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ABSTRACT 

Originally suggested to function mainly in inflammatory situations, recent data have 
implied important roles for the cyclooxygenase-2 (COX-2) isoenzyme in reproductive 
biology, renal and neurologic function, and the anti-thrombotic activities of endothelial 
cells. As COX-2 specific inhibitors have recently become available as analgesic and anti­
inflammatory drugs, a comprehensive view of this rapidly evolving field is necessary to 
anticipate both the potential therapeutic benefits and toxicities associated with these 
agents. 

INTRODUCTION 

Since the synthesis of aspmn 100 years ago, nonsteroidal antiinflammatory drugs 
(NSAIDs) have become mainstays in the medical management of pain and inflammation 
(1). The common but perhaps not the only mechanism underlying NSAID activity, 
inhibition of the cyclooxygenase enzyme that catalyzes the initial step of arachidonic acid 
metabolism became clear in the early 1970s (2), and served to encourage the 
development of an NSAID class that now includes of over 30 compounds. Despite the 
capacity of these agents to suppress pain, inflammation and fever (3), and the expansion 
of the use of these agents into one of the most widely used classes of drugs in the world, 
mechanism-based toxicity related to the suppression of the production of specific 
arachidonic acid metabolites in individual tissues and organs ( 4) has limited unmitigated 
acceptance ofthese compounds. Moreover, this mechanism-based toxicity has stimulated 
research into the possibility that less toxic analgesic and anti-inflammatory agents could 
be developed. 

Within the past ten years, COX activity was found to be associated with two distinct 
isozymes, COX-1 and COX-2 (1,5-7). Initial evidence suggested that COX-1 was 
expressed constitutively within many tissues and thought to be responsible for 
homeostatic production of arachidonic metabolites. In contrast, COX-2 was felt not to be 
expressed normally, but to be rapidly induced in response to inflammatory stimuli and to 
be responsible for the large amounts of prostaglandin E2 and other arachidonic acid 
metabolites produced at inflammatory sites. This generated the hypothesis that the 
functions of the COX isoforms were mutually exclusive, with COX-1 involved in 
maintenance of the physiologic function of a variety of organs and COX-2 involved in 
pathophysiologic processes, including inflammation, pain and fever. This hypothesis was 
sufficiently compelling that before it was rigorously tested, it served as the rationale to 
develop specific COX-2 inhibitors, agents that at therpeutic doses block the activity of 
COX-2 but not COX-1, with the anticipation that these agents would have all of the anti­
inflammatory and analgesic properties of standard NSAIDs, but lack the well recognized 
toxicities related to COX-1 inhibition (8,9) . Clinical trials with two of these agents 
(Figure 1) has produced results that have been consistent with this general paradigm and 
have lead to the approval of these agents for the treatment for osteoarthritis ( celecoxib, 
rofecoxib ), rheumatoid arthritis ( celecoxib) and acute pain (rofecoxib) (1 0,11 ). However, 
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newly emerging information has challenged some aspects of the original model, 
documenting much wider physiologic roles for both COX-1 and COX-2. This 
information has altered some aspects of the anticipated outcome of treatment with 
specific COX-2 inhibitors, but also expanded their potential therapeutic indications. 

Cox-2 Specific Inhibitors 
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Figure 1 

Although a multitude of NSAID actions have been proposed, the ability of NSAIDs to 
suppress inflammation and inflammatory pain results primarily from their inhibition of 
arachidonic acid metabolism and specifically prostaglandin E2 production (1 -4, 12, 13). 
Because arachidonic acid metabolites also maintain gastric mucosal integrity (PGE2, 
prostacyclin) and platelet function (thromboxane A2), as well as renal blood flow, 
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especially in the face of volume contraction, inhibition of arachidonic acid metabolism 
also explains the mechanism based toxicity of NSAIDs, including gastrointestinal 
ulceration and bleeding and diminished renal function (4,14-23). 

Also called prostaglandin H synthase (PGHS), COX is the first enzyme in the prostanoid 
biosynthetic pathway catalyzing the conversion of arachidonic acid to PGG2 and then to 
PGH2 (1-7). Subsequent activity by a variety of other specific enzymes results in the 
characteristic array of arachidonic acid metabolites produced by individual cells and 
tissues. It is the regulated production of those specific metabolites that determines the 
unique and often opposing dominant effects of arachidonic acid metabolites at specific 
tissue sites. For example, platelet derived thromboxane (TXA2) favors platelet 
aggregation and thrombosis that is opposed by the vasodilatory effects of endothelial cell 
derived prostacyclin (PGI2). 

In the late 1980s, it was shown that expression of COX actlvtty could be markedly 
stimulated by interleukin-1 in fibroblasts and monocytes and inhibited by corticosteroids 
(24-26). This was important because prostaglandin production was previously thought to 
be determined only by the amount of arachidonic acid substrate present. Based upon this 
work, the existence oftwo distinct forms of COX was proposed, one constitutive and one 
inducible (25). Since that time, separate genes for the two isoenzymes have been cloned 
(27-29) and regulation and expression of the two proteins have been delineated, 
providing clues to their proposed distinct biologic roles (1 ,5-7). 

The genes for the two COX isoforms are approximately 65% homologous in their coding 
regions and, as a result, the proteins are quite similar with comparable enzymatic 
activities and substrate specificities. One potential difference in the enzymatic activities 
of the two isoforms is the source of the arachidonic acid substrate, with COX-2 utilizing 
intracellular arachidonic acid and COX-I employing extracellular substrate (5,30,31). 
Soluble phospholipase A2 (sPLA2), produced by a variety of cells, appears to be 
important in providing extracellular arachidonic acid substrate for COX-1 (5,30,31). As 
the amount of substrate might be an essential contributor of arachidonic acid metabolite 
production by COX-1, regulation of sPLA2 rather than COX-1 itself may provide the 
crucial influence ofthe metabolic activity ofthe COX-I isoform. 

One additional difference between COX-1 and COX-2 emerged from analysis of the 
three dimensional structures of the molecules (32,33-35). A subtle difference in the 
structures of the hydrophobic channel leading to the active site of the COX-2 molecule 
has been identified, with a somewhat larger orifice and an additional pocket pointing 
away from the catalytic site. This has permitted the development of inhibitors that block 
the activity of COX-2 specifically at concentrations that have only minimal effects on 
COX-I (8,9). In general, COX-2 inhibitors differ from classic competitive inhibitors in 
that they require time to fit into the active site of the enzyme, after which their inhibitory 
effects may become persistent. Of note, the same compound may function as a 
competitive inhibitor of COX-1 at high concentrations and a "timed inhibitor" of COX-2 
at markedly lower concentrations, owing to the unique configuration of the hydrophobic 
channel leading to the active site of the COX-2 isoform. Of importance, the differences 
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between the mechanisms of inhibition of COX-I and COX-2 can influence the estimation 
of the activity of a putative inhibitor when analyzed only with isolated enzymes or intact 
or broken cells. 

The homeostatic versus pro-inflammatory theory of cyclooxygenase actions: 

Analysis of the expression of COX-I using monoclonal antibodies and molecular probes 
has documented that this isoform is expressed constitutively in many cells and tissues 
(36). Of importance, in certain tissues and cells such as the normal gastric mucosa and 
the platelet, COX-I is the only isoform expressed. In the gastric antrum, local production 
ofPGE2 and PGI2 synthesized via the action of COX-I promotes vasodilatation thereby 
promoting the maintenance of mucosal integrity (2I-23). Similarly, in the kidney, COX­
I is important in producing vasodilatory prostaglandins that maintain renal blood flow 
and the glomerular filtration rate, especially during periods of systemic vasoconstriction 
(37,38). Finally, in platelets, the action of COX-I is essential for the production of 
thromboxane A2 (TXA2) that promotes platelet aggregation (39). These findings 
stimulated the concept that the major, if not the only, function of COX-I was to maintain 
homeostasis and promote specific physiologic activities. 

In contrast to the constitutive expression of COX-I and its putative role in homeostatic 
regulation of physiologic processes, the COX-2 enzyme was initially noted to be 
undetectable in most normal tissues and cells (5-7,36). However, when a variety of cells, 
such as macrophages and endothelial cells, were challenged with various inflammatory 
mediators, COX-2 expression was rapidly induced. Moreover, at sites of inflammation, 
such as the rheumatoid synovium, COX-2 was dramatically upregulated ( 40-42). Finally, 
in animal models of inflammation, COX-2 mRNA and protein, but not COX-I, were 
dramatically upregulated at the inflammatory site by the evoking stimulus and just before 
the marked increase in local prostaglandin production and clinical manifestation of 
inflammation (43). This evidence suggested the hypothesis that COX-2 was an inducible 
enzyme that was markedly upregulated at sites of inflammation and accounted for the 
increased production of arachidonic acid metabolites locally and the resultant 
vasodilitation, edema and pain. 

This information provided the basis for the hypothesis that COX-I was involved in 
cellular "housekeeping functions" necessary for normal physiologic activity whereas 
COX-2 acted primarily at sites of inflammation to amplify pain and pro-inflammatory 
manifestations. The clinical corollary to this hypothesis was that highly specific 
inhibition of COX-2 would exert beneficial antiinflammatory and analgesic effects 
without influencing the important physiologic functions of COX-I. Since all currently 
available non-steroidal anti-inflammatory drugs (NSAIDs) inhibit both COX-I and COX-
2 to varying degrees (16, I7) by competing with arachidonate for binding to the active site 
of the enzyme, this line of reasoning suggested that the toxicity of these agents might be 
related to their capacity to inhibit COX-I, whereas their analgesic, anti-inflammatory and 
anti-pyretic effects might depend on their ability to inhibit COX-2. The potential of 
segregating the "good" from the "bad" actions of NSAIDs stimulated the search for 
agents that inhibited COX-2 specifically. 
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Evolving knowledge of the biology of COX-1 and COX-2 has suggested that the initial 
paradigm is an oversimpli-fication. Although COX-2 is induced at sites of inflammation, 
a critical role for COX-2 in a number of other physiologic processes has emerged. 
Moreover, in certain circumstances COX-1 has been shown to be induced (44-46) and to 
play a protective function ( 47), or to contribute to inflammatory responses ( 48). Thus, a 
more complex interplay of COX-I and COX-2 in physiology and pathophysiology has 
emerged with certain unexpected outcomes resulting from targeted disruption or 
inhibition of specific COX isoforms. Moreover, a role for COX isoforms in 
unanticipated physiologic or pathophysiologic processes has emerged, suggesting 
unexpected therapeutic opportunities or consequences of specific COX-2 inhibition. 

Emerging Complexity: Diverse Physiological and Pathophysiological Roles for 
COX-1 and COX-2 

Emerging information suggests that both COX-1 and COX-2 play broad and complex 
physiologic and pathophysiologic roles. Animal data, for example, demonstrate that 
COX-2 is expressed constitutively in the kidney (49,50) and brain (51 -53) and can be 
induced by physiologic stimuli in the kidney, brain, the ovary, uterus, cartilage, and bone 
( 49,54-66). Conversely, COX-I can be induced in response to injury, as for example in 
the crypt cells of the small intestine after radiation injury and play a role in regeneration 
( 4 7). COX-2 appears to play an important role in a number of essential physiologic 
functions such as ovulation and implantation (55,57), whereas COX-I may play a critical 
role in inflammation, especially when it is induced by extracellular arachidonic acid or 
occurs in the skin ( 48). These findings have provided a more complex model of the 
interplay of COX-I and COX-2 in both normal physiology and in pathophysiologic 
conditions than the "homeostasis versus inflammation" paradigm of COX-I and COX-2 
action originally suggested. 

Renal Function 

COX-1, expressed in the vasculature, glomeruli, and collecting ducts of the kidney, 
appears to produce vasodilating prostaglandins that maintain renal plasma flow and 
glomerular filtration rate especially during conditions of angiotensin-stimulated systemic 
vasoconstriction (37,38). NSAIDs, known to have multiple clinical effects on kidney 
function (37,67), are thought to block this COX-I protective response and lead to renal 
ischemia and functional damage in some individuals (37,38). 

Recent studies have suggested that COX-2 may also play a role in the development ofthe 
renal cortex and in maintaining kidney function . Mice that do not express COX-2 
because oftargeted gene disruption (COX-2 null mice) show severe disruption of kidney 
development (68-70), COX-2 is expressed in the interstitial cells of the medulla of the 
rabbit kidney (50) and in the macula densa and the thick ascending loop of Henle in the 
rat kidney ( 49). Moreover, recent work suggests that COX-2 is also expresc;;ed in the 
human kidney, but not in the macula densa, but rather in the podocytes of the glomerulus 
and the endothelial cells of arteries and veins(7I, 72). 
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Chronic sodium deprivation or experimental hyperfiltration states increase COX-2 
expression in the rat kidney, suggesting that the prostaglandin produced by COX-2 may 
function to increase sodium reabsorption in response to volume contraction or 
hyperfiltration that may occur with progressive renal failure ( 49). Renal COX-2 is also 
upregulated in the rat by long term administration of ACE inhibitors or type I angiotensin 
II receptor antagonists, suggesting feedback inhibition of COX-2 expression by the renin­
angiotensin system. Moreover, a specific COX-2 inhibitor blocked the increase in plasma 
and kidney renin levels induced by captopril and also in a model of renovascular 
hypertension. As shown in figure 2, these results suggest that COX-2 plays a role in the 
regulation of renin production. Thus, in the rat, angiotensin II appears to down regulate 
COX-2 expression, whereas, COX-2 is involved in the increased production of renin in 
response to inhibition of angiotensin II production. 

The Role of Cox-2 in Renin Angiotensin Physiology 
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Figure 2 

In normal humans, specific COX-2 inhibitors induce a transient sodium retention 
associated with a marked decrease in 6-keto-PGF 1a excretion, a measure of renal 
prostacyclin production, but no alteration in glomerular filtration rate (73). These results 
are consistent with the conclusion that a major fraction of renal prostacyclin production is 
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dependent on COX-2 activity presumably in the renal vasculature and that this may 
contribute to renal sodium balance independently of an effect on renal hemodynamics. 
Of importance, glomerular filtration rate in normals, even the normal elderly, does not 
appear to depend on renal COX-2 function . Whether this is also the case in individuals 
with intrinsic renal disease or those with hypertension or volume contraction remains to 
be determined. 

Gastrointestinal Tract Integrity 

COX-1 is the only COX isoform identified in the gastric mucosa of normal animals, 
including humans, and is intimately involved in protecting the stomach from erosions and 
ulceration (21-23,74). As a result of inhibiting COX-1, all currently available traditional 
NSAIDs impose a risk of gastric ulceration and the major complications of 
gastrointestinal bleeding, perforation, and obstruction (16-23). Gastrointestinal bleeding 
caused by NSAIDs appears to relate to two events, inhibition of platelet COX-1 activity 
that increases the tendency to bleed (75, 76) and inhibition of gastric COX-I that 
increases the likelihood of ulceration (16,21). The net result is a relative risk for 
gastrointestinal bleeding of approximately 4 for currently available NSAIDs (18, 19). 
Since COX-2 is not detectable in the normal gastric mucosa nor in the platelet (36,74), 
inhibition of Cox-2 would not be anticipated to impose a risk of gastric ulceration or 
bleeding. However, COX-2 is expressed during the acute stages of gastric erosion and 
ulceration in animal models and might play a role in facilitating ulcer healing (77). 
Therefore, COX-2 specific inhibitors may increase the risk of major gastrointestinal 
adverse effects not by increasing the likelihood of developing an ulcer or bleeding, but by 
decreasing ulcer healing induced by other stimuli, such as H. pylori or concomitant 
aspirin administration. The potential clinical impact of this effect of specific COX-2 
inhibition has not yet been reported in clinical trials and, therefore, the relative risk of 
gastrointestinal bleeding associated with these agents is not certain. 

COX-2 may also play an important physiologic role in other parts of the gastrointestinal 
tract. In response to invasion by pathogenic microorganisms, epithelial cells express 
COX-2, which leads to increased prostaglandin production. This appears to play a 
protective role in the stimulation of the chloride and fluid flux that flushes bacteria from 
the intestine (78). Thus, COX inhibitors block the rapid intestinal secretion of fluid that 
accompanies Salmonella infection of Rhesus monkeys (79). Moreover, antibodies to 
PGE2 block the accelerated production of chloride from bacterially infected intestinal 
cells (78). Together the data indicate that invasion by pathogenic microorganisms leads 
to the production of COX-2 by intestinal cells that catalyzes the production of PGE2 

which governs the chloride and fluid secretion involved in expelling the intestinal 
pathogen. The potential protective role of COX-2 in the intestine is emphasized by the 
observation that COX-2 is increased in inflammatory diseases such as ulcerative colitis, 
whereas selective inhibition of COX-2 may exacerbate inflammation in animal models of 
colitis (80). The exact role of COX-2 in maintaining intestinal integrity in humans 
remains to be completely resolved, but specific COX-2 inhibitors could limit intestinal 
healing or diminish resistance to invasive microorganisms. 
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Nerve and Brain Function 

Prostaglandin production plays a central role in the fever response and is thought to play 
a role in certain specific manifestations of brain function. The mechanism underlying the 
fever response, appears to involve the COX-2 enzyme. In rats, intraperitoneal injection 
of lipopolysaccharide causes a marked fever response that temporally parallels COX-2 
induction in the endothelial cells of the brain vasculature(81,82). This is thought to be 
mediated by interleukin 113 and perhaps other cytokines produced in response to 
lipopolysacharide that stimulate brain endothelium (83). The resulting prostaglandins 
then act on temperature-sensing neurons in the preoptic area to produce the fever 
response. Cyclooxygenase-2 specific inhibition effectively blocks the fever response 
(84). Moreover, pyrexia in response to lipopolysaccharide stimulation does not occur in 
mice rendered COX-2 deficient by targeted gene disruption. By contrast, COX-1 
deficient mice have a normal fever response (85). 

COX-2 also appears to play an essential role in neural development and adaptation. 
While early-stage brain formation seems to be internally crafted by developmentally 
induced neural genes and ·proteins, the final stages of brain maturation are more 
environmentally imprinted by neural responses and synaptic activity and coincide with 
the local expression of COX-2 activity (86) . COX-2 is expressed most notably during 
ontogeny in the cortex and hippocampus. Throughout adult life, COX-2 may remain an 
important modulator of specific neural responses. Seizures, for example, strongly induce 
COX-2 in the post-synaptic dendritic arborization of excitatory neurons in major 
processing centers of the brain (51 ,52). Associations between COX-2 induction and 
neural degeneration following stresses, such as glutamate stimulation (53), seizures and 
spreading depressive waves (54), suggest that the role of COX-2 and arachidonic acid 
metabolites produced may be involved in selective loss, but not formation, of neural 
connections. The role of COX-2 in human brain function and the potential impact of 
specific COX-2 inhibitors is unknown and requires evaluation, especially in view of the 
well-known negative impact of non-specific COX inhibitors on cognitive function in the 
elderly (87). 

COX-2 may also play a specific role in local inflammation in the brain. In this regard 
COX-2 can be upregulated by specific stimuli in microglial cells, the tissue-specific 
macrophages that reside in the brain in a dormant condition until activated during host 
defense or tissue remodeling (88). Unlike other inflammatory cells, the microglial cell 
upregulates COX-2 only in response to direct lipopoly-saccharide exposure and not to 
cytokines, a rare event linked with direct bacterial infection of the brain. Thus, the 
microglial defense is usually not part of the systemic response to inflammation, but may 
play a critical role during brain infection. 

Ovarian and Uterine Function 

Although classically associated with parturition (89), prostaglandins and COX-2 have 
now been implicated as mediators of other stages of pregnancy, including ovulation and 
implantation. Studies with COX-2 null mice have documented reproductive failures at 
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ovulation, fertilization, implantation, and decidualization (55), indicating the essential 
role of COX-2 at each of these stages. 

Induction of COX-2 immediately following the luteinizing hormone surge was the first 
()bservation suggesting that this COX isoform may play a role in a normal physiological 
events (90). This COX-2 induction accompanies normal oocyte development and 
appears to be necessary to produce the proteolytic enzymes that rupture the follicles (91). 
The inductive ttigger for COX-2 during ovulation may involve luteinizing hormone and 
follicle stimulating hormone, transforming growth factor a. (92), or interleukin-1 p (56), 
leading to increased COX-2 gene transcription (58). Inhibition of COX-2 by NSAIDs 
may explain the infertility secondary to delayed or blocked follicular rupture associated 
with their use (93-96). 

Following fertilization in the mouse, COX-2 also plays a role in embryo implantation in 
the uterine myometrium. Whereas COX-1 and specific prostaglandin receptors 
apparently prepare the wall for interaction with the embryo (59,60), the COX-2 enzyme, 
leading to the production of prostacyclin, seems to be necessary for the implantation 
event itself (59,97). Transient induction of COX-2 has been shown in the uterus of many 
species, including humans . 

Thrombosis 

Maintenance of normal blood flow and the appropriate thrombogenic response to injury 
requires a delicate balance between the activities of platelet produced thromboxane A2 

and endothelial cell derived prostacyclin (Table 1). 

Table 1. 

Cyclooxygenase Activity and Thrombosis 

Cyclooxygenase lsoform 

Active Arachidonic Acid 
Metabolite 

Function 

Platelet 

Cox-1 

Thromboxane A2 

• Activate lib-lila receptors 
for fibrinogen 

• Induce vasoconstriction 

Endothelial Cell 

Cox-2 

Prostacyclin 

• Inhibit platelet function 
• Stimulate smooth muscle 

relaxation and vasodilation 
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After activation, platelets produce thromboxane A2 via the action of COX-1, the only 
COX isoform they contain (39,75,76). Thromboxane A2 plays an essential role in the 
aggregation of platelets. The release of eicosanoids by activated platelets is thought to 
provide a substrate and a stimulus for the production of prostacyclin by endothelial cells 
(75). Prostacyclin stimulates vasodilatation, thereby, counteracting the vasoconstrictive 
action ofthromboxane A2(3). It has recently been shown that shear stress induces COX-
2 expression in endothelial cells and that substantial amounts of eicosanoid production by 
endothelial cells results from the action of COX-2 (98). In fact, recent studies have 
shown that excretion of 2,3 dinar 6-keto PGF Ia. a metabolite of prostacyclin that is 
indicative of systemic prostacyclin production in man was significantly inhibited by the 
administration of a specific COX-2 inhibitor (73, 99). These results indicate that a 
substantial proportion of systemic prostacyclin production derives from the action of 
COX-2. -These data are all consistent with the conclusion that platelet thromboxane A2 

production is uniquely regulated by the action of COX-I, whereas a substantial portion of 
endothelial cell-derived prostacyclin is produced as a result of the action of COX-2. 
Since currently available NSAIDs inhibit both COX-1 and COX-2, a balanced impact on 
these pro- and anti-thrombotic activities is expected. However, specific COX-2 
inhibitors may limit the production of prostacyclin by endothelial cells while having no 
effect on the production of thromboxane A2 by platelets. The resulting imbalance may 
then favor platelet aggregation and vasoconstriction with a resulting increase in the 
tendency for vascular occlusion and tissue ischemia. The potential clinical impact of this 
imbalance has not been explored, but should be examined, especially in patients at risk 
for ischemic events. 

Summary 

A full awareness of the physiologic and pathophysiologic roles of COX-1 and COX-2 
continues to emerge (Table 2). 

Clinical Effects of Specific 
COX-2 Inhibitors 

• Similar to non-specific 
COX inhibitors 
- Anti-inflammatory 

-Analgesic 

- Anti-pyretic 

Some renal effects, e.g. 
sodium excretion, blood· 
pressure 

• Different from non-
·. specific COX-inhibitors 

No anti-platelet effects 

Reduced endoscopic G I 
erosion and ulceration 

Some renal effects, e.g. 
possibly less alteration 
of RBF and GFR 
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Although the initial paradigm that COX-1 was homeostatic, whereas COX-2 was pro­
inflammatory provides a general framework for thought, more recent investigation has 
clearly indicated more complex roles for these isoforms in both health and disease. As 
specific Cox-2 inhibitors are used in the clinic, attention should be given to potential 
adverse effects related to the kidney, gastrointestinal tract, bone and brain as well as a 
potential negative impact on pregnancy and thrombogenic potential. On the other hand, 
new potential therapeutic targets for specific COX-2 inhibitors have emerged as a role for 
COX-2 in development and progression of adenomatous polyposis and colon cancer has 
been shown (100-113). Moreover, the possibility that COX-2 may play a role in the 
progression of Alzheimer's disease has also been suggested (114-120). Thus, developing 
information about the biology and function of COX-2 has presented the clinician with 
new challenges as well as new opportunities. 
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