions with two possible 

nucleotides. The three P. s. eubule specimens formed a tight cluster, indicating high similarity 

between them. The three P. s. marcellina specimens were more divergent, but they still 

clustered closer to each other than to the P. s. eubule specimens. In addition, analysis of the 

same data using fastStructure [23] also confirmed this population structure by likelihood 

calculation: the three P. s eubule specimens represent one population while the three P. s. 

marcellina specimens are from another population.  

 

Incongruence between the divergence in nuclear and mitochondrial genes 

COI mitochondrial DNA barcode sequences have been determined for a number of Phoebis 

sennae specimens across its distribution range [19], and they show very little divergence 
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between subspecies. The eastern subspecies in United States, P. s. eubule and the southwestern 

subspecies, P. s. marcellina differ by only 0.6% (4 positions) in their barcode sequences. 

Barcode differences of 2% and above likely correspond to species-level divergence [24]. For 

example, tiger swallowtails Pterourus glaucus and Pterourus canadensis differ by 2.2% in 

their barcode sequences. To understand the reasons for apparent morphological and life history 

differences in the absence of substantial barcode divergence, we compared the nuclear and 

mitochondrial genomes of all 6 Phoebis sennae specimens and correlated the results with the 

complete transcriptome data for Pterourus canadensis and Pterourus glaucus. 

 P. s. eubule and P. s. marcellina show low divergence (about 0.5%) not only in the 

COI barcode, but also for all the mitochondrial genes. The mitochondrial genes are very 

conserved (divergence 0.02% ~ 0.11%) within each subspecies, and thus the phylogenetic tree 

based on them clearly separates the two subspecies into clades with branch length between 

them indicating 0.42% difference (Fig. 4c). In contrast, nuclear genes show much higher 

divergence both within (1.17% for P. s. eubule, 1.78% for P. s. marcellina) and between 

(1.86%) subspecies. In the phylogenetic tree based on nuclear genes (16,137 genes, 18,877,324 

base pairs), the branch length between the two subspecies (branches colored in green and 

orange in Fig 4a) is 0.7%, twice of that for mitochondrial genes. 

 The higher divergence in nuclear genes compared to mitochondrial genes is unexpected. 

Mitochondrial DNA usually evolves faster than the nuclear DNA, and thus it is frequently used 

to resolve relationships of closely-related taxa [25]. Indeed, the divergence level in 

mitochondrial DNA (about 2.0%) between two Pterourus species is twice that seen in nuclear 

DNA (about 1.0%). Both nuclear genes (9,622 transcripts, 13,525,930 base pairs) and 
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mitochondrial genes clearly separate the two species in phylogenetic trees, but the internal 

branch length between the two taxa in the tree based on nuclear DNA (0.18%) is about 10 

times smaller than that for mitochondrial DNA (1.8%). The clear incongruence between 

divergence in nuclear and mitochondrial DNA in Phoebis and Pterourus reiterates the need for 

inclusion of nuclear DNA in phylogenetic studies. Based on the divergence in the nuclear genes, 

along with the morphological differences, P. s. eubule and P. s. marcellina may be better 

treated as two species-level taxa.  

 We speculate that high nuclear divergence in Phoebis is related to its fast development. 

While Pterourus canadensis breeds only once each year, P. s. marcellina can have up to 15 

generations per year. Low divergence in mitochondrial DNA of Phoebis remains a mystery. It 

might be due to more accurate error-correction machinery during the replication of 

mitochondrial DNA, keeping the mutation rate very low. Alternatively, a more mundane view 

is that introgression, population bottlenecks and mitochondria selective sweeps [26-29] might 

result in transfer of mitochondria between taxa or spread of a certain mitochondrial haplotype 

across all P. sennae populations throughout their vast distribution range.  

 Interestingly, southern taxa of both Phoebis and Pterourus display larger internal 

divergence than northern taxa (Fig. 5). The difference between three specimens of P. s. 

marcellina (1.80%) collected from the same locality is larger than that between three P. s. 

eubule specimens (1.12%) collected from different localities that are separated by several 

hundred miles. The lower sequence variation of P. s. eubule specimens suggests smaller 

population size and possible bottlenecks. Such bottlenecks for northern populations are more 
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likely because Phoebis has low tolerance to subzero temperatures and most individuals do not 

survive cold winters.  

 

Molecular processes differentiating P. s. eubule and P. s. marcellina 

Phoebis s. eubule and P. s. marcellina can be clearly distinguished based on the whole-genome 

data. The average inter-taxa divergence for protein coding genes is significantly (p = 5.8e-58) 

higher than the intra-taxa divergence (Fig. 5a,b). However, the two taxa are not diverged in 

most individual genes, and only 20% of genes can confidently (bootstrap >= 75%) distinguish 

them (Fig. 5e). The situation is very similar to that of Pterourus glaucus and Pterourus 

canadensis (Fig. 5c-e). 

 To further investigate the possible phenotypic consequences caused by genetic 

divergence between the two Phoebis taxa, we focused on the genes that can clearly distinguish 

them both by their sequences and by the proteins they encode (i.e., separate the two taxa into 

clades with bootstrap support no less than 75%). We identified 924 (5.7%) such proteins, but 

they were significantly enriched (p = 4.6e-24) in non-conserved proteins within each taxon. 

Out of 710 such proteins, 314 are enzymes. The functional sites of enzymes are constrained to 

several catalytically important residues, and therefore the rest of their sequence is likely to be 

more tolerant to mutations and can undergo faster divergence. 

 In contrast, the remaining 214 proteins are conserved within each taxon, but can clearly 

distinguish the two taxa. We term these divergence hotspots. The presence of such proteins 

could cause Dobzhansky-Muller hybrid incompatibility between the two taxa, as the proteins 

from P. s. eubule may not work well with proteins and genetic materials from P. s. marcellina 
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when functioning in the same pathway. GO-term analysis of these divergence hotspots 

revealed a prevalence of epigenetic mechanisms including histone modification enzymes and 

chromatin organization (Table 3). Variations in epigenetics-related proteins might be an easy 

source of hybrid incompatibility because these proteins directly interact with the genetic 

materials, especially the non-coding regions that could evolve rapidly [30]. Epigenetic 

variation has been shown to be a speciation mechanism in several organisms [31, 32]. Among 

the genomic regions covered in the mapping results of all 6 specimens, the non-coding region 

differ by 3.5% between the two taxa while the coding region differ by only 1.8%. The actual 

divergence in the non-coding region should be even larger as the most divergent regions would 

fail to map to the reference genome (discussed above). Therefore, proteins involved in 

epigenetic mechanisms from one taxon may not be compatible with the binding sites in the 

DNA of another taxon, resulting in lower fitness of the hybrids.  

 Another group of GO terms that are significantly enriched are related to the circadian 

sleep/wake cycle. The divergence hotspots for the two Pterourus species are also enriched in 

circadian clock related proteins, and in particular, those related to eclosion rhythm. This is 

consistent with their observed phenotypic divergence in pupal diapause (i.e., the timing of 

eclosion). The two Phoebis sennae taxa mostly show divergence in the sleep/wake cycle, but 

not the eclosion rhythm. This might be related to the lack of pupal diapause in Phoebis sennae. 

However, proteins related to the sleep/wake cycle could have diverged adaptively since the 

two taxa were partly separated into different latitudes with different levels of sunlight and 

average temperatures. In addition, proteins associated with early development and cell 

differentiation are also enriched in the divergence hotspots. Divergence in these proteins may 
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have a profound impact on the morphology and biology of an organism, driving speciation and 

adaptation.  

 

Nuclear DNA markers to identify P. s. eubule and P. s. marcellina 

Eleven out of 13 mitochondrial protein-coding genes can clearly separate P. s. eubule and P. 

s. marcellina as the maximal intra-taxa divergence is smaller than the minimal inter-taxa 

divergence. The only two exceptions are the ND4L and ATP8 coding genes, which are 

identical between the two subspecies. The low divergence in the mitochondrial genes within 

one taxon could be a result of going through narrower bottlenecks when the population size 

goes down due to their maternal inheritance, and strong selection pressure to function together 

with the nuclear-encoded proteins and maintain the high efficiency of the mitochondrial 

electron transport chain.  

 However, the two taxa cannot be clearly identified using the nuclear markers (Fig. 5) 

previously selected for phylogenetic studies of butterflies. This situation is very similar to that 

of Pterourus glaucus and Pterourus canadensis. Out of the 16,137 well-covered nuclear genes, 

only 92 always show higher divergence between P. s. eubule and P. s. marcellina than within 

either taxon. Eleven of them are associated with GO terms that are enriched in the divergence 

hotspots. These likely participate in the biological processes that have diverged between the 

two taxa and we suggest them to be possible nuclear markers (Table 4) to identify the two taxa. 

For example, two of them are related to chromatin remodeling, and they are orthologous to the 

Drosophila genes Grunge (CG6964) and Nucleoplasmin (CG7917), respectively. Both 

proteins directly interact with the chromatin and could contribute to a certain level of 
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reproductive isolation as they may not interact well with the genetic material of a different 

taxon.  

 

Should P. s. eubule and P. s. marcellina be treated as species-level taxa? 

Comparative analysis of complete genomes of six Phoebis sennae specimens revealed an 

unexpectedly large divergence between subspecies P. s. eubule and P. s. marcellina in nuclear 

genes compared to that of mitochondrial genes. This divergence appears more prominent than 

that between the two swallowtails species Pterourus canadensis and P. glaucus. The two 

Phoebis subspecies show significant divergence in epigenetic mechanisms, regulation of the 

sleep/wake cycle and early development. Multiple proteins participating in each of these 

processes show clear divergence between the two taxa. It is possible that protein from one 

taxon may show reduced compatibility with a partner from another taxon, leading to 

Dobzhansky-Muller hybrid incompatibility. 

 In addition, both Phoebis subspecies occur in Texas and their ranges partly overlap in 

central Texas around Austin and San Antonio, where specimens of both subspecies can be 

found, and P. s. marcellina can stray north into Oklahoma. However, in areas of sympatry they 

remain morphologically distinct. It is apparent that these butterflies are strong flyers and are 

known to migrate. A single individual can fly a hundred miles or more, so there should be 

ample opportunities for the two taxa to mix. Nevertheless, they remain morphologically and 

genetically distinct, which indicates a certain level of reproductive isolation and thus possible 

genetic incompatibilities. Taken together, the profound genomic divergence, morphological 

differences and maintenance of distinctness between eastern and southern populations in Texas, 
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we suggest that it is more meaningful to treat both P. s. eubule and P. s. marcellina as species-

level taxa. However, the relationship of each to nominotypical Phoebis sennae sennae from 

the Caribbean Islands remains to be elucidated. 

 
CONCLUSIONS 

 
We report six genomes of the Cloudless Sulphur, three of P. s. eubule and three of P. s. 

marcellina. Being the first sequenced genomes from the family Pieridae, they offer a rich 

dataset for comparative genomics and phylogenetic studies of Lepidoptera. Comparative 

analyses of Phoebis genomes and Pterourus transcriptomes reveal a remarkable incongruence 

between relative rates of nuclear and mitochondrial divergence. Phoebis species show low 

mitochondrial divergence (0.5%) and high nuclear divergence (1.8%). The situation is reversed 

in Pterourus species. P. s. marcellina and P. s. eubule differ from each other in histone 

methylation regulators, chromatin associated proteins, circadian clock, and some early 

developmental proteins. The divergence in these processes, taken together with the 

unexpectedly high divergence in nuclear genes, suggests a certain level of reproductive 

isolation between the two taxa, and both P. s. eubule and P. s. marcellina are best treated as 

species-level taxa.  

 
MATERIALS AND METHODS 

 
Library preparation and sequencing 

We removed and preserved the wings and genitalia of six freshly caught Phoebis sennae 

specimens (three P. s. eubule: NVG-3314, male, Texas: San Jacinto Co., Sam Houston 
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National Forest, 30.50596, -95.08868, 12-Apr-2015; NVG-4452, female, Texas: Wise Co., 

LBJ National Grassland, 33.38401, -97.57381, 9-Aug-2015; NVG-4541, male, Oklahoma: 

Atoka Co., McGee Creek Recreation Area, 34.41040, -95.91059, 22-Aug-2015; and three P. 

s. marcellina: Hidalgo Co., 1.5 air mi southeast of Relampago, 26.07093, -97.89131: NVG-

3356, male, 23-May-2015; NVG-3377, female, 24-May-2015; NVG-3393, male, 30-May-

2015), and the rest of the bodies were stored in RNAlater solution.  

 We used specimen NVG-3314 for the reference genome. We extracted approximately 

20 µg genomic DNA from about 4/5 of the specimen NVG-3314 with the ChargeSwitch gDNA 

mini tissue kit. 250 bp and 500 bp paired-end libraries were prepared using enzymes from 

NEBNext Modules and following the Illumina TruSeq DNA sample preparation guide. 2 kb, 

6 kb and 15 kb mate pair libraries were prepared using a protocol similar to previously 

published Cre-Lox-based method [33]. For the 250 bp, 500 bp, 2 kbp, 6 kbp and 15 kbp 

libraries, approximately 500 ng, 500 ng, 1.5 µg, 3 µg and 6 µg of DNA were used, respectively. 

We quantified the amount of DNA from all the libraries with the KAPA Library Quantification 

Kit, and mixed 250 bp, 500 bp, 2 kbp, 6 kbp, 15 kbp libraries at relative molar concentration 

40:20:8:4:3. The mixed library was sent to the genomics core facility at UT Southwestern 

Medical Center to sequence 150 bp at both ends (PE150) using one lane in Illumina HiSeq2500.  

 The remaining 1/5 of specimen NVG-3314 was used to extract RNA using QIAGEN 

RNeasy Mini Kit. We further isolated mRNA using NEBNext Poly(A) mRNA Magnetic 

Isolation Module and RNA-seq libraries for both specimens were prepared with NEBNext 

Ultra Directional RNA Library Prep Kit for Illumina following manufactory’s protocol. The 

RNA-seq library was sequenced for 150 bp from both ends using 1/8 of an Illumina lane.  
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The other five specimens were used to prepare paired-end libraries to map to the reference 

genome. For each of them, we extracted about 5 µg genomic DNA and used about 500 ng 

genomic DNA to prepare a 400 bp paired-end library. These paired-end libraries were mixed 

at equal ratio and sequenced using similar strategy (PE150) using half of an Illumina lane. The 

sequencing reads for all the specimens have been deposited in NCBI SRA database under 

accession numbers: XXX.  

 

Genome and transcriptome assembly 

We removed sequence reads that did not pass the purity filter and classified the pass-filter reads 

according to their TruSeq adapter indices to get individual sequencing libraries. Mate pair 

libraries were processed by the Delox script [33] to remove the loxP sequences and to separate 

true mate pair from paired-end reads. All reads were processed by mirabait [34] to remove 

contamination from the TruSeq adapters, an in-house script to remove low quality portions 

(quality scale < 20) at both ends, JELLYFISH [35] to obtain k-mer frequencies in all the 

libraries, and QUAKE [36] to correct sequencing errors. The data processing resulted in nine 

libraries that were supplied to Platanus [37] for genome assembly: 250 bp and 500 bp paired-

end libraries, three paired-end and three mate pair libraries from 2 kb, 6 kb and 15 kb libraries 

and a single-end library containing all reads whose pairs were removed in the process.  

 We mapped these reads to the initial assembly with Bowtie2 [38] and calculated the 

coverage of each scaffold with the help of SAMtools [39]. Many short scaffolds in the 

assembly showed coverage that was about half of the expected value; they likely came from 

highly heterozygous regions that were not merged to the equivalent segments in the 
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homologous chromosomes. We merged them into other scaffolds if they could be fully aligned 

to another significantly less covered region (coverage > 90% and uncovered region < 500 bp) 

in a longer scaffold with high sequence identity (>95%). Similar problems occurred in the 

Heliconius melpomene, Pterourus glaucus and Lerema accius genome projects, and similar 

strategies were used to improve the assemblies [3, 8, 11].  

 The RNA-seq reads were processed using a similar procedure as the genomic DNA 

reads to remove contamination from TruSeq adapters and the low quality portion of the reads. 

Afterwards, we applied three methods to assemble the transcriptomes: (1) de novo assembly 

by Trinity [40], (2) reference-based assembly by TopHat [41] (v2.0.10) and Cufflinks [42] 

(v2.2.1), and (3) reference-guided assembly by Trinity. The results from all three methods were 

then integrated by Program to Assemble Spliced Alignment (PASA) [43].  

 

Identification of repeats and gene annotation 

Two approaches were used to identify repeats in the genome: the RepeatModeler [44] pipeline 

and in-house scripts that extracted regions with coverage 4 times higher than expected. These 

repeats were submitted to the CENSOR [45] server to assign them to the repeat classification 

hierarchy. The species-specific repeat library and repeats classified in RepBase [46] (V18.12) 

were used to mask repeats in the genome by RepeatMasker [47].  

We obtained two sets of transcript-based annotations from two pipelines: TopHat followed by 

Cufflinks and Trinity followed by PASA. In addition, we obtained five sets of homology-based 

annotations by aligning protein sets from Drosophila melanogaster [48] and four published 

Lepidoptera genomes (Plutella xylostella, Bombyx mori, Heliconius melpomene, and Danaus 
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plexippus) to the Phoebis sennae genome with exonerate [49]. Proteins from Invertebrate in 

the entire UniRef90 [50] database were used to generate another set of gene predictions by 

genblastG [51]. We manually curated and selected 1152 confident gene models by integrating 

the evidence from transcripts and homologs to train de novo gene predictors: AUGUSTUS 

[52], SNAP [53] and GlimmerHMM [54]. These trained predictors, the self-trained Genemark 

[55] and a consensus based pipeline, Maker [56] were used to generate another five sets of 

gene models. Transcript-based and homology-based annotations were supplied to 

AUGUSTUS, SNAP and Maker to boost their performance. In total, we generated 13 sets of 

gene predictions and integrated them with EvidenceModeller [43] to generate the final gene 

models.  

 We predicted the function of Phoebis sennae proteins by transferring annotations and 

GO-terms from the closest BLAST [57] hits (E-value < 10-5) in both the Swissprot [58] 

database and Flybase [59]. Finally, we performed InterproScan [60] to identify conserved 

protein domains and functional motifs, to predict coiled coils, transmembrane helices and 

signal peptides, to detect homologous 3D structures, to assign proteins to protein families and 

to map them to metabolic pathways.  

 

Identification of orthologous proteins and phylogenetic tree reconstruction 

We identified the orthologous groups from all 11 Lepidoptera genomes using OrthoMCL [61]. 

2106 orthologous groups consisted of single-copy genes from each species, and they were used 

for phylogenetic analysis. An alignment was built for each universal single-copy orthologous 

group using both global sequence aligner MAFFT [62] and local sequence aligner BLASTP. 
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Positions that were consistently aligned by both aligners were extracted from each individual 

alignment and concatenated to obtain an alignment containing 362,743 positions. The 

concatenated alignment was used to obtain a phylogenetic tree using RAxML [63]. Bootstrap 

was performed to assign the confidence level of each node in the tree. In addition, in order to 

detect the weakest nodes in the tree, we reduced the amount of data by randomly splitting the 

concatenated alignment into 100 alignments (about 3630 positions in each alignment) and 

applied RAxML to each alignment. We obtained a 50% majority rule consensus tree and 

assigned confidence level to each node based on the percent of individual trees supporting this 

node. 

 

Assembly and annotation of mitochondrial genomes 

The mitogenomes of several closely related species, including Catopsilia pomona [64], Colias 

erate [65], and Gonepteryx mahaguru [66] were used as reference. Based on these 

mitogenomes, we applied mitochondrial baiting and iterative mapping (MITObim) v1.6 [67] 

software to extract the sequencing reads of the mitogenome in the paired-end libraries for 

specimen NVG-3314. About 4.3 million reads for the mitogenome were extracted, and they 

were expected to cover the mitogenome 40 thousand times. We used JELLYFISH to obtain 

the frequencies of 15-mers in these reads, and applied QUAKE to correct errors in 15-mers 

with frequencies lower than 1,000 and excluded reads containing low-frequency 15-mers after 

error correction. We used the error-corrected reads to assemble into contigs de novo with 

Platanus. We manually selected the contig corresponding to the mitogenome (it is the longest 

one with highest coverage), and manually extended its sequence based on the sequencing reads 



203 

 

to obtain a complete circular DNA. In addition, by aligning the protein coding sequences from 

the mitogenomes of closely related species mentioned above to the Phoebis sennae 

mitogenome, we annotated the 13 protein coding genes.  

 

Obtaining the genomes of six Phoebis sennae specimens and phylogenetic analysis 

We mapped the sequencing reads of all 6 Phoebis sennae specimens to the reference genome 

using BWA [68] and detected SNPs using the Genome Analysis Toolkit (GATK) [69]. We 

deduced the genomic sequences for each specimen based on the result of GATK. We used two 

sequences to represent the paternal and maternal DNA in each specimen. For heterozygous 

positions, each possible nucleotide was randomly assigned to either paternal or maternal DNA. 

Based on the gene annotation of the reference genome, we further deduced the protein-coding 

sequences of each gene in each specimen.  

 In study the population structure, we selected bi-allelic loci (two nucleotide types in a 

position of alignment covering all 6 specimens, coding and non-coding regions). First, we 

encoded each specimen by a vector consisting of the frequency of a certain nucleotide in each 

position. For example, if a position is occupied by A and T in all 6 specimens, then their 

possible genotypes AA, AT and TT were represented as 0, 0.5 and 1, respectively. We 

calculated the covariance between each pair of specimens and obtained a covariance matrix. 

We performed singular value decomposition on the covariance matrix and visualized the 

clustering of the 6 specimens in two dimensional space defined by the first two singular vectors. 

Second, we applied fastStructure software [23] to analyze the same SNP genotype data. We 
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tested all the possible number of model components (from 1 to 6) and selected the population 

structure with the maximal likelihood.  

 In order to quantify the divergence between the two Phoebis sennae subspecies, we 

compared their divergence level in the protein-coding regions to that for a pair of sister species, 

Pterourus glaucus and Pterourus canadensis. The transcripts of Pterourus specimens were 

mapped to the Pterourus glaucus reference genome using methods described before [8]. From 

alignments of Pterourus transcripts to the reference genome, we selected 9,622 nuclear genes 

for which there are at least 60 aligned positions from at least two Pt. canadensis and two Pt. 

glaucus specimens. Similarly, we selected 16,137 nuclear genes of Phoebis sennae, requiring 

the selected genes to have at least 50% coverage for the coding regions in two P. s. marcellina 

and two P. s. eubule specimens. We extracted the coding regions in the alignments of 

individual nuclear genes and concatenated them for both Pterourus and Phoebis. The 

concatenated alignment was used to build both a neighbor-joining tree with PHYLIP [70] 

based on the percentage of different positions between specimens and a maximal-likelihood 

tree with RAxML (model: GTRGAMMA). Bootstrap resampling was performed to assign 

confidence levels for nodes in the maximal-likelihood tree.  

 

Identification of divergence hotspots and selection of nuclear barcodes 

We defined “divergence hotspots” as genes that satisfied the following two criteria: (1) can 

confidently (bootstrap > 75) separate P. s. eubule and P. s. marcellina specimens into clades 

in phylogenetic trees by both the DNA sequence and the protein sequence encoded by them; 

(2) the divergence within both P. s. eubule and P. s. marcellina specimens is lower than the 
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median divergence level over all the genes. We identified the enriched GO terms associated 

with these “divergence hotspots” using binomial tests (m = the number of “divergence hotspots” 

that were associated with this GO term, N = number of “speciation hotspots”, p = the 

probability for this GO term to be associated with any gene). GO terms with P-values lower 

than 0.01 were considered enriched. We further identified genes that are always more divergent 

between taxa than within taxa. These genes could be used as nuclear markers to distinguish P. 

s. eubule and P. s. marcellina.  
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Table 4. Information about the selected nuclear markers 

Flybase ID Phoebis sennae ID Function 
CG3731 pse1226.10 Mitochondrial-processing peptidase subunit beta 
CG9138 pse132.8 Regulator of tracheal tube development 
CG10731 pse1425.14 ATP synthase subunit s, mitochondrial 
CG43388 pse35.12 Voltage-gated potassium channel 
CG7917 pse730.7 Nucleoplasmin 
CG6964 pse9575.4 Transcriptional repressor 
CG31548 pse1095.3 3-oxoacyl-[acyl-carrier-protein] reductase FabG 
CG2488 pse1216.5 Cryptochrome-1 
CG7675 pse1218.21 Retinol dehydrogenase 11 
CG5722 pse243.10 Niemann-Pick C1 protein 
CG1753 pse42.13 Bifunctional L-3-cyanoalanine synthase 
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Figure 1. Specimens of Phoebis. 
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Figure 2. Phylogenetic tree of the Lepidoptera species with complete genome sequences. 

Majority-rule consensus tree of the maximal likelihood trees constructed by RAxML on the 

concatenated alignment of universal single-copy orthologous proteins. 
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Figure 3. Incongruence between the speed of evolution for mitochondrial and genomic 

DNA.  
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Figure 4. Genomic divergences within and between taxa shown as histograms: percent of 

genes for each level of divergence. 
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Figure 5. Divergence of selected genes (=markers) within (red) and between (blue) 

Phoebis taxa. Nuclear genes commonly used in phylogenetic analysis of Lepidoptera (General 

nuclear markers) are shown on the left and nuclear genes that discriminate best between the 

taxa based on this study are shown on the right (Specific nuclear markers). See Table 4 for 

information about these markers.  
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CHAPTER NINE 
Skipper genome sheds light on unique phenotypic traits and 

phylogeny 
 
 

INTRODUCTION 

 
Butterflies and moths (Lepidoptera) have relatively small genomes compared to other 

eukaryotes, yet they display complex life cycles and diverse wing patterns. These 

characteristics have contributed to their emergence as powerful models for genetics and 

evolutionary studies. A new paradigm that gene exchange between species being a driver in 

the evolution of adaptation in Heliconius butterflies, has increased excitement in the field [1]. 

Additional interest in the Lepidoptera models has resulted from discovering molecular 

mechanisms responsible for complex traits, such as sexual dimorphism [2-5].  

 Despite the wealth of life cycle, habit and morphological data available for butterflies 

(Rhopalocera), their phylogeny is uncertain. Traditionally, the Papilionidae (swallowtails), 

Pieridae, Nymphalidae, Lycaenidae and Riodinidae families were grouped into a single 

superfamily, Papilionoidea, that represents typical butterflies. A sister superfamily 

Hesperioidea contained the single Hesperiidae family [6]. Hesperiidae are similar to many 

typical butterflies in the egg, larval and pupal stages, however, adults are morphologically 

distinct, and are characterized by reflexed antennal clubs, larger heads, and several moth-like 

characteristics such as stockier bodies, stronger wing muscles and darting flight with faster 

wing beats [6]. Their ability to fly rapidly gained them the common name “skippers”. Skippers 

were traditionally considered to be the basal branch of butterflies based on morphological 

characters [6]. Phylogenetic reconstructions of 57 butterfly and skipper species that combined 
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DNA sequences of three phylogenetic markers with morphological characters agreed with the 

basal placement of skippers [7]. However, a purely DNA-based phylogeny presented in the 

same study contradicted this view and placed Papilionidae at the base with Hesperiidae as a 

sister to other butterfly families. Similarly, a recent larger-scale study that included 

transcriptomes of 9 butterflies and skippers reported a highly confident phylogeny with 

Papilionidae in the basal position [8]. Therefore, the reconciliation of the discrepancy between 

these morphology-based and DNA-based phylogenies requires further studies and the 

phylogeny of major families of butterflies remain an open question. 

 Decoding the skipper genomes could help the reconstruction of Lepidoptera tree and 

provide information that is essential for understanding the evolution of their moth-like 

morphological features, which are either inherited from their ancestor or are character reversals. 

Here we report the assembly and gene annotations for the highly heterozygous genome of the 

Clouded Skipper Lerema accius (J. E. Smith, 1797), abbreviated as Lac, shown on Figure 1. 

Lac belongs to the subfamily Hesperiinae, commonly known as Grass Skippers, the most 

species-rich subfamily of skippers. Caterpillars of most Hesperiinae feed on grasses and sedges. 

Hesperiinae adults typically hold wings erect over the thorax and abdomen when feeding and 

resting. They adopt a “jet plane” pose when basking: partially open the wings and hold the 

fore- and hindwings at different angles. 

 Comparative analysis of this first genome from the family Hesperiidae with other 

Lepidoptera genomes provides hypotheses about bases for unique morphological traits of 

skippers, such as their fast flight. Phylogenetic analyses of Lac with Lepidoptera species with 

available complete genomes fail to resolve the position of Hesperiidae. Maximum likelihood 
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tree constructed by RAxML [9] using the most suitable evolutionary model (JTTDCMUT 

model) selected by the program place swallowtails at the base of the tree, consistent with 

published DNA phylogenies, while Bayesian inference [10] with an evolutionary model that 

accounts for site-heterogeneity [11], weakly supports the traditional morphology-based 

phylogeny in which skippers are the basal branch of butterflies. More extensive taxon sampling 

and/or more advanced methods of phylogenetic analysis are needed to resolve the position of 

Hesperiidae conclusively, and the first Hesperiidae genome provides a starting point for these 

studies.  

 

RESULTS AND DISCUSSION 

 
Genome quality assessment and gene annotation 

We assembled a 310 Mb genome of Lac and compared its quality with genomes (Table 1) of 

the following Lepidoptera species: Plutella xylostella (Pxy), Bombyx mori (Bmo), Papilio 

glaucus (Pgl), Melitaea cinxia (Mci), Heliconius melpomene (Hme), and Danaus plexippus 

(Dpl) [1-3, 12-17]. The scaffold N50 of Lac is 513 kb, which is longer than several other 

butterfly genomes. The genome is among the best in terms of completeness measured by the 

presence of CEGMA (Core Eukaryotic Genes Mapping Approach) genes [18], cytoplasmic 

ribosomal proteins and independently assembled transcripts. The residue coverage (86.6%) of 

CEGMA genes by single Lac scaffolds is comparable to the residue coverage by the current 

Bmo assembly with an N50 of about 4.0 Mb, indicating that the quality of the Lac draft is 

sufficient for protein annotation and comparative analysis. This Whole Genome Shotgun 

project has been deposited at DDBJ/EMBL/GenBank under the accession LGAG00000000. 
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The version described in this paper is version LGAG01000000. In addition, the main results 

from genome assembly, annotation and analysis can be downloaded at 

http://prodata.swmed.edu/LepDB/. 

We assembled the transcriptomes from two other Lac specimens, a pupa and an adult. Based 

on the transcriptomes, homologs from other insects, de novo predictions and repeat 

identification, we predicted 17,416 protein-coding genes in Lac. 79% of these genes are likely 

expressed, as they fully or partially overlap with the transcripts. We annotated the putative 

function for 12,283 protein-coding genes.  

 

Comparison of Lepidoptera genomes 

We compared the composition of the Lac genome with that of other Lepidoptera (Table 1). 

Although the genome sizes of Lepidoptera range from 250 to 500 Mbp, the total lengths of 

coding regions are comparable. The reported repeat content of these genomes varies 

significantly, and repeat content is positively correlated with the genome size. We identified 

orthologous proteins encoded by these genomes and detected 5770 universal orthologous 

groups where 2940 consist of a single-copy gene in each of the species (Fig. 2a). We compared 

two protein families: Hox genes that are crucial for development and Odorant Receptors (OR) 

that are particularly important for the feeding and mating behaviors of insects. Lac had the 

same set of Hox genes as other Lepidoptera. All the Lac Hox genes that are expected to be 

linked are located on the same scaffold in the order, typical for Lepidoptera (Fig. 2b). The Lac 

genome encodes 56 ORs, which is comparable to Pgl but less than Hme, Dpl and moths. The 

Mci genome appears to encode the smallest number of ORs (48), but this number is likely 
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underestimated because of the poor continuity of the current Mci genome assembly (119 kbp). 

Clustering analysis shows that ORs in Lepidoptera can be classified into several subfamilies, 

and the Lac genome encodes ORs from each of these subfamilies.  

 

Functional implication of Non-random Single-nucleotide polymorphism (SNP) 

distribution  

The Lac genome is highly heterozygous, as suggested by the distribution of k-mer frequencies 

(Fig. 3a). Here, we compare and describe heterozygosity properties of the Lac genome and the 

highly heterozygous Pgl genome that we previously assembled [16]. Approximately 2.3% of 

the positions in the Pgl genome and 1.6% of the positions in the Lac genome are different 

between the two homologous chromosomes. In both genomes, the SNP rate in the coding 

regions (0.91% for Pgl and 0.96% for Lac) is much lower than that for the non-coding regions 

(2.4% for Pgl and 1.7% for Lac), which is likely due to the potential deleterious effect of SNPs 

in the coding regions.  

 Both the Pgl and Lac genome contain long segments (>1,000) that are free of SNPs. 

However, the SNP-free segments in the Pgl genome are significantly longer than those in Lac. 

The longest SNP-free segments in Pgl and Lac are about 734.8 kbp and 13.5 kbp, respectively. 

One possible explanation for the presence of SNP-free regions is that the high heterozygosity 

of these regions prevents the mapping of reads from the alternative homologous chromosomes, 

resulting in failures to detect SNPs. But this is not likely the dominant reason, since we 

included only regions with the expected coverage by the reads in this analysis. Another 

potential reason for SNP-free regions is that insects frequently inbreed in nature and that the 
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parents of the sequenced specimen could share a recent common ancestor, from which they 

inherited the same alleles.  

 Omitting the SNP-free regions, the distribution of SNP rates in the Pgl genome can be 

approximated by a single normal distribution (Fig. 3b). In contrast, the distribution of SNPs 

rates (Fig. 3c) in the Lac genome can be represented by a mixture of two Gaussian distributions: 

one centered around 0.3-0.4% and a second centered at 2.5%. We speculate that a SNP rate of 

0.3-0.4% corresponds to the variation accumulated within the local population of Lac, whereas 

the higher SNP rates in certain regions reflect gene flow from other populations or even from 

other species. Human activities might have an impact on the high SNP rates of Lac. For 

example, Lac feeds on widely planted grasses (Poaceae family). Expansion of this common 

food source by humans might cause previously isolated Lac populations to meet.  

 A quarter (22% for Lac and 26% for Pgl) of the SNPs are non-synonymous and result 

in amino acid substitutions in proteins. Protein regions that are predicted to be structurally 

disordered are significantly more enriched in substitutions. This enrichment is likely due to 

higher tolerance of disordered regions to substitutions [19]. To help understand the functional 

consequence of SNPs in the Pgl and Lac genomes, we identified proteins that are significantly 

enriched (false discovery rate < 0.1) in substitutions in their structurally ordered regions.  

 The enriched GO terms associated with substitution-enriched proteins in both genomes 

show a significant (p < 1e-15) overlap (Fig. 3d). Among the enriched biological process (Fig. 

3e) and molecular function (Fig. 3f) GO terms shared by both species, the molecular function 

“catalytic activity” is among the most significant (p < 1e-4). Approximately 40% of the 

substitution-enriched proteins are enzymes in both species. The most significantly enriched 
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GO (p < 1e-8) terms for Lac (GO:0045931, GO:0031935, GO:0060968, GO:0045787 and 

GO:0030178) can each be attributed solely to a single substitution-rich protein family: C2H2 

zinc fingers. Both insect and mammalian genomes encode large numbers of C2H2 zinc fingers, 

and their exact function is not fully understood [20]. However, C2H2 zinc fingers were 

implicated in transcriptional silencing of exogenous DNA [21, 22]. We hypothesize that the 

C2H2 zinc fingers evolved adaptively as the population was exposed to exogenous DNA 

sources, such as retrovirus or gene flow from other species. 

 

Phylogenetic analysis with whole-genome data 

The morphology-based view of butterfly evolution suggests a tree topology (((((Mci, Hme), 

Dpl), Pgl), Lac), Bmo, Pxy) [6, 7], whereas recent DNA-based phylogenetic analyses supports 

an alternative topology  (((((Mci, Hme), Dpl), Lac), Pgl), Bmo, Pxy) [7, 8]. We refer to these 

two topologies as the traditional topology and the alternate topology, respectively. 

 Whole-genome sequences of these species allowed us to model their phylogeny using 

both the alignments of universal single-copy orthologs and the synteny of genes. However, 

both the traditional and the alternate tree topologies can be supported by the data depending 

on which evolutionary models and tree construction methods are selected. The 50% majority 

rule consensus tree of maximum likelihood trees constructed with RAxML [9] on the 

alignments of individual proteins failed to completely resolve the phylogeny due to short 

lengths (median length: 209 amino acids) of individual alignments. Instead, a similar 

consensus tree built on 1000 random samples of long alignments (> 5,000 aligned positions) 
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from concatenated alignments agreed with the alternate topology (Fig. 4a). However, the clade 

that groups skippers with other butterflies is only the best solution in 72% of random samples.  

 To further test which topology is better supported, we used the Bayesian phylogenetic 

analysis software PhyloBayes [10] with the CAT model [11] that accounts for site 

heterogeneity in amino acid substitutions by dividing the sites into 4 categories. We 

constrained the tree topology to either the traditional or the alternative one. This analysis 

supported the traditional topology in 66% of the 1000 random samples. A consensus tree 

summarizing the tree topologies with higher likelihood based on each data set is shown in Fig. 

4b.  

 Similarly, the phylogeny inferred from gene rearrangement events produced different 

results depending on the selection of evolutionary model. While a simple neighbor-joining tree 

based on the frequency of gene arrangement supported the alternative topology (Fig. 4c), 

Bayesian interference with the CAT model supported the traditional topology with a higher 

likelihood (Fig. 4d). Although the traditional tree topology based on morphological features is 

not contradicted by our genomic data analysis, the uncertainty of reconstructions is too high to 

conclusively determine the evolutionary history of butterflies.  

 The discrepancy between morphological and molecular phylogeny has been a long-

standing problem in evolutionary biology [23]. The incongruence between molecular trees 

obtained with different methods or different data sets is also frequently encountered [23, 24], 

and studies on several other systems reveal similar uncertainty as we observed in our analysis 

[25, 26]. This uncertainty in butterfly phylogeny may also result from incomplete lineage 

sorting [27]. Trees built from different orthologous groups support different topologies with 
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high bootstrap values. Out of the 522 maximum likelihood trees of individual orthologous 

groups with bootstrap support above 80%, a significant portion of them supports the traditional 

topology (24.7%) and a third possible topology (33.7%) that groups Pgl and Lac in a clade, 

although the alternate topology is overall better supported by 41.6% of them. In addition, the 

limited number of available butterfly genomes impedes a better taxon sampling for the 

phylogenetic reconstruction of butterflies. Genome sequences of species that represents the 

early branches in each family of butterflies could help to resolve the uncertainty in the 

phylogenetic tree of butterflies. 

 

Expanded gene families in Lac suggest possible genetic bases for phenotypic traits 

Compared to other Lepidoptera species, the Lac genome contains expansions in several protein 

families. Endochitinase-like proteins are uniquely expanded (Fig. 5a) and cluster on the same 

scaffold in the genome, which indicates that they originated from recent gene duplication 

events. As shown in the phylogenetic tree (Fig. 5a), these duplicated endochitinase-like 

proteins diverged rapidly and only one copy retained high sequence similarity to the 

orthologous proteins in other Lepidoptera and Drosophila melanogaster genomes. While this 

single conserved copy likely preserved the function of endochitinase, we hypothesize that the 

other divergent endochitinase-like proteins could have adopted new functions to digest 

cellulose. This hypothesis is based on the following three facts: (1) Lac and most skippers in 

the Hesperiinae subfamily feed on the cellulose-rich grasses; (2) the Lac genome and other 

Lepidoptera genomes do not encode proteins that belong to the families of known cellulases; 

(3) endochitinases are homologs of cellulases and they are structurally very similar [28]; (4) 
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cellulose and chitin are structurally similar and they are both glycoside hydrolases. Therefore, 

these endochitinases-like proteins in Lac may have evolved to digest cellulose, allowing Lac, 

and possibly other grass-feeding skippers in the Hesperiinae subfamily, to feed on grasses that 

are rich in it. It remains to be explored if other Monocot feeders, such as Satyrinae 

(Nymphalidae), have a similar expansion or use different enzymes. 

 Another expanded protein family is geranylgeranyl pyrophosphate synthase (GGPPS, 

Fig. 5b) homologs. GGPPSs are used in the biosynthesis of terpenes and terpenoids, which are 

frequently used as an intermediate product for pheromone biosynthesis. 13 copies of GGPPS 

homologs in Lac form a clade in the phylogenetic tree (highlighted in magenta in Fig. 5b) and 

their sequences have diverged from the Drosophila GGPPS. It is possible that these homologs 

have adopted slightly different functions and gained the ability either to catalyze different steps 

to synthesize one type of pheromone or to produce a wide range of different pheromone 

molecules. In addition, Lac encodes a much larger number of pheromone-binding proteins 

(PBPs) than other Lepidoptera species and these PBPs form a clade in the phylogenetic tree of 

Lepidoptera PBPs (Fig. 5c). Both gene expansion events suggest a more advanced pheromone 

production and sensing system in Lac. Butterflies can select their mates both by using visual 

cues and by sensing pheromones at close range. However, many skipper species have similar 

wing colors and patterns, which might confuse recognition by the mates of the same species. 

Therefore, a stronger pheromone system in Lac might allow individuals to efficiently detect 

mates of the same species. 

 The phylogenetic tree of GGPPS homologs reveals two copies in Lac (annotated as 

Lac_GPS5 and Lac_GPS6) that clustered closely to the Drosophila GGPPS, rather than in the 



232 

 

clade of other divergent GGPPS homologs. We speculate that these two copies are orthologs 

of the Drosophila GGPPS and retain similar function. Drosophila GGPPS was shown to be 

crucial for heart formation. It works in the mevalonate pathway and directly synthesizes GGPP, 

which can be transferred to G protein Gγ1. The geranylgeranylation of Gγ1 is required for 

heart formation [29], and the duplication of GGPPS may be related to heart development for 

efficient energy supply to sustain the rapid wing beats of Lac. In addition, several mitochondria 

targeted genes encoded by the nuclear genome are also duplicated in the Lac genome (Table 

2), including components of the NADH dehydrogenase [uniquinone] complex, which is 

directly linked to energy production. The Lac genome is significantly (p < 1e-7) enriched in 

mitochondria targeted genes compared to other Lepidoptera as reflected by the GO terms. 

Taken together, we propose that the observed enrichment and duplications of mitochondrial 

proteins allow for dynamic adaptation of mitochondrial functions depending on type of organ, 

tissue, or life stage and ensure efficient energy supply for rapid wing beats in adults of Lac.  

 

CONCLUSIONS 

 
We report the draft genome of Clouded Skipper. Being the first sequenced genome from the 

Hesperiidae family, it offers a rich dataset for comparative genomics and phylogenetic studies 

of Lepidoptera. We devised a cost-efficient protocol that overcomes the difficulty in 

assembling highly heterozygous genome. Despite the high level of heterozygosity (1.5%), the 

quality of our genome assembly is nearly the best among published Lepidoptera genomes. This 

protocol should stimulate and enable sequencing of other insect genomes. Comparative 

analyses of Lepidoptera genomes suggest possible genetic bases for the unique phenotypic 
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traits of skippers, including fast flight with rapid wing beats, ability to feed on grasses in larval 

stage, and recognize mates efficiently in spite of the similarity in wing patters of many species. 

These new data should facilitate experimental studies of skippers and contribute to the 

understanding of how diverse phenotypes are encoded by the genomes.  

 
METHODS 

 
Library preparation and sequencing 

We removed and preserved the wings and abdomen of a freshly caught and frozen male Lac 

specimen (USA: Texas: Dallas County, Dallas, White Rock Lake, Olive Shapiro Park, 10-

Nov-2013, GPS: 32.8621, -96.7305, elevation: 141 m), and extracted approximately 15 µg 

genomic DNA from the rest of its body with the ChargeSwitch gDNA mini tissue kit. 250 bp 

and 500 bp paired-end libraries were prepared using enzymes from NEBNext Modules and 

following the Illumina TruSeq DNA sample preparation guide. 2 kb, 6 kb and 15 kb mate pair 

libraries were prepared using a protocol that was modified from a previously published Cre-

Lox-based method [30]. For the 250 bp, 500 bp, 2 kb, 6 kb and 15 kb libraries, approximately 

500 ng, 500 ng, 1.5 µg, 3 µg and 6 µg of DNA were used, respectively. A Lac adult and a pupa 

reared from a caterpillar collected at the same locality (White Rock Lake) were preserved in 

RNAlater solution and total RNA was extracted from them using QIAGEN RNeasy Plus Mini 

Kit. We further isolated mRNA using NEBNext Poly(A) mRNA Magnetic Isolation Module 

and RNA-seq libraries for both specimens were prepared with NEBNext Ultra Directional 

RNA Library Prep Kit for Illumina following manufactory’s protocol.  
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 We quantified the amount of DNA from all the libraries with the KAPA Library 

Quantification Kit, and mixed 250 bp, 500 bp, 2 kb, 6 kb, 15 kb genomic DNA pupal RNA-

seq and adult RNA-seq libraries to get the final library with relative molar concentration 

40:20:8:4:3:20:10. The final library was sent to the genomics core facility at UT Southwestern 

Medical Center for 150 bp paired-end sequencing on Illumina HiSeq2000. The sequencing 

reads have been deposited in NCBI SRA database under accession numbers: SRR2089769- 

SRR2089775. The sequence reads to assemble the genome and transcriptome have been 

deposited at the same database under accession numbers: SRR2089776 and SRR2089777. 

 

Genome assembly 

We removed sequence reads that did not pass the Illumina purity filter and classified the 

remainder according to their TruSeq adapter indices. Mate pair libraries were processed by the 

Delox script [30] to remove the LoxP sequences and to separate true mate pair from paired-

end reads. All reads were processed by mirabait [31] to remove contamination from the TruSeq 

adapters, fastq_quality_trimmer (Kondratowicz et al., 2011) to remove low quality portions at 

both ends, JELLYFISH [32] to obtain k-mer frequencies in all the libraries, and QUAKE [33] 

to correct sequencing errors. The data processing resulted in nine libraries that were supplied 

to Platanus [34] for genome assembly: 250 bp and 500 bp paired-end libraries, three paired-

end and three mate pair libraries from 2 kb, 6 kb and 15 kb libraries and a single-end library 

containing all reads whose pairs were removed in the process.  

 We mapped these reads to the initial assembly with Bowtie2 [35] and calculated the 

coverage of each scaffold with the help of SAMtools [36]. Many short scaffolds in the 
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assembly showed coverage that was about half of the expected value, which likely resulted 

from highly heterozygous regions that were not merged to the equivalent segments in the 

homologous chromosomes. We merged them into other scaffolds if they could be fully aligned 

to another significantly less covered region (coverage > 90% and uncovered region < 500 bp) 

in a longer scaffold with high sequence identity (>95%). Similar problems occurred in the 

Heliconius melpomene and Papilio glaucus genome projects, and similar strategies were used 

to improve the assemblies [1, 16].  

 

Transcriptome assembly 

After removing contamination from TruSeq adapters and the low quality portion of the reads 

using the methods mentioned above, we applied three methods to assemble the transcriptomes: 

(1) de novo assembly by Trinity [37], (2) reference-based assembly by TopHat [38] (v2.0.10) 

and Cufflinks [39] (v2.2.1), and (3) reference-guided assembly by Trinity. The results from all 

three methods were then integrated by Program to Assemble Spliced Alignment (PASA) [40].  

 

Identification of repeats and gene annotation 

Two approaches were used to identify repeats in Lac genome: the RepeatModeler [41] pipeline 

and in-house scripts that extracted regions with coverage 4 times higher than expected. These 

repeats were submitted to the CENSOR [42] server to assign them to the repeat classification 

hierarchy. The species-specific repeat library and repeats classified in RepBase [43] (V18.12) 

were used to mask repeats in the genome by RepeatMasker [44].  
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 From the transcripts of both specimens in the pupal and adult stages, we obtained two 

sets of transcript-based annotations from two pipelines: TopHat followed by Cufflinks and 

Trinity followed by PASA. In addition, we obtained five sets of homology-based annotations 

by aligning protein sets from Drosophila melanogaster [45] and four published Lepidoptera 

genomes to the Lac genome with exonerate [46]. Proteins from the entire UniRef90 [47] 

database were used to generate another set of gene predictions by genblastG [48]. We manually 

curated and selected 1427 confident gene models by integrating the evidence from transcripts 

and homologs to train de novo gene predictors: AUGUSTUS [49], SNAP [50] and 

GlimmerHMM [51]. These trained predictors, the self-trained Genemark [52] and a consensus 

based pipeline, Maker [53] were used to generate another five sets of gene models. Transcript-

based and homology-based annotations were supplied to AUGUSTUS, SNAP and Maker to 

boost their performance. In total, we generated 15 sets of gene predictions and integrated them 

with EvidenceModeller [40] to generate the final gene models.  

 We predicted the function of Lac proteins by transferring annotations and GO-terms 

from the closest BLAST [54] hits (E-value<10-5) in both the Swissprot [55] database and 

Flybase [56]. Finally, we performed InterproScan [57] to identify conserved protein domains 

and functional motifs, to predict coiled coils, transmembrane helices and signal peptides, to 

detect homologous 3D structures, to assign Lac proteins to protein families and to map them 

to metabolic pathways.  

 

Assembly quality assessment and comparison to other Lepidoptera genomes 
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We obtained the most recent versions of other published Lepidoptera genomes, including 

Bombyx mori, Danaus plexippus, Heliconius melpomene, Melitaea cinxia, Papilio glaucus, 

and Plutella xylostella [1-3, 12-17]. Using the criteria applied in the Monarch butterfly genome 

paper [2], we estimated the completeness of these genomes based on their coverage of 

independently obtained transcripts, CEGMA [18] genes and the Cytoplasmic Ribosomal 

Proteins. 

 We compared various properties of these published genomes and clustered the proteins 

annotated in them using OrthoMCL [58]. We identified the Hox genes using homeodomains 

from Drosophila in the HomeoDB [59] as reference, and relationship among them were 

detected using a phylogenetic tree built by RAxML [9] with automatically selected model on 

the MAFFT [60] alignment. Starting from the annotated odorant receptors from the Bmo, Hme 

and Dpl genomes, we identified all the odorant receptors in the annotated protein sets from 

these Lepidoptera genomes using reciprocal BLAST. Odorant receptors encoded by the 

genome but missed in the protein sets were predicted with the help of genblastG. All the 

candidates identified by the automatic programs were further curated to remove short 

fragments (<200 aa) and false positive hits that do not detect odorant receptors as the top hit 

in a BLAST search against Flybase entries. Sequences of these odorant receptors were 

compared and clustered using CLANS [61]. 

 

Detection and analysis of SNPs 

We analyzed the SNPs in Lac and Pgl genomes using the same protocol, in which we mapped 

each of the sequence reads to the genomes and detected SNPs using the Genome Analysis 
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Toolkit [62]. For both Pgl and Lac genomes, this distribution shows two peaks. In addition to 

the main peak centered at the expected coverage for a diploid genome, there is an additional 

peak to the left that corresponds to highly divergent regions between the two homologous 

chromosomes. Owing to this sequence divergence, only the reads corresponding to the 

sequence of one of the homologous chromosomes can be mapped, which results in the lower-

than-expected coverage. To analyze the distribution of SNPs, we focused on the regions, in 

which coverage by the reads falls within the diploid peak. We divided these regions into exons, 

introns, repeats and intergenic regions. The percent of SNPs in overlapping 1000 bp windows 

in the genome was used to reflect their distributions. We detected non-synonymous SNPs that 

will cause substitutions in proteins and predicted structurally disordered regions in proteins 

with ESpritz server [63].   

 We identified proteins with significantly more substitutions with binomial tests (p = 

average percent of substitutions in all proteins, m = number of substitutions in a protein, N = 

length of a protein) followed by False Discovery Rate (FDR) tests [64]. We considered proteins 

with Q-values (maximal FDR level) smaller than 0.1 to be significantly enriched in 

substitutions. We excluded the regions that were predicted to be structurally disordered and 

performed similar tests. Enriched GO terms associated with these substitution-enriched 

proteins were identified with another binomial test (P = probability of this GO-term being 

associated with any protein, m = number of substitution-enriched proteins associated with this 

GO-term, N = number of substitution-enriched proteins). The significantly enriched GO terms 

were submitted to the REVIGO [65] web server to cluster similar GO terms and visualize them.  
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Phylogenetic tree reconstruction 

We performed the phylogenetic analysis based on the 2940 universal single-copy orthologs in 

the Lepidoptera genomes (Lac, Bmo, Pxy, Dpl, Hme, Mci, and Pgl) detected by OrthoMCL. 

We built alignment for each orthologous group using both global sequence aligner MAFFT 

and local sequence aligner BLASTP. 570,686 positions that were consistently aligned by both 

aligners were extracted. All the alignments were concatenated and the aligned positions were 

randomly divided to 100 groups, so that each group contained about 5,706 or 5,707 aligned 

positions. We repeated this procedure 10 times to obtain a total of 1,000 representative 

alignments for phylogenetic analysis. In addition, the 1,991 alignments of individual 

orthologous groups containing more than 100 aligned positions were used as a separate data 

set in the phylogenetic analysis.  

 For the phylogenetic analysis we used two methods: a maximum likelihood method 

RAxML, in which the evolutionary model is automatically selected by the program based on 

the data and a Bayesian inference method PhyloBayes [10] with CAT model that divide sites 

into categories and account for site-heterogeneities [11]. In addition to allowing the program 

to search for the best tree topologies, we further constrained the Bayesian analysis to two 

previously observed topologies: (((((Mci, Hme), Dpl), Lac), Pgl), Bmo, Pxy) and (((((Mci, 

Hme), Dpl), Pgl), Lac), Bmo, Pxy).  We compared the posterior probabilities given the two 

topologies imposed as priors to select the tree topology that is better supported by the data for 

each alignment.  

 In addition, we used the frequencies of gene rearrangements to construct phylogenetic 

trees. We started from the 5770 orthologous families present in each of the 7 species and 
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removed families with extensive gene duplications (more than 4 copies of a gene in any 

species), which resulted in 5639 families. In each species, we determined the relative genomic 

orientation for every pair of gene families on the same scaffold. There are four possible relative 

orientations: [a+, b+]; [a-, b-]; [a+, b-]; [a-, b+], where a and b are genes from two families and 

“+” and “-” indicate the DNA strand they are encoded on. Due to the limited continuity of draft 

genomes, relative orientations in all 7 species could be determined for 2120 such gene pairs. 

Then, we restricted the analysis to 1121 such pairs so that each family participated in only one 

pair. We used four letters (A, B, C, and D) to denote the relative orientations of family pairs, 

and expressed the arrangement of the 1121 pairs in each species by a string of these letters. 

These strings were used as input for PhyloBayes for tree construction. The numbers of 

differences between these strings were used as evolutionary distances between species to 

construct phylogenetic tree with BioNJ [66].  

 

Analysis of gene expansion in Lac 

We identified the closest homolog (BLASTP e-value < 0.00001) of each Lepidoptera protein 

in Flybase. If two OrthoMCL-defined orthologous families in Lepidoptera shared a common 

Flybase entry as their closest homolog, we merged them into one family. We considered Lac 

to have undergone gene expansion in a family if both the number and total length of Lac 

proteins in this family are more than 1.5 times of the average number and total length for other 

Lepidoptera species. The most significantly expanded gene families with well-defined 

functions were further investigated using reciprocal BLAST results and function annotations 

to include all relevant proteins. Proteins encoded by the genome but missed in the protein sets 
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were predicted with the help of genblastG. Protein sequences from each family were aligned 

with MAFFT. Evolutionary trees were built with RAxML and visualized in FigTree.  
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