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The emerging of sophisticated radiation therapy such as stereotactic body radiation therapy 

(SBRT) characterizing as high dose in each fraction and few fraction number requires higher 

accuracy for tumor localization. For organs influenced by the respiration, respiration induced 

motion becomes the principal cause for tumor localization uncertainty and four dimensional (4D) 

cone beam computed tomography (CBCT) has been developed to locate tumor in each respiration 

phase to better estimate the possible motion range of the tumor motion during the treatment. 

However, 4D-CBCT reconstructed by conventional methods on current commercial scanners is 
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not optimal for tumor localization due to low image quality caused by insufficient number of 

projections located in each phase after the projection binning according to respiration phases.  

The specific aims of this dissertation research are to: 1) improving the accuracy of inter-phase 

motion model to feed in a motion-compensated reconstruction scheme to improve the 4D-CBCT 

image quality; 2) utilizing high-quality 4D-CBCT for motion evaluation and 4D dose 

accumulation for lung cancer patients receiving SBRT. The motion-compensated reconstruction 

suppresses motion and improves image quality by deforming other phase image to the reference 

phase using inter-phase motion model to reconstruct reference phase image using projections from 

all phases. Therefore, it is essential to improve the inter-phase motion model accuracy. Two 

methods, biomechanical modeling based and convolutional neural network (CNN) based, were 

applied to fine-tune the inner lung motion model. The biomechanical modeling is a physics-driven 

method which introduced tissue related elasticity properties to simulate the movement of lung and 

solve the deformation by finite-element analysis. Biomechanical modeling requires boundary 

condition which is the deformation vector fields (DVFs) estimated from a 2D-3D registration. For 

CNN based methods, boundary DVFs are also used as the input for the U-net based architectures 

to predict the inner lung motion. All methods can improve accuracy of DVFs and further improve 

reconstructed 4D-CBCT images quality. After obtaining high-quality 4D-CBCT images, we 

created a tool using 4D-CBCT images to evaluate the motion variation as well as calculate the 

accumulated 4D dose to monitor and evaluate the delivered dose for lung SBRT patients. 
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1 CHAPTER ONE 

 Introduction 

1.1 IMAGE GUIDED RADIATION THERAPY 

1.1.1 Brief introduction of radiation therapy 

 

Cancer is the leading cause of death world-wide. Radiation therapy play a critical role in 

cancer treatment that about 50 percentages of cancer patients receive radiation therapy alone or 

along with other treatment such as surgery, chemotherapy and immunotherapy[1]. External beam 

radiation therapy is the most common type of radiation therapy which has been used for multiple 

cancer sites treatment [2]. 

The development of radiation therapy originated in 1895, when Wilhelm Roentgen from 

Germany discovered X-ray which enables people to see the inside structure of human body. The 

clinical usage of ionization is appreciated and investigated. In 1911, Marie Curie won her second 

Nobel Prize in the division of chemistry for her researches into radioactive elements, discovering 

radium and polonium. They became the pioneers who lead people to find the pathway for both 

diagnostic (X-ray) and cancer treatment (radio-activities) in the practice of medicine.   

The radiation therapy developed along with the effort to obtain standardized high-energy 

radiation as well as the investigation of radiobiology and radiation metrology. External beam 

radiation therapy started from superficial and orthovoltage therapy generated by X-ray tubes. In 

1910's, Coolidge developed “hot cathode tube” to emit kilovoltage (KV) X-ray to treat cancers 

imbedded deeper inside body[3]. In 1950s, radiation therapy stepped from Orthovoltage era into 

Megavoltage (MV) era. The invention of teletherapy through sealed cobalt 60 sources by H.E. 
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Johns in Canada enabled high-photon-energy radiation. Meanwhile, the invention of linear 

accelerator (LINAC) brought megavoltage radiation therapy into reality[1, 4]. MV-LINAC treats 

deep tumor inside by delivering high-energy photon beams to achieve better tumor control and 

less side effects.  

The evolution of sophisticated radiation therapy techniques has made radiation therapy 

become a recognized medical specialty. 3D Conformal radiotherapy uses computed tomography 

(CT) images to localize tumor and delineate critical tissues to optimize beam placement and 

shielding. Intensity modulated radiation therapy (IMRT) characterized by modulating radiation 

beams to make the radiation dose to conform more precisely to the three-dimensional shape of the 

tumor and to spare normal tissues. Image guided radiation therapy (IGRT) further improves the 

conformality of radiation dose by increasing the tumor localization accuracy using imaging 

modalities to avoid or decrease impact generated from  tumor motion and patient setup errors[1]. 

The most advanced radiation therapy, adaptive radiation therapy (ART) broke the assumption that 

daily anatomy remains the same as treatment planning and focused on modifying treatment plan 

to improve the delivery accuracy by considering patients anatomical changes through treatment 

courses. Information collected in images was feed to plan to ensure the optimal tumor coverage 

and normal tissue sparing. ART, which requires images to provide anatomical geometry, is also 

called image guided adaptive radiation therapy (IGART) [5].  

 

1.1.2 Image guided radiation therapy 
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Image guided radiation therapy is an advanced paradigm to address problems emerging 

from inter- and intra-fractional anatomic variations. IGRT is the combination of advanced imaging 

techniques and conformal radiation therapy with expectation to improve the accuracy of tumor 

targeting to maximize the dose deposited to the targets while minimize the dose deposited to 

surrounding normal tissue. IGRT can achieve high accuracy tumor localization by considering 

anatomical variations through the whole treatment procedures. 

Variety of imaging modalities are used in IGRT to acquire images contains anatomical 

geometry to better localize the tumor. Computed tomography (CT), ultrasound (US) and magnetic 

resonance imaging (MRI) are typical imaging modalities used to acquire anatomy inside of the 

body. Functional information embedded in positron-emitted tomography (PET) or dynamic 

contrast-enhanced MRI (DCE-MRI) images integrated with geometric information can boost the 

accuracy of tumor targeting [6, 7].  

Imaging technologies are primarily been employed in 3 stages in a radiation therapy 

treatment process: 1) treatment simulation and treatment planning; 2) patient setup; 3) localization 

of the target during beam delivery. For treatment planning, CT/PET/MRI can be utilized 

individually or combined to visualize inside body structures to determine the shape and location 

of the tumor. CT-simu or MRI-simu is used to conduct a treatment simulation session and to create 

reference images for treatment. Patient setup requires US/In-room CT/radiographic imaging/cone-

beam computed tomography (CBCT) to obtain patient’s anatomy at the treatment position and 

align the on-board image to the reference image to correct or verify the patient setup.  
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1.1.3 Image guided adaptive radiation therapy 

 

The emerging of IGRT enables the image guided adaptive radiation therapy. The principle 

of adaptive radiation therapy is to modify the treatment planning according to the anatomic change 

during a treatment course. Therefore the treatment plan can be adapted to patient’s updated 

anatomy with optimized dose distribution. 

The IGART composed of 3 main steps: Image guidance, dose verification and treatment 

adaptation. Image guidance obtains the patient anatomy on the treatment day. The difference 

between anatomy on the planning day and that on the treatment day are evaluated based on the 

shape and location of tumors and surrounding organs at risk (OAR). Dose verification recalculated 

the dose distribution based on the anatomy of the treatment day, which is obtained in the image 

guidance step. Treatment adaptation aims on optimizing dose distribution for both tumor and 

OARs aiming to minimize the discrepancies between the anatomies of treatment and planning. 

Several methods have been explored to achieve treatment adaption, including patient re-

positioning, plan optimization and re-planning. The relationship between these 3 steps is shown in 

Figure 1-1. Image guidance provides imaging information to dose verification and treatment 

adaptation to optimize and finalize the treatment.  
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Figure 1-1 Three steps of IGART 

 

 

1.1.4 Imaging techniques used in IGRT and adaptive radiation therapy 

 

1.1.4.1 Ultrasound  

Ultrasound imaging utilizes acoustic waves to detect the anatomy of inside of the body. US 

probes are employed to send and receive acoustic waves. Portion of the acoustic waves reflects 

back to the probe when physical properties of tissues change inside the scanned volume. Therefore 

the interface between difference tissues can be detected and recorded using US. The scanned 

volumes can be reconstructed by analyzing the amplitude and timing difference between 

reflections and image of the scanned volume can be reconstructed. Ultrasound imaging can provide 

nonionizing, volumetric imaging with better soft-tissue contrast[8] than ionizing modalities such 

as CT and CBCT for different anatomical sites (e.g., prostate and liver). The limitation of US is its 

low image quality and image formation is user dependent [9].  

Image 
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1.1.4.2 In-room CT 

In-room CT is an ionizing imaging modality to verify the patient setup and tumor 

localization. In-room CT is often a CT-on-rail system inside a linear accelerator (LINAC) room 

[10], as shown in Figure 1-2. The LINAC and free-standing CT share the same couch. The free-

standing CT can be moved in the treatment room for different applications. Different Vendors have 

constructed their own in-room CT systems. The EXaCT system integrated a CT scanner from GE 

healthcare with 21EX accelerator from Varians [11]. AIRO Mobile Intraoperative CT from 

Mobius Imaging LLC can also be used for setup [12].  

Before the treatment, patients are positioned on the couch with treatment setup and the CT 

scanner is mounted on rails to acquire patient anatomy using CT rotation. In-room CT can obtain 

the 3D volumetric patient images for patient setup evaluation and tumor localization. 

 

Couch

Gantry

Linear 
accelerator

CT

Move with Rail
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Figure 1-2  In-room CT system 

The dark green denotes the linear accelerator and the light green is the gantry. The dark blue and 

light blue denotes the couch and the red part on the right is the free-standing CT which can move 

with the black rail 

 

1.1.4.3 Two dimension radiographic Imaging 

Two-dimensional (2D) radiographic (projection) imaging is used prior to the beam delivery 

in treatment rooms to assist the alignment for treatment [13]. A treatment unit with radiographic 

imaging is shown in Figure 1-3.  

Megavoltage (MV) electronic portal imaging (EPI) is the most widely used type of 

radiographic imaging for patient setup before the introduction of Kilovoltage (KV) imager and 

detector to LINAC [14]. Megavoltage EPI uses the LINAC treatment head to deliver X-rays for 

imaging, which generate the X-ray beams for therapy. Therefore, it can provide the patient setup 

verification from beam’s eye view. However, images acquired with high-energy X-rays will 

provide poor image quality with low contrast. Kilovoltage (KV) imaging can provide diagnostic-

like image quality. KV X-rays tubes and corresponding detectors are integrated to LINAC gantry, 

perpendicular to the treatment beam axis. With either kV or MV imaging, two orthogonal X-rays 

2D projections are acquired to determine the correction to patient setup by matching to the 

reference digitally reconstructed radiographs (DRRs) obtained from planning CT. The advantages 

of two-dimension radiographic imaging are the short acquisition time relatively low imaging dose 

as compared to CT. However, it does not provide 3D anatomical structures required for adaptive 

radiation therapy.  
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Figure 1-3 Treatment unit with integrated KV X-ray source and detector as well as MV EPI. 

 

1.1.4.4 Cone beam CT 

Cone beam CT images are acquired through X-ray imaging device integrated to linear 

accelerators [15, 16], as is shown in Figure 1-3. The KV CBCTs are acquired through KV cone-

shaped X-ray tube and flat-panel detector, which are orthogonal to the treatment beam. CBCTs 

acquire multiple 2D projections (radiographic images) before beam delivery through rotating the 

gantry. The acquisition time is about 1-2 minutes. Standard cone-beam CT employs a filtered back-

projection algorithm to reconstruct a 3D volumetric image [17] with high spatial resolution and 

sufficient soft tissue contrast to be compared with the planning CT as reference for patient setup 

correction and tumor localization [18]. MV CBCT utilizes the therapy beam and flat panel detector 

for electronic portal imaging (EPI) to rapidly acquire multiple, low-dose 2D projection images. 

Kv Flat Panel 
Detector

Kv Source

Mv Electron 
Portal Imager
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These projections are then used to reconstruct the 3D volumetric dataset that can be compared with 

the planning CT. 

MV and KV CBCT have their own advantages. MV CBCT provides superior 

characteristics including high-z artifact suppression and direct dose calculation without attenuation 

coefficient extrapolation [19]. KV CBCT offer better image quality with better inherent physical 

contrast. The CBCT images patients at the same position as patients get treated, which minimizes 

the positioning uncertainty related to the imaging procedure. 

To summarize, different imaging techniques used for patient setup and tumor localization 

before or during the treatment all have their own pros and cons and are suitable for different 

treatment sites. This dissertation mainly focuses on CBCT. 

 

1.1.5 CBCT 

 

1.1.5.1 CBCT geometry 

The geometry of CBCT is shown in Figure 1-4(A). Compared with conventional fan beam 

CT (FDCT) shown in Figure 1-4 (B) that using a linear series of detectors and a collimator-

restricted fan beam to scan several time to obtain a 2D projection, cone beam CT utilizes conical 

geometry with a cone-shape X-ray tube and a flat panel detector. Conventional FDCT acquired 

projections with both gantry rotation and Z-direction translation. For each rotation, filtered-back-

projection (FBP) reconstruction method is used to reconstruct a CT image that only covers one or 

several slices in Z direction. In contrast, CBCT acquires multiple 2D projections containing entire 

volumetric dataset with a single rotation. The group of projections are utilized to reconstruct 3D 
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volumetric images using Feldkamp–Davis–Kress (FDK) algorithm [17]. Since CBCT acquires 2D 

projections, the coverage of field-of-view (FOV) is decided by the size of the flat panel detector. 

To enlarge the coverage of FOV in X and Y direction (cross-section), flat panel detector with an 

offset can be applied, known as half-fan scanning. 

 

Figure 1-4 Geometry of Cone beam and Fan beam. A) Cone beam geometry. B) Fan beam 

geometry. 

Figure Adapted from : Miracle, A. C., and S. K. Mukherji. "Conebeam CT of the head and neck, 

part 1: physical principles." American Journal of Neuroradiology 30.6 (2009): 1088-1095. 

 

1.1.5.2 Flat-panel detector 

The development of high-resolution flat panel detector boosted the application of CBCT 

in capturing cone-shaped X-ray beams to verify patient’s setup. Amorphous-silicon (a-Si) flat 

panel imagers are utilized nowadays. The detector is composed of an array of detector unit. Each 

detector unit is composed of a cesium iodide (CsI) scintillator, a a-Si pin photodiodes and a thin 
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film transistor (TFT) gates [20]. The X-ray is converted to visible light after the scintillator layer 

[21, 22]. A-Si pin photodiodes generate and record electrical signals in proportion to the light 

received from scintillator layer. The electrical signal is read out using TFT switch row by row. The 

flat panel detector has been widely used in clinic for CBCT image acquisition. However, further 

investigation is expected to overcome problems such as image lag and suboptimal linearity to 

obtain better image quality, compared with fan beam CT.  

 

1.2 FOUR DIMENSIONAL (4D) CBCT 

1.2.1 KV 4D-CBCT 

 

Cone beam CT has been used routinely in clinic for patient setup correction and has become 

a powerful tool for image guided radiation therapy. Due to the limitation of gantry rotation speed 

(according to the International Electric Commission recommendation), 60 seconds are required to 

finish one rotation of 360° to acquire ~700 projections. Therefore, each entire scan will contain 

projections from 10-20 respiration cycles. In the thoracoabdominal region, organs such as lung 

and liver are influenced by the respiration motion. The inconsistency of the patient geometric 

anatomy of different respiration phase induces inconsistency of corresponding projections. The 

inconsistency of projections results in motion artifacts within the field of view in the reconstructed 

images using static reconstruction methods. Four dimensional (4D)-CBCT binned projections into 

different groups according to the respiration phase [23]. For each phase, one 3D volumetric image 

is reconstructed individually. A series of volumetric images from different respiratory phase can 

illustrate the dynamic changes of patient anatomy.  
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In 4D-CBCT, after the phase sorting, the number of projections within each phase 

substantially decreased. Strong streak artifacts due to insufficient sampling will degrade 4D-CBCT 

image quality. Therefore, more projections are required for 4D-CBCT compared with 3D-CBCT. 

There are two methods to acquire more projections, slow the gantry speed or multiple gantry 

rotations[24]. However, acquiring more projections means longer acquisition time and higher 

imaging dose which limited the clinical application.  

Advanced reconstruction methods are desired to reduce the acquisition time while 

maintaining the 4D-CBCT image qualities to achieve obtaining high quality 4D-CBCT image with 

3D-CBCT projections.  

 

1.2.2 Importance of 4D-CBCT 

 

1.2.2.1 Four dimensional image guided radiation therapy 

Tumor control probability and normal tissue complication probability are closely related 

to dose received[25, 26]. Therefore, it is critical to define the tumor volume and to increase the 

accuracy of tumor localization. Respiration induced motion of tumor and surround organs-at-risks 

are the principal cause of uncertainties in radiation therapy in the thoracoabdominal region [27], 

whose influence involves in at all steps of the radiation therapy procedure: target definition, margin 

selection, patient set-up, treatment delivery and dose calculation. Respiration correlated CT (4D-

CT) imaging  has been widely used clinically to remove motion artifacts and perform motion 

management for precise tumor volume delineation and margins assessment based on tumor motion 

range [28].  
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1.2.2.2 Rationale for application of 4D-CBCT in IGART 

Patient set-up and treatment delivery also require high precision of patient positioning and 

tumor localization. Cone beam CT can provide on-board image before treatment for IGART to 

adapt the treatment to the anatomy-on-treatment-day. The difference in patient anatomy between 

planning CT and on-board CBCT decides the following modification of treatment. Patients’ 

geometric anatomy changes can be categorized into intra-fractional variations and inter-fractional 

variations arising from respiration, tumor regression or growth, and other pathologic changes. 

These two types of difference contribute differently to the total tumor localization uncertainty 

depending on the disease sites. For example, adaptive radiation therapy for lung cancer concerns 

more about addressing intra-fractional motion to better locate the tumor and determine the target 

volume, but less on inter-fractional motion [29, 30]. As for prostate, inter-fractional anatomic 

change obtained more attention due to the significant shape and volume change for tumor and 

surrounding OARs such as bladder and rectum [31].  

In the thoracoabdominal region, intra-fraction anatomy variation resulting from respiration 

motion is the primary cause for tumor localization uncertainty. Population-based margins are 

added to the tumor including large volume of normal tissue adjacent to the tumor. 4D-CBCT can 

aid to quantify the intra-fraction motion range. Locations of tumor in each phase are integrated to 

obtain a patient-specific tumor motion range. Patient-specific planning target volume (PTV) 

margin is desired to find appropriate volume for irradiation to improve dose escalation and reduce 

radiation toxicity to achieve better tumor control and normal tissue complication [30]. 
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1.2.3 4D-CBCT Reconstruction 

 

4D-CBCT image quality directly decides the tumor localization accuracy. Researches have 

been conducted on this topic to obtain high quality 4D-CBCT. Those methods can be summarized 

into 2 categories: individual-phase reconstruction and motion-compensated reconstruction.  

 

1.2.3.1 Individual-phase reconstruction 

Individual-phase reconstruction methods reconstruct CBCT volumes mainly with the 

sorted projections assigned to the current phase. Conventional analytical Feldkamp–Davis–Kress 

(FDK) reconstruction algorithm[16] , which is widely used in the clinic for CBCT reconstruction, 

generates images with severe streak artifacts from under-sampled projections. The principal 

problem for 4D-CBCT reconstruction is the streak artifacts caused by insufficient number of 

projections in each phase after the phase binning. 

Iteratively reconstruction methods such as algebraic reconstruction (ART) algorithm [32] 

and the simultaneous algebraic reconstruction (SART) algorithm [33] cannot overcome the streak 

artifacts problem either. Those methods do not include any priori knowledge for CBCT 

reconstruction. Advanced iterative reconstruction embraces priori knowledge during the 

reconstruction process to reduce or remove streak artifacts and improve reconstructed 4D-CBCT 

image quality. These algorithms solve the reconstruction problem by iteratively matching the 

forward projections of the reconstructed image to the actually acquired projections. In addition to 

data fidelity, these techniques usually add sparsifying transformations, such as total variation 

minimization [34-36] and nonlocal mean regularization [37] in the objective function to optimize 
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the reconstructed image. With the introduction of priori knowledge to the reconstructed images, 

these iterative methods can greatly improve image quality as compared to FDK reconstruction. 

However, when the projection number is small for each phase, the reconstructed images suffer 

from over-smoothing and intricate structures are erased in the FOV, since the phase-correlated 

reconstruction methods reconstruct each respiratory phase independently. The convergence of 

those advanced iterative reconstruction methods which require regularizations are sensitive to 

parameters requiring multiple manual tuning to obtain the best results.  

 

1.2.3.2 Motion-compensated reconstruction 

In addition to the use of projections within a single phase, the correlations between different 

respiratory phases can be extracted and applied to improve the 4D-CBCT reconstruction quality 

[38]. Motion-compensated (MC) CBCT reconstruction algorithms have been investigated to 

reconstruct a single motion-suppressed reference phase image using projections from all phases 

integrated by an inter-phase motion model [39-41]. The image quality of motion-suppressed 

reference phase, reconstructed using the combination of projections in every phase, is much better 

than images reconstructed using projections from a single phase alone. Additional information, 

known as the inter-phase motion model, in the form of deformation vector fields (DVFs), is 

required in the process of MC CBCT reconstruction.  

The inter-phase motion model can be generated by registering between the low-quality 

CBCT images reconstructed using projections from each single phase. Due to limited number of 

projection available for each phase, artifacts existed in low quality of reconstructed CBCT images 

degrades the accuracy of estimated motion model [40]. Other methods requires prior deformation 
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vector fields generated from prior 4D-CT images to combine projections from all phases [39].  

These methods can perform well under the circumstance that respiration patterns of 4D-CT and 

4D-CBCT remains the same. On the one hand, when the geometric anatomy and motion pattern 

changes between 4D-CT acquisition and 4D-CBCT acquisition, the induced inaccuracies in the 

estimated deformations can, in contrast, degrade the image quality of reconstructed motion-

suppressed reference phase [39-42].  Furthermore, prior 4D-CT image set is not always available 

for each patient.  

 

1.2.4 Motion model estimation 

 

The accuracy of inter phase motion model largely determined the image quality of 

reconstructed reference phase image. Given that sever artifacts often present in individual phase 

CBCT reconstructed by conventional algorithms, many methods have been investigated to obtain 

inter-phase motion model from cone beam CT projections. Below is the summary of different 

categories of inter-phase motion model generation, including 3D-3D registration, 2D-3D 

registration, biomechanical modeling and convolutional neural network based methods.  

 

1.2.4.1 Demons Method 

Demons method is a deformable registration method proposed by Thirion [43] to achieve  

image-to-image matching to generate the inter-phase motion models. This is termed as 3D-3D 

registration because the registration occurs between two 3D volumetric CBCT images.  
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Demons deformable registration method is a greyscale image-based method which 

achieves images matching based on voxels intensity alone. The demons algorithm determines the 

forces to deform the ‘moving’ image into a static scene image based on the gradient information 

given from static scene image. The demons forces are estimated using optical flow equation. The 

displacement of moving image can be calculated as described in Equation 1-1.  

𝒖⃗⃗ =  
(𝒎−𝒔)𝛁⃗⃗ 𝒔

|𝛁⃗⃗ 𝒔|
𝟐
+(𝒎−𝒔)𝟐

                                                1-1 

 

𝑢⃗  denotes the displacement shift. 𝑚 denotes the moving image while 𝑠 denotes the static 

scene image. The ∇⃗⃗ 𝑠 denotes the gradient of static scene image. Equation 1-1 is working as an 

iterative approach. In each iteration, the optical flow computation is regularized by the smoothness 

of the deformation field.  

Demons algorithm is a mature and simple deformable registration method. This method 

has been widely employed in motion-compensated CBCT reconstruction for inter-phase motion 

model estimation [38, 44-47] due to the linear computational complexity. 

 

1.2.4.2 2D-3D registration 

3D-3D registration methods perform registration between two 3D volumetric images. The 

accuracy of inter-phase motion model entirely depends on the images quality. For 4D-CBCT, 

phase image reconstructed using projections from the corresponding single phase suffered from 

heavy under-sampling artifacts. Therefore, the accuracy of inter-phase motion model generated 

using 3D-3D deformable registration method is degraded and further decreases the accuracy of 

reconstructed image through MC reconstruction. 2D–3D deformable registration can be applied to 
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update the DVFs between the reference phase and all the other phases [46, 48].  2D-3D deformable 

registration is an intensity-matching based method. Different from 3D-3D registration method, the 

intensity-matching occurs in the projection domain. The forward projections of deformed images 

from reference phase using deformation vector field are compared with projections acquired from 

LINAC. This method gets rid of the influence of artifacts caused by the reconstruction algorithm. 

The method is called as 2D-3D registration because the 3D volumetric images are projected into 

2D digitally reconstructed radiography to be matched with scanned 2D CBCT projection.  

 

1.2.4.3 Biomechanical modeling  

Biomechanical modeling is a commonly used method for deformation vector field 

estimation. As a part of biomechanical modeling, finite element modeling (FEM) has been 

employed for deformable registration of multiple organs such as lung [49-52], prostate [52, 53], 

liver [54-58] , heart [59] and brain [60] to predict the 3D displacement of anatomy between 

different time-points. Biomechanical modeling is a physic-driven method based on the continuum 

mechanics theory, aiming at predicting soft tissue deformation that has the advantage of providing 

physically realistic solutions[61]. The description of elastic properties of soft tissue is formulated 

using strain energy density function. To apply biomechanical modeling, the tetrahedral mesh is 

generated based on the segmentation of the organ to perform registration. Finite element analysis 

based biomechanical modeling requires boundary condition to derive the inside-soft-tissue motion 

model. Voxel-based displacement defined in the organ boundary region serves as the boundary 

condition. Once the boundary condition is defined, nodes of tetrahedral mesh start to move towards 

to a given position, pushed by the displacement. 
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1.2.4.4 Convolutional neural network 

CNN can be regarded as foundation of modern computer vision. CNNs can be historical 

roots traced back to the 1980s, when the neocognitron was proposed by Kunihiko Fukushima [62]. 

Later in 1990, LeNet proposed by LeCun et al. became a pioneering work in CNN, aiming at 

recognizing handwritten digits. It succeeded in recognizing and classifying the visualized pattern 

directly from the input image. Later in 2012, Krizhevsky‘s work about using a AlexNet to do 

classification, which substantially decreased the error rate on ILSVRC competition,  which is 

another milestone in the field of computer vision [63]. Various variations of AlexNet structures 

have been proposed which makes AlexNet the most fundamental and influential work in computer 

vision field.  

The success achieved in the field of computer vision has attracted attention from other 

fields.  The application of CNN has been extended to radiation therapy field to solve imaging and 

treatment related problems. For example, deep learning techniques have been widely explored for 

medical image registration due to their ability to automatically learn to combine the information 

of various complexities embedded in images for specific task implementation. Both supervised 

and unsupervised learning have been investigated to achieve medical image registration with 

advanced network structures such as fully convolutional network[64], reinforce learning[65], 

AlexNet [63] and generative adversarial network (GAN)[66].  

However, image registration methods performed in the image domain are not suitable for 

motion-compensated reconstruction as high-accuracy inter-phase deformation vector fields are 

required for motion-compensated reconstruction. As mentioned in the Demons registration section, 
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the quality of image reconstructed using single phase projections are poor, inducing the poor 

quality of deformation vector field using image-domain registration. Nevertheless, we can improve 

the quality of DVF from a low-quality DVF through a model storing the relationship between the 

low quality DVFs and high quality DVFs using CNN. 

 

1.3 4D-CBCT APPLICATION IN IGART 

1.3.1 Patient setup  

 

CBCT acquisition prior to treatment has been routinely used a clinically for patient setup. 

The first step of patient setup is aligning a patient to the room lasers. For respiration-involved sites, 

a 4D-CBCT can be acquired with the KV CBCT imager mounted to LINAC gantry. There is no 

generalized protocol using 4D-CBCT for patient setup. One method using a reconstructed Mid-

ventilation CT for target definition and treatment planning [67]. Under this situation, for patient 

setup, each phase of 4D-CBCT was rigidly registered to Mid-ventilation CT through bony 

matching based on self-defined ROI containing vertebrae to correct patient setup residual errors. 

A ROI in Mid-ventilation CT containing tumor was register to each phase of 4D-CBCT to obtain 

the location of tumor in each phase. The mean tumor location over 4D-CBCT phases was 

compared with tumor location in Mid-ventilation image to obtain tumor base-line shift. The base-

line shift was corrected through couch shift.   

Other methods are also available for target delineation and tumor localization in patient 

setup using 4D-CT and 4D-CBCT. The tumor locations in each 4D-CT phase image can combine 

together to form the maximum intensity projection (MIP) including volumes that the tumor 
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occupied through the whole respiration cycle [68, 69]. Target delineation was performed by adding 

a margin to internal target volume (ITV) in the form of MIP. An isotropic 5 mm margin was added 

to the ITV. For patient setup, the tumor on 3D-CBCT reconstructed image is aligned to the tumor 

average intensity projection (AIP) of 4D-CT to correct the patient setup error. 

 

1.3.2 4D dose calculation 

 

For lung SBRT, in UTSW clinical practice, a second CBCT is acquired before the last 

beam delivery of each fraction. This CBCT is to verify the patient anatomy during delivery. Dose 

calculation based on the second 4D-CBCT presents the dose distribution under current anatomy 

which can be used to calculate the actual dose delivered to patients. The second CBCT can also be 

used to evaluate the dosmetric influence brought by intra-fraction motion which can be quantified 

by comparing the accumulated dose based on 4D-CBCT. 
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2 CHAPTER TWO 

 A biomechanical modeling-guided simultaneous motion estimation and image 

reconstruction technique (SMEIR-Bio) for 4D-CBCT reconstruction 

2.1 INTRODUCTION 

Linear accelerator-integrated cone-beam computed tomography (CBCT) has become a 

clinical routine for acquiring high resolution 3D volumetric anatomical images for image-guided 

radiation therapy (IGRT). However, respiratory motion induced motion artifacts such as blurring, 

streaking, and distortion, will highly degrade the image quality of 3D-CBCT volumetric image 

and further affects the application of CBCT in IGRT. Respiratory correlated CBCT [23], also 

called four-dimensional (4D)-CBCT, has been developed to acquire phase-resolved volumetric 

images to reduce respiration induced motion artifacts. Projections of 4D-CBCT are binned into 

different respiratory phases and projections acquired in the same phase from each respiratory cycle 

are used to reconstruct a phase image. These phase-sorted projections decrease the geometry 

inconsistency within each phase and contain minimal intra-phase motion, which substantially 

removes the motion artifacts from the reconstructed image. Subsequently, a series of phase-

resolved 3D volumetric images can be stacked to obtain the anatomical structures’ motion 

trajectory through the entire respiratory cycle. 

Using sorted traditional 3D-CBCT scan projections to reconstruct a high-quality 4D-CBCT 

image would achieve a short scanning time and low imaging dose. However,  this leads to under-

sampling of each phase. Therefore, image reconstructed using projections from a single phase by 

conventional FDK method always suffers from severe streak artifacts due to lack of information. 

Recently, we developed a simultaneous motion estimation and image reconstruction (SMEIR) 

technique for 4D-CBCT reconstruction [46]. SMEIR uses an inter-phase motion model to combine 
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projections of all phases to reconstruct a reference phase image. The inter-phase motion is 

represented as deformation vector fields (DVFs) between the reference phase image and all other 

phase images. Specifically, SMEIR is composed of two steps: the motion-compensated 

reconstruction step and the motion estimation step. The first step uses a motion-compensated 

simultaneous algebraic reconstruction technique (MC-SART) to reconstruct a reference image 

using projections of all phases and the inter-phase DVFs [46]. The motion estimation step uses 

inverse consistent 2D–3D deformable registration to update the DVFs between the reference phase 

and the other phases [46, 48]. The DVFs are iteratively updated during the SMEIR optimization, 

so their qualities and accuracies continuously improve without being constrained by the initial 

quality of the reconstructed CBCT phase images. However, 2D–3D deformation updates the DVFs 

based solely on image intensity matching. These DVFs achieve high accuracy at lung boundary 

regions, but they suffer from limited accuracy in regions which contain small fine details. 

Accordingly, the accuracy of reconstructed CBCT images at these regions is limited. 

This study developed a biomechanical modeling-guided SMEIR technique (SMEIR-Bio) 

to improve motion model accuracy in regions with small fine details whose reconstruction quality 

is degraded by limited projections at each phase. Biomechanical modeling has been proposed 

recently to solve deformation problems based on tissue composition and their corresponding 

elasticity properties, rather than on image intensity matching [49-52, 70-75].Therefore, 

biomechanical modeling can improve motion accuracy in regions with limited intensity variations. 

By applying appropriate boundary conditions, computational mechanical models enable the 

derivation of physiological and physical organ behaviors in the form of intra-organ deformation 

vector fields (DVFs) by finite element analysis (FEA). Therefore, the DVFs generated by SMEIR-

Bio, combined with biomechanical modeling, can be more biomechanically realistic and accurate 
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in region ns with small, fine structures, which can also boost the accuracy of reconstructed 4D-

CBCT images. We evaluated this method with 4D-CT data from 11 lung cancer patients. 4D-

CBCT projections simulated from the 4D-CT images and used them for reconstruction. We made 

quantitative comparisons between images reconstructed by different methods and evaluated the 

DVFs’ accuracy. This method can offer detailed information inside lung with high accuracy which 

can offer high quality geometric anatomy and benefit for IGRT. 

 

2.2 METHODS AND MATERIALS 

2.2.1 Method 

 

SMEIR-Bio is a reconstruction algorithm that iterates and alternates between motion-

compensated reconstruction, intensity-driven motion estimation, and biomechanical modeling-

guided motion fine-tuning. Detailed descriptions of each key component and the entire workflow 

follow below. 

 

2.2.1.1 Motion-compensated reconstruction 

In this study, deformation vector fields (DVFs), which deform volumetric images through 

trilinear interpolation, represent the motion model between different 4D-CBCT phases [46, 76]. 

Motion compensated reconstruction uses these DVFs to deform images of other phases into a 

single reference phase, effectively combining all projection information to resolve the under-

sampling that results from phase-sorting. We selected the end-expiration phase (phase 0) as the 
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reference phase because of its relative stability[77]. We applied the motion-compensated 

simultaneous algebraic reconstruction technique (MC-SART), which combines projections from 

all respiratory phases, to reconstruct the reference phase image. This reference phase image can 

be deformed to other phases using the backward DVFs [46], as shown in Equation 2-1 and  Equation  

2-2: 

 

𝜇𝑗
0,(𝑘+1)

= 𝜇𝑗
0,(𝑘)

+ λ

∑ 𝑑𝑗𝑛
𝑡→0 ∑ [𝑎𝑖𝑛

𝑝𝑖
𝑡−∑ 𝑎𝑖𝑛𝜇𝑛

𝑡,(𝑘)
𝑛

∑ 𝑎𝑖𝑛
𝐽
𝑛=1

]𝑖𝑡,𝑛

∑ 𝑑𝑗𝑛
𝑡→0

𝑡,𝑛 ∑ 𝑎𝑖𝑛𝑖
                                            2-1 

 

𝝁𝒏
𝒕,(𝒌)

= ∑ 𝒅𝒋𝒏
𝟎→𝒕𝝁𝒋

𝟎,(𝒌)
𝒋                                                     2-2  

 

𝜇0 denotes the voxel-wise attenuation coefficients of the CBCT volume at the reference 

phase 0. 𝜇𝑡 denotes the corresponding attenuation coefficients at phase 𝑡. 𝑗 and 𝑛 denote the voxel 

coordinates for 𝜇0  and 𝜇𝑡 , respectively. 𝑘  denotes the iteration number. 𝑎𝑖𝑛  represents the 

elements of the forward projection matrix along projection line 𝑖.  𝑝𝑖
𝑡  represents the projection 

integral value at corresponding pixel 𝑖 for phase 𝑡. 𝑑𝑗𝑛
𝑡→0 denotes the elements of the voxel-wise 

forward deformation vector field from phase 𝑡 to phase 0. 𝑑𝑗𝑛
0→𝑡 denotes the elements of the voxel-

wise backward deformation vector field from phase 0 to phase 𝑡 in Equation 2-2. 

In Equation 错误!未找到引用源。, the term 𝑝𝑖
𝑡 − ∑ 𝑎𝑖𝑛𝜇𝑛

𝑡,(𝑘)
𝑛  calculates the mismatch 

between the actual acquired projection of phase 𝑡 and the forward projection of the reconstructed 

image at phase 𝑡 by ray-tracing [78]. Then, the projection-domain mismatch is back-projected into 

the 3D volumetric image domain. The deformation vector field 𝑑𝑗𝑛
𝑡→0 deforms the error image of 

phase 𝑡 to add to the reference phase image for correction. For each phase image 𝑡, 𝑑𝑗𝑛
𝑡→0 applies 
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the deformation vector fields to deform the 𝑛 th voxel at phase 𝑡 onto the 𝑗 th voxel at the reference 

phase. For each phase 𝑡, there may be more than one voxel that could be deformed to the jth voxel 

in the reference phase image. Therefore, a summation of 𝑛 is required. By applying corresponding 

DVFs, information from all phases is combined to reconstruct and fine-tune the reference phase 

image. The reconstruction results depend on the accuracy of the inter-phase DVFs, which 

necessitates DVF optimization by motion estimation. The relaxation factor λ in Equation 2-1 is set 

to 1. The same value has been used in our previous publications [79, 80], which balances the speed 

of convergence and the reconstruction noise. The same λ value has been used throughout the 

SMEIR-Bio algorithm. The motion-compensated SART reconstruction is followed by total 

variation regularization of the image to reduce artifacts and noise. The TV minimization uses a 

standard gradient descent approach with 10 iterations in our study. 

 

2.2.1.2 Motion estimation 

For motion estimation, an inverse-consistent 2D-3D registration algorithm is applied to 

solve 𝑑𝑗𝑛
𝑡→0  and 𝑑𝑗𝑛

0→𝑡 simultaneously. By minimizing the cost functions 𝑓1(𝐷
0→𝑡) and 𝑓2(𝐷

𝑡→0), 

the DVFs can be solved. 𝑓1 and 𝑓2 are defined as below: 

𝑓1(𝐷
0→𝑡) = ‖𝒑𝑡 − 𝐴𝝁0(𝒙 + 𝑫0→𝑡)‖𝑙2

2 + 𝛽𝜙(𝑫0→𝑡)                          2-3 

𝑓2(𝐷
𝑡→0) = ‖𝒑0 − 𝐴𝝁𝑡(𝒙 + 𝑫𝑡→0)‖𝑙2

2 + 𝛽𝜙(𝑫𝑡→0)                          2-4 

 

𝐴 denotes the projection system matrix. 𝑥 denotes the coordinate grids of the volumetric 

image. 𝐷𝑡→0
 denotes the forward DVF matrix, and 𝐷0→𝑡 denotes the backward DVF matrix. 𝑑𝑗𝑛

0→𝑡 

in Equation 2-1 makes the element of 𝐷0→𝑡, and 𝑑𝑗𝑛
𝑡→0 makes the element of 𝐷𝑡→0. The first term 
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on the right side of each equation denotes the data fidelity term, which measures the differences 

between the acquired projections and the computed projections of the deformed CBCT volume. 

The second term on the right side denotes an energy function that regularizes the smoothness of 

DVFs, which promotes faster and more stable convergence [80]. The parameter β is set to 0.05, a 

value applied in previous 2D-3D deformation studies [79-81].  

𝐷 is a matrix of additive displacements. Each element of D denotes one deformation vector 

containing the displacement of voxel along x (lateral), y (sagittal) and z (caudal) directions 

between two phases. 𝐷 can be decomposed into 3 matrices denoting displacement along these 

three spatial directions individually: 𝐷𝑥, 𝐷𝑦 and 𝐷𝑧. 

Based on 𝐷𝑥, 𝐷𝑦, and 𝐷𝑧, the relationship between two phase images (𝜇0 and 𝜇𝑡) can be 

described as following: 

𝜇0(𝑖, 𝑗, 𝑘) =  𝜇𝑡(𝑖 + 𝐷𝑥
𝑡→0(𝑖, 𝑗, 𝑘), 𝑗 + 𝐷𝑦

𝑡→0(𝑖, 𝑗, 𝑘), 𝑘 + 𝐷𝑧
𝑡→0(𝑖, 𝑗, 𝑘))           2-5 

 

The symbols 𝑖, 𝑗, 𝑘 denote the voxel coordinates along the three spatial directions x, y and z.  

We formulate the solution of the DVF motion model as an optimization problem to 

minimize the objective functions 𝑓1 and 𝑓2. The solution of the DVF is also subject to the inverse 

consistency constraint defined in Equation 2-6 and Equation 2-7. 

𝐷0→𝑡 ∘ 𝐷𝑡→0= 0 =𝐷𝑡→0 ∘ 𝐷0→𝑡                                               2-6                                         

𝐷0→𝑡 ∘ 𝐷𝑡→0 = 𝐷0→𝑡(𝑥 + 𝐷𝑡→0) + 𝐷𝑡→0                                       2-7 

 

Equation 2-7 defines the composition scheme of forward and backward deformation fields, 

which should result in zero displacement (2-6). Equation 2-6 also ensures the inverse consistency 
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of the deformation, as the composition from either direction should result in zero displacement. 

Based on Equation 2-6, we can solve the forward or the backward deformation field using the 

available counterpart from either 𝑓1  or 𝑓2  minimization. The same DVF inversion scheme is 

applied in reference [82]. We applied a nonlinear conjugate gradient algorithm to minimize 𝑓1 and 

𝑓2 alternately. The updated 𝐷𝑡→0 from minimizing 𝑓2 is inverted and input into 𝑓1 as the initial 

start to update 𝐷0→𝑡. The updated 𝐷0→𝑡 is inverted and subsequently fed back into 𝑓2 to update 

𝐷𝑡→0. In total, we apply 10 iterations to optimize 𝐷𝑡→0 and 𝐷0→𝑡 in an interleaved fashion. More 

details on the non-linear conjugate gradient algorithm, together with the corresponding parameters, 

can be found in the pseudo codes provided in our previous publication [80]. 

The projection intensity matching-based data fidelity term in the objective function plays 

an essential role in optimizing the DVFs, as shown in Equation 2-3 and Equation 2-4. Accordingly, 

the solved DVFs will be accurate in high-contrast image regions with large intensity variations. 

However, the DVF accuracy will be limited in low-contrast image areas or areas with small fine 

structures, both of which suffer from insufficient intensity differences on 2D projections. For lung, 

the small fine anatomical details are submerged and smeared in 2D projections although they can 

be fairly easily visualized in appropriate lung windows in the 3D image. This is the reason why 

we consider the contrast inside of lung within a projection image is low. In the motion estimation 

step, we are trying to match the projections simulated from a deformed CBCT and actual measured 

projections (Equation 2-3 and Equation 2-4). As the contrast within lung is low on a projection 

image, this will limit the DVF estimation accuracy when we rely on projection intensity difference 

only. As a result, the reconstruction accuracy of these areas suffers from inaccurate DVFs in the 

corresponding regions. 
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2.2.1.3 Biomechanical modeling 

To boost intra-lung DVF accuracy, we introduce biomechanical modeling into the SMEIR 

algorithm. Biomechanical modeling is a physics-driven deformation approach that can correct and 

fine-tune the deformation in regions with small fine details by using boundary conditions defined 

at high-contrast organ surfaces through finite element analysis. To perform this analysis, an organ 

mesh composed of finite elements must be constructed with a corresponding material model. In 

this study, we use the hyper-elastic Mooney-Rivlin material model to describe the lung. This model 

is often applied to biological tissues with large deformations [83, 84]. The strain energy density 

function of the Mooney-Rivlin model is shown in Equation 2-8: 

𝑊 = 𝑐10(𝐼1 − 3) + 𝑐01(𝐼2 − 3) +
1

2
∗ 𝑘(𝐽 − 1)2                           2-8 

 

The first two terms on the right side of Equation 2-8 denote the strain energy needed to 

deform the shape without changing the volume. The third term on the right denotes the strain 

energy needed to change the volume without altering the shape. 𝐼1 and 𝐼2 are the first and second 

invariants, respectively, of the right Cauchy-Green deformation tensor. 𝐽 is the volume ratio [85]. 

𝑘  represents the bulk modulus.  𝑐10 and  𝑐01  are coefficients that represent material elastic 

properties. 

Note that the biomechanical modeling can be generally applied to all organs to improve 

their intra-DVF accuracy. In this study, we focus on modeling the lung for 4D-CBCT 

reconstruction. To apply biomechanical modeling, the lung is first segmented out from the 

reference phase image. The segmentation accuracy also affects the boundary condition extracted 

from the 2D-3D deformation. The lung boundary’s high contrast makes it easy to segment by an 
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automatic segmentation technique. For other organs with less clear boundaries (such as the prostate 

or kidney), automatic segmentation accuracy might be limited, which may require manual 

correction or more advanced segmentation techniques [86-88]. In our work, auto-segmentation 

based on the “snake” [89] algorithm is used to generate lung segmentation. 

Biomechanical modeling requires lung segmentation to build a tetrahedral mesh model. To 

evaluate the effects on SMEIR-Bio reconstruction by segmentation differences, we used the ITK-

SNAP [90] software package to generate lung segmentations using different methods. There are 4 

segmentation methods provided in the ITK-SNAP software, including thresholding, edge-

attraction, clustering and classification. We used these 4 methods to generate 4 different lung 

segmentations and put them into the SMEIR-Bio workflow for image reconstruction. Specifically 

for this evaluation, we used the lung masks generated from the reference images reconstructed by 

the 1st iteration of SMEIR-Bio, and did not further update the lung mask during the optimization. 

Thus the lung masks also contained errors not corrected in the following iterations, which also 

served the purpose to evaluate how the segmentation errors might affect the reconstruction 

accuracy of SMEIR-Bio. 

Based on this lung segmentation, a lung surface meshed with triangle elements is generated 

using the open-source Iso2Mesh package [91]. From the meshed lung surface, 3D tetrahedral 

elements are further generated to cover and model the full lung volume. The boundary condition, 

defined as the DVF at the lung mesh surface nodes, can thus be applied to solve intra-lung motion 

through finite element analysis and the Mooney-Rivlin energy density function. We used the open-

source FEBio package in this study to solve the finite element analysis [92].  
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2.2.1.4 General workflow of SMEIR-Bio 

Figure 2-1shows the general workflow of SMEIR-Bio. To estimate an initial motion model 

between the phase images, we use the total variation-regularized algebraic reconstruction 

technique (ART-TV) [81] to reconstruct a coarse 4D-CBCT set. Then, we perform demons 

registration [43] to obtain the initial deformation vector fields (DVFs) between the reconstructed 

reference phase (phase 0) image and all other phase images. We then input the initial DVFs, the 

coarse 4D-CBCT set, and the projections of all phases into the motion-compensation step to update 

the reference phase image. Based on the updated reference image, we perform motion estimation 

to update the inter-phase DVFs. Before biomechanical modeling, we automatically segment the 

lung volume out from the reference phase image to generate a tetrahedral mesh model and use the 

lung surface DVFs solved by motion estimation at each phase as the boundary condition for finite 

element analysis. We then input the biomechanically-corrected DVFs into a motion-compensated 

reconstruction step and assess the reconstruction results for convergence. If not converged, the 

reconstruction circles back to the motion estimation step, followed by biomechanical modeling 

and motion-compensated reconstruction until final convergence is achieved. 
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Figure 2-1 Workflow of SMEIR-Bio 
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2.2.2.1 Materials 

We evaluated the performance of the SMEIR-Bio algorithm on 11 lung cancer patients. 

We simulated 4D cone-beam projections from a 4D-CT set of each patient for reconstruction. The 

image size is 256x256 for each patient and the slices number varies between different patients 

from 190 to 270. And the voxel size is 1.5 mm x 1.5 mm and the slice thickness is 2 mm. The 

respiratory rate is around 15 breathings per minute. For the simulation algorithm, we used the ray-

tracing technique [78]. We did not add additional noise or scatter in the simulated projections, 

where only residue artifacts (noise, scatter, beam hardening) in the 4D-CT were considered. For 

each patient, we generated 4 groups of 4D-CBCT projections to simulate different acquisition 

sparseness, with 10, 20, 30, or 40 projections per phase. The 4D-CBCT projections were simulated 

from the 4D-CT images with 300 x 250 pixels in each projection. Each pixel measures 2 mm x 2 

mm. The simulated source-to-axis distance is 1000 mm, and the source-to-imager distance is set 

at 1500 mm. Since the projections were simulated from each phase, the acquisition rate and 

respiration rate were irrelevant. The simulated projections of each phase are evenly distributed 

across a 360̊ scan angle. In total, 872 landmarks from all patients identified by expert radiation 

oncologists were used to verify motion model accuracy.  

To further evaluate this method, we take real projections that contain scatter, noise and 

beam hardening into the consideration. The 4D-CBCT projections were scanned using a Varian 

Trilogy LINAC (Varian Medical Systems, Palo Alto, CA), with 120 kV peak voltage, and 80 

mA/25 ms exposure for each projection. The distance between the x-ray source and the flat panel 

detector is 1500 mm while the source-to-isocenter distance is 1000 mm. The acquired angular 

range is [-265°, -75°].The scanning duration is 4.5 min and the average patient breathing cycle is 

2.78 s. The 4D-CBCT set has 1982 projections in total, which has been sorted into 10 respiratory 
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phases. Each phase was reconstructed using the ART-TV algorithm and the reconstructed images 

were used as “gold-standard” reference image. The reconstructed image size is 200x200x100 and 

the image resolution is 2 mm. We then down-sampled the number of projections at each phase by 

a factor of 10 to around 20 and performed the SMEIR and SMEIR-Bio reconstructions separately 

based on the sparse projections. 

 

2.2.2.2 Biomechanical parameter optimization 

The specified elasticity parameters 𝐾, 𝑐10, and 𝑐01, represent the biomechanical features of 

the lung material, as shown in Equation 2-8. 𝑐10 and 𝑐01 denotes shear modulus and 𝐾 denotes 

bulk modulus. The shear modulus determines the resistance of shape change and the bulk modulus 

determines the resistance of volume change. Their values will affect the solved intra-lung DVFs 

under the same boundary condition. The 𝐾, 𝑐10, and 𝑐01 are related to Poisson’s ratio (𝑣𝑝) as 

shown in Equation 2-9:  

𝐾

𝑐10+𝑐 01
= 

4(1+𝑣𝑝)

3(1−2𝑣𝑝)
                                                             2-9 

In this study, we set 𝑐10 = 𝑐01 = 𝑐 to simplify the problem. The relationship shown in 

Equation 2-9 can thus be represented as Equation 2-10: 

𝐾

𝑐
= 

8(1+𝑣𝑝)

3(1−2𝑣𝑝)
                                                               2-10 

 

vp is Poisson’s ratio of material [93] defined as the ratio of lateral contraction to 

longitudinal extension when a bar is pulled out. It is a dimensionless parameter which is related to 

the compressibility of materials[94]. In the Mooney-Rivlin model, the ratio 
𝐾

𝑐
 defined in Equation 
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2-10 describes the incompressibility of materials, or the 𝑘_𝑓𝑎𝑐𝑡𝑜𝑟, which is directly related to 

Poisson’s ratio (𝑣𝑝). Previous studies on lung modeling have used a range of Possion’s ratios [70, 

73, 75, 95, 96] Table 2-1.  

Table 2-1 Previous studies on lung modeling.  

The Poisson’s ratio used in each study and the corresponding k_𝑓𝑎𝑐𝑡𝑜𝑟 for the Mooney-Rivlin 

model are shown. 

Previous Studies Poisson’s Ratio 𝑘_𝑓𝑎𝑐𝑡𝑜𝑟 

Lai-Fook S J et al. (ref. [95]) 0.43 27 

SH Sundaram, CC Feng (ref. [70]) 0.45 40 

Brock KK et al. (ref. [96]) 0.45 40 

A. Al-Mayah et al. (ref. [73]) 0.4, 0.45, and 0.499 19, 40 and 2000 

J Eom et al. (ref. [75]) 0.4 19 

 

We process a 𝑘_𝑓𝑎𝑐𝑡𝑜𝑟 evaluation to find the appropriate 𝑘_𝑓𝑎𝑐𝑡𝑜𝑟 used in the SMEIR-

Bio reconstruction. As it is shown in Equation 2-10, the 𝑘_𝑓𝑎𝑐𝑡𝑜𝑟 is calculated from material’s 

Poisson’s ratio and will increase with increasing Poisson’s ratio. The isotropic lower limit of 

Poisson’s ratio is -1 and the upper limit is 0.5[97]. The incompressibility of materials increases 

with Poisson’s ratio. When Poisson’s ratio reaches 0.5, it means the material is not compressible 

and the corresponding 𝑘_𝑓𝑎𝑐𝑡𝑜𝑟 is infinite. Previous studies in Table 2-1 give a rough range to 

describe the Poisson’s ratio of lung tissue from 0.4 (𝑘_𝑓𝑎𝑐𝑡𝑜𝑟 =19) to 0.499 (𝑘_𝑓𝑎𝑐𝑡𝑜𝑟 =1999). 

We extend this range to 0.4999. Therefore values of 𝑘_𝑓𝑎𝑐𝑡𝑜𝑟 we chose to evaluate the 𝑘_𝑓𝑎𝑐𝑡𝑜𝑟  

are 20, 100, 200, 1000, 2000, 10000.   

 

2.2.2.3 Quantitative image evaluation 
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For each projection group, we used the original 4D-CT images as the reference image (or 

“ground-truth”) to evaluate the reconstructed images. We calculated different similarity metrics, 

including the relative error (RE) [98], the root-mean-square error (RMSE) [99], the normalized 

cross-correlation (NCC) [100], and the universal quality index (UQI) [101] to quantify the 

similarity between the reconstructed images and the reference images. 

𝑅𝐸 = √
∑ (𝐴−𝐵)2𝑁

∑ 𝐴2
𝑁

                                                         2-11 

𝑅𝑀𝑆𝐸 = √
∑ (𝐴−𝐵)2𝑁

𝑁
                                                      2-12 

𝑁𝐶𝐶 = 〈
𝐴

‖𝐴‖
,

𝐵

‖𝐵‖
〉                                                       2-13 

𝑼𝑸𝑰 =  
𝝈𝑨𝑩

𝝈𝑨𝝈𝑩
∙

𝟐𝒂̅𝒃̅

(𝒂̅)𝟐+(𝒃̅)𝟐
∙

𝟐𝝈𝑨𝝈𝑩

𝝈𝑨
𝟐+ 𝝈𝑩

𝟐                                           2-14 

 

𝐴 denotes the reference image, and 𝐵 denotes the reconstructed image. 𝑁 denotes the total 

voxel numbers of 𝐴 or 𝐵. 𝑎̅ and 𝑏̅ denote the averages of 𝐴 and 𝐵, respectively. 𝜎𝐴 is the standard 

derivation of 𝐴, and 𝜎𝐵 is the standard derivation of 𝐵. 𝜎𝐴𝐵  calculates the covariance between 𝐴 

and 𝐵.  

We made quantitative comparisons between images reconstructed by SMEIR-Bio using 

different projection numbers to evaluate the method’s performance under different sampling 

sparseness. We also performed quantitative comparisons between 4D-CBCT images reconstructed 

by ART-TV, SMEIR and SMEIR-Bio under the same sampling sparseness. We also used one 

method proposed in a previous work [102]. This method follows the work frame of SMEIR and 

uses mesh-based representation (in contrast to voxel-based representation) to update the DVFs 

without considering the elastic properties of tissue, which is referred to as the “SMesh” method in 

the following. In addition to image reconstruction accuracy, we also measured lung motion model 
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accuracy for each patient by comparing manually-tracked lung landmark motion with solved DVFs 

from different reconstruction methods. We tracked the lung landmarks displacement between the 

end-of-inspiration and end-of-expiration phases for evaluation, defining the displacement error 

𝑫⃗⃗ 𝑒𝑟𝑟𝑜𝑟  as the difference vector between the manually-tracked landmark displacement and the 

corresponding displacement extracted from solved DVFs. We calculated and compared the 

averages and standard derivations of 𝐷𝑒𝑟𝑟𝑜𝑟 under each projection group.  

𝑫⃗⃗ 𝑒𝑟𝑟𝑜𝑟 = 𝑳⃗⃗ 𝑚𝑎𝑛𝑢𝑎𝑙𝑙𝑦 − 𝑳⃗⃗ 𝐷𝑉𝐹                                                  2-15 

𝐷𝑒𝑟𝑟𝑜𝑟 = ‖𝑫⃗⃗ 𝑒𝑟𝑟𝑜𝑟‖                                                           2-16 

 

𝑳⃗⃗ 𝑚𝑎𝑛𝑢𝑎𝑙𝑙𝑦 denotes the manually-tracked displacement vector composed of 𝑙𝑚𝑎𝑛𝑢𝑎𝑙𝑙𝑦
𝑥 , 𝑙𝑚𝑎𝑛𝑢𝑎𝑙𝑙𝑦

𝑦
, 

and 𝑙𝑚𝑎𝑛𝑢𝑎𝑙𝑙𝑦
𝑧 , which denote motion along x (left-right), y (anterior-posterior), and z (superior-

inferior) spatial directions, respectively. The 𝑳⃗⃗ 𝐷𝑉𝐹 denotes the displacement vector extracted from 

the solved DVFs, composed of 𝑙𝐷𝑉𝐹
𝑥 , 𝑙𝐷𝑉𝐹

𝑦
, and 𝑙𝐷𝑉𝐹

𝑧 . 𝐷𝑒𝑟𝑟𝑜𝑟 denotes the norm-2 of the difference 

vector between 𝑳⃗⃗ 𝑚𝑎𝑛𝑢𝑎𝑙𝑙𝑦 and 𝑳⃗⃗ 𝐷𝑉𝐹, or the length of the displacement error. 

 

2.3 RESULTS 

2.3.1 𝒌_𝒇𝒂𝒄𝒕𝒐𝒓 optimization 

 

We evaluated the influence of different 𝑘_𝑓𝑎𝑐𝑡𝑜𝑟  values by calculating the average 

𝐷𝑒𝑟𝑟𝑜𝑟
𝑆𝑀𝐸𝐼𝑅−𝐵𝑖𝑜of all landmarks. The corresponding results are shown in Figure 2-2 and Table 2-2. For 

patient 3, patient 7, and patient 11, the length of displacement errors (𝐷𝑒𝑟𝑟𝑜𝑟) is the smallest when 
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the 𝑘_𝑓𝑎𝑐𝑡𝑜𝑟 is equal to 1000 (Figure 2-2). For the others, the 𝐷𝑒𝑟𝑟𝑜𝑟 gradually decreases with 

increasing 𝑘_𝑓𝑎𝑐𝑡𝑜𝑟  values. Overall, a 𝑘_𝑓𝑎𝑐𝑡𝑜𝑟 of 1000 generates the highest DVF accuracy in 

the parameterized study (Table 2-2). Thus, we used this value in the following evaluations. 

 

Figure 2-2 The average of all landmarks of D_error^(SMEIR-Bio) for each patient using 

different k_factor values. 

 

Table 2-2 The average of all landmarks of D_error^(SMEIR-Bio) for all 11 patients using 

different 𝒌_𝒇𝒂𝒄𝒕𝒐𝒓 values. 

𝑘_𝑓𝑎𝑐𝑡𝑜𝑟 20 100 200 1000 2000 10000 

MEAN 

Derror (mm) 

4.151 ± 

0.659 

3.719 ± 

0.656 

3.592 ± 

0.656 

3.460 ± 

0.645 

3.465 ± 

0.646 

3.539 ± 

0.654 
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2.3.2 Reconstruction image quality  

 

 

Figure 2-3 Comparison between the reference phase (phase 0) images reconstructed by 

SMEIR-Bio using different numbers of projections.  

The left four columns show the reconstruction results using 10, 20, 30, and 40 projections, 

respectively. The rightmost column shows the same slice of the original CT image for comparison. 

The first row shows the reconstructed images with different projection number groups for patient 

1, and the second row shows the difference image between the original CT image and the 

reconstructed images. The third row shows the reconstructed images with different projection 

number groups for patient 6, and the fourth row shows the difference image between the original 

CT image and the reconstructed images. The display window of the reconstructed images is [-1000, 

635] HU, and the display window of the error images is [-1000 to -455] HU. 
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SMEIR-Bio method is evaluated using groups of different projection number. The 

difference between “ground-truth” and reconstructed images are made and shown in Figure 2-3. 

The difference is small, even when using 10 projections per phase for reconstruction. SMEIR-Bio 

method can achieve high quality image reconstruction even with small projection number. Using 

more projections helps to reduce the mismatches of the lung’s fine structures. 

 

Figure 2-4 Average values with standard derivations for the relative error metric between 

reconstructed images and original “ground-truth” CT images (Phase 0) for all patients. 

 

We calculated the relative error between the “ground-truth” and reconstructed images of 

each patient with different methods. The means and standard derivations of relative error of all 

patients for different projections are shown in Figure 2-4, for both SMEIR and SMEIR-Bio 

reconstructions. The relative error decreases with increasing projection number. Compared with 

SMEIR, SMEIR-Bio enables higher reconstruction accuracy with smaller relative errors.  

To evaluate the performance of SMEIR-Bio in lung regions with small fine details, we 

performed quantitative comparisons on 10 intra-lung regions with fine pulmonary structures for 

all patients. 6 of the 10 selected regions of interest (ROIs) of patient 1 and patient 10 are shown in 

Figure 2-5. The SMEIR-Bio reconstructs fine lung details that better match the “ground-truth” 
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than the other two reconstruction techniques, in terms of both structure shape and intensity. 

Quantitative results of the comparison between ROIs demonstrate the superiority of SMEIR-Bio 

in reconstructing areas with small, fine details (Figure 2-6).  
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(B)  

Figure 2-5  Extracted and zoomed details for 6 of the 10 regions of interest (ROIs) in the 

reference phase (phase 0) image of (A) patient 1, (B) patient 10.  

The extracted ROIs are highlighted with red squares in each left-column slice. The four columns 

on the right display the same ROIs extracted from images reconstructed by ART-TV, SMesh, 

SMEIR, and SMEIR-Bio, reconstructed with 30 projections per phase, and from the original 

“ground-truth” CT image. The display window for all images is [-1000, 635] HU.  
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(C) 

Figure 2-6 Quantitative comparison between ART-TV, SMesh, SMEIR and SMEIR-Bio with 

different projection number per phase. (A)RMSE; (B)UQI; (C) NCC. 

 

The DVF accuracy, evaluated through manually-tracked lung landmarks, is shown in 

Figure 2-7. The landmarks displacement error calculated from different methods, SMEIR-Bio and 

SMEIR, using 30 projections per phase for reconstruction, along each of the Cartesian directions, 

x, y and z, is shown along with the 𝐷𝑒𝑟𝑟𝑜𝑟. In x and y direction, 9 out of 11 patients’ displacement 

error for SMEIR-Bio are smaller than that for SMEIR. In z direction, all patients’ displacement 

errors calculated from SMEIR-Bio are smaller than SMEIR. As lung motion occurs predominantly 

in the z (superior-inferior) direction, we specifically extracted DVFs in the z direction and 

calculated the corresponding landmarks displacement error between manually-tracked landmark 

motion and landmark motion extracted from DVFs. The average displacement difference along 

the z direction of all 11 patients is 2.49 mm for SMEIR-Bio and 4.03 mm for SMEIR. The average 

𝐷𝑒𝑟𝑟𝑜𝑟 of all 11 patients is 3.56 mm for SMEIR-Bio and 4.97 mm for SMEIR. We observed a 
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statistically significant difference ( 𝑝 = 0.0013 , by Wilcoxon signed-rank test) 

between 𝐷𝑒𝑟𝑟𝑜𝑟
𝑆𝑀𝐸𝐼𝑅−𝐵𝑖𝑜and 𝐷𝑒𝑟𝑟𝑜𝑟

𝑆𝑀𝐸𝐼𝑅 . 

 

Figure 2-7 Average length of displacement error for all patients (1-11) along each of the three 

spatial directions (left-right (X direction), anterior-posterior (Y direction), and superior-

inferior (Z direction)) and D_error.  

Errors along each Cartesian direction and 3D vector errors are shown. For each patient, the left bar 

denotes the average displacement error of SMEIR reconstructions. The right bar denotes the 

corresponding error of SMEIR-Bio reconstructions. All reconstructions used 30 projections per 

phase. 

 

The comparison between SMEIR and SMEIR-Bio reconstruction results based on real 4D 

CBCT patient data are showed below in Figure 2-8 and Table 2-3. In the Figure 2-8 the truncation 

artifacts are caused by the limited field of view during projection acquisition. 
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Figure 2-8 Comparison of patient 4D CBCT image at reference phase 0 reconstructed by 

SMEIR and SMEIR-Bio with the “gold-standard” reference image.  

The first row shows images reconstructed by SMEIR and SMEIR-Bio, as well as the reference 

image. The second row shows 2 zoomed-in intra-lung ROIs. Note that the truncation artifacts are 

caused by the limited field of view during projection acquisition. 

 

Table 2-3 Quantitative evaluation of patient 4D CBCT images at reference phase 0 

reconstructed by SMEIR and SMEIR-Bio.  

The images reconstructed from fully-sampled dense projections are used as the reference for 

evaluation. 

 RMSE RE NCC UQI 

SMEIR 0.0033 15.22% 0.9383 0.9038 

SMEIR-Bio 0.0031 14.53% 0.9435 0.9377 

 

As shown in Figure 2-8 and Table 2-3, SMEIR-Bio can reconstruct images, especially the 

intra-lung details with higher accuracy. Using real clinical projections with scatter, noise and beam 

hardening, SMEIR-Bio outperforms SMEIR, and reconstructs images with fine lung details 

matched to the “gold-standard” reference image reconstructed from dense projections.  

SMEIR SMEIR-Bio Reference Image
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The effects brought by segmentation are evaluated. Visual and quantitative results for two 

patients are shown in Figure 2-9 and Table 2-4. 

 

(A) 

 

(B) 
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Figure 2-9 SMEIR-Bio reconstructed images at reference phase 0 with different 

segmentation methods  

(“snake”, thresholding, edge-attraction, clustering and classification) for (A) patient 1 and (B) 

patient 2. For both (A) and (B), the first row shows lung segmentation using different methods; 

the second row shows images reconstructed by SMEIR-Bio using different segmentations, as well 

as the reference CT image; the third and fourth rows show intra-lung details extracted from second 

row. The display window for the second row is [-1000, 635] HU and is the same for zoomed-in 

region 1 and region 2. 

 

As demonstrated in the Figure 2-9, segmentation masks generated using different methods 

have various boundaries especially around heart. However, when applied to the SMEIR-Bio, all 

of them can achieve high accuracy reconstruction compared with the ground-truth image. The 

reconstructed images share visual similarity. The effects of segmentation are quantified in Table 

2-4. Lung regions are extracted to calculate RMSE, RE and NCC. The results show that 

reconstructed images are of similar accuracy when different segmentation methods are applied.  

Table 2-4 Quantitative accuracy of the lung regions reconstructed by SMEIR-Bio with 

different segmentation methods  

Images are reconstructed at the reference phase 0 using 30 projections from patient 1 and patient 

2. The original 4D-CT image is used as the reference for evaluation. 

 Patient 1 Patient 2 

 RMSE RE NCC UQI RMSE RE NCC UQI 

Thresholding 0.0033 14.38% 0.9778 0.8972 0.0035 13.52% 0.9724 0.8564 

Edge-
Attraction 

0.0033 14.47% 0.9782 0.9011 0.0035 14.28% 0.9728 0.8723 

Clustering 0.0032 13.69% 0.9794 0.8989 0.0036 14.54% 0.9714 0.8647 

Classification 0.0033 14.05% 0.9790 0.9004 0.0035 14.22% 0.9729 0.8596 

SNAKE 0.0032 14.29% 0.9780 0.8996 0.0036 14.43% 0.9725 0.8820 
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2.4 DISCUSSION AND CONCLUSION 

 

We developed the SMEIR-Bio technique based on the SMEIR algorithm for 4D-CBCT 

reconstruction but added biomechanical modeling to the workflow to improve DVF and image 

reconstruction accuracy in low-contrast regions or regions with small fine details. Lung surface 

DVFs solved by 2D-3D deformation, whose accuracy benefits from the high-contrast lung 

boundary, served as the boundary condition to drive finite element analysis-based biomechanical 

modeling to fine-tune the intra-lung DVFs [103]. Based on our evaluation using 11 lung cancer 

patient cases, the proposed SMEIR-Bio algorithm enhances the reconstructed 4D-CBCT quality, 

as well as the accuracy of inter-phase DVFs. The accurate 4D-CBCT and DVFs have the potential 

to be applied to patient setup, tumor tracking, dose accumulation, and adaptive radiation therapy 

[104, 105]. 

Our work viewed the intra-lung structures as homogeneous in material. In reality, however, 

there are various heterogeneous structures within the lung, including bronchi and lung vessels. In 

addition, for patients who have large areas of necrosis, inflammation or pneumonitis in lung, the 

lung tissue elasticity may also vary from region to region. Correspondingly, the solved intra-lung 

DVF under the homogeneity assumption can be error-prone in these regions. Therefore, future 

research should consider different elastic properties and model the interactions between different 

structures inside the lung to achieve a more biomechanically realistic deformation. Multi-organ 

deformation analysis based on the biomechanical modeling method can be applied to SMEIR-Bio 

to simulate the lungs’ motion in light of their interactions with different organs [96]. This analysis 

views the thoracoabdominal region as a whole and simulates the motion of organs that do not have 
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a clear boundary using adjacent organs’ motion. Furthermore, the air low mechanics inside the 

lung could also be modeled to improve the accuracy of biomechanical modeling [106].  

The proposed SMEIR-Bio method also requires more computation time than SMEIR 

because of the additional biomechanical modeling component. Currently, we only use the CPU for 

image reconstruction. Within each iteration, the motion-compensated reconstruction takes about 

25 minutes, the 2D-3D registration takes about 20 minutes, and the biomechanical modeling takes 

about 20 minutes. For all 11 patients, 7-10 iterations were needed for SMEIR-Bio to converge. 

GPU programming as well as multi-threading in the CPU can help accelerate the image 

reconstruction process.  

In summary, the developed SMEIR-Bio method enhances DVF accuracy of inside lung 

region with fine structures. To further decrease the computational time for biomechanical 

modeling, we applied CNN based method to solve the DVFs of inner lung which is introduced in 

the CHAPTER THREE. 
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3 CHAPTER THREE  

U-net-based Deformation Vector Field Estimation for Motion-Compensated 

4D-CBCT Reconstruction 

3.1 INTRODUCTION 

4D-CBCT images usually suffer from degraded image quality due to insufficient numbers 

of projections in each phase bin after phase-sorting. Many different methods have been developed 

to improve the 4D-CBCT image quality in the under-sampling scenario [40, 41, 45, 107]. Recently, 

we developed a method called simultaneous motion estimation and image reconstruction (SMEIR) 

for 4D-CBCT reconstruction. By using all acquired projections and the motion model for motion-

compensated reconstruction, SMEIR can effectively reduce the under-sampling and over-

smoothing effects in the reconstructed 4D-CBCT. Simultaneously, SMEIR optimizes the 

deformation-driven motion model between the reference phase CBCT image and all other 4D-

CBCT phases.  

To estimate the motion model, SMEIR uses an intensity-driven 2D-3D deformation 

method, which performs well at high-contrast regions such as the lung boundary, where motion 

causes large intensity variations on the 2D projections to drive the DVF optimization. For intra-

lung regions, where many small, intricate structures exist, the 2D-3D deformation technique 

usually cannot estimate accurate DVFs since the movement of these small structures only leads to 

subtle changes on the 2D projections. To solve this issue, we recently combined finite-element-

analysis (FEA)-based biomechanical modeling with SMEIR to enhance the accuracy of the intra-

lung DVFs (SMEIR-Bio) [84, 108]. By biomechanical modeling, the intra-lung DVFs can be 

derived and optimized from lung boundary DVFs based on elastic parameters of lung tissues [108]. 

However, SMEIR-Bio involves additional steps including tetrahedral mesh generation, boundary 
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information extraction and FEA. A simpler and more efficient method can further improve the 

efficiency of the SMEIR-based algorithm.   

In this study, instead of using biomechanical modeling, we used convolutional neural 

networks (CNNs) to fine-tune the DVFs estimated by 2D-3D deformation. Previous studies have 

shown that CNN-based approaches are effective in solving DVFs directly between 3D reference 

and moving images [109-112]. Those methods used MRI or CT images to achieve DVF estimation 

based on the high image quality. These methods cannot be applied towards 2D-3D deformation. 

Although we can reconstruct 3D images from phase-sorted projections before feeding into the 

network, their accuracy might be impaired by the streak artifacts in the 3D images, which in our 

cases are caused by under-sampled projections. Thus in this study, instead of using the CNN to 

directly derive DVFs between images, we used the network to fine-tune the 2D-3D deformation-

estimated DVFs to mimic the role of biomechanical modeling. In this study, two CNN models 

were built based on the U-net [113] architecture to optimize the DVF estimated by 2D-3D 

deformation. Both models were trained, validated and evaluated on a simulated 4D-CBCT from a 

cohort containing 11 lung patient cases. We evaluated and compared the SMEIR techniques 

incorporating CNN-derived DVFs, with previously-developed techniques (SMEIR and SMEIR-

Bio), in terms of image quality of reconstructed 4D-CBCTs and the motion model (DVF) accuracy.  

 

3.2 MATERIALS AND METHODS 

3.2.1 Methods 
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3.2.1.1 The SMEIR technique 

The original SMEIR algorithm has two main steps: motion-compensated reconstruction 

and motion estimation. The overall workflow is shown in Figure 3-1. The detailed introduction is 

listed in the CHAPTER TWO section 2.2.1.  

 

Figure 3-1 Workflow of the simultaneous motion estimation and image reconstruction 

(SMEIR) method.  

ART-TV: algebraic reconstruction technique with total variation regularization [114]. The 

processes in green region are initialization part to obtain images of each phase and initial motion 

model. 
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3.2.1.2 SMEIR-Bio 

In order to boost the accuracy of the intra-lung DVFs, we recently developed a 

biomechanical modeling-guided SMEIR technique to combine the SMEIR method with 

biomechanical modeling (SMEIR-Bio). By SMEIR-Bio, for each patient, a tetrahedral mesh based 

on segmented lung contours of the reference phase CBCT was generated. The lung boundary 

motion estimated by SMEIR, using 2D-3D deformation was extracted and assigned to the 

boundary vertices of the mesh. As high contrast and sharp variations exist at lung boundaries, the 

intensity-based 2D-3D deformation employed in the original SMEIR algorithm achieves high DVF 

accuracy at these regions, in contrast to intra-lung regions. After boundary condition assignment, 

corresponding lung elasticity parameters were also assigned to the lung tetrahedral mesh. Through 

finite-element-analysis [115], intra-lung DVFs can be obtained from the lung boundary motion 

and the lung elasticity parameters using displacement-based biomechanical modeling [116].  The 

workflow of SMEIR-Bio is shown in Figure 3-2. Our previous study showed that the SMEIR-Bio 

algorithm outperformed the original SMEIR method in fine-tuning the motion model at intra-lung 

regions. Details of the SMEIR-Bio method can be found in CHAPTER TWO Method section 

2.2.1.3 [108].  
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Figure 3-2 The workflow of SMEIR-Bio method.  

The lung segmentation and mesh-generation parts in the light red region will only be processed 

once (dash line arrow). The Biomechanical modeling solved by FEA is in the dark red region 

demonstrating the on-line process which participated in iteratively reconstruction. The dark green 

region included processes to generate ART-TV images and initial DVFs before the SMEIR 

iteration. 

 

3.2.1.3 SMEIR with U-net-based DVF optimization 

SMEIR-Bio method iteratively optimizes the inner lung deformation vector field which is 

time consuming and the inner lung is regarded as homogeneous in the biomechanical model. Each 

patient needs to be assigned with patient-specific physical properties to achieve best performance. 

In this study, we proposed a deep learning-driven strategy to fine-tune the intra-lung DVFs 
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estimated through 2D-3D deformation method. We hypothesize that the CNN can find and learn 

informative features to derive intra-lung DVFs from accurate lung-boundary DVFs [113].  

In detail, we developed two U-net based architectures to fine-tune the DVFs Figure 3-3. 

The first U-net architecture (U-net-3C) used three channels as input, which was denoted as U-net-

3C. Each direction of the DVF (for three cardinal directions: x, y and z) served as one input channel, 

and had a dimension of 128 × 128 × 128. The output also contained 3 channels, each for one 

cardinal direction of the updated DVF. Same as the input channel, each output channel was also 

of size 128 × 128 × 128 . In the second U-net architecture (U-net-4C), we added the CBCT 

reference phase image, which was reconstructed by SMEIR, as an additional input channel. The 

purpose of adding the lung CBCT image as the fourth channel was to train the network to learn 

heterogeneous properties of intra-lung tissues, which were potentially correlated with the local 

deformation patterns. The output of U-net-4C was the same as U-net-3C. DVFs estimated through 

2D-3D registration methods served as input DVFs for both U-net-3C and U-net-4C channel. The 

ground-truth DVFs used for the network to match the input to are generated by the Demons 

registration algorithm [47] applied to high-quality 4D-CT between reference phase and other 

respiration phases.  
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(A) 

 

(B) 

Figure 3-3 Two proposed CNN structures.  

(A). U-net-3C architecture. The DVFs estimated by 2D-3D deformation were input using three 

channels (3C), and the output is updated DVFs with three channels. (B). U-net-4C architecture. 

Compared with U-net-3C, another channel was fed as the input for U-net-4C, which was the 

reference CBCT image reconstructed by SMEIR. 
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Both U-net-3C and U-net-4C contained two paths: the contraction path and the expansion 

path. The contraction path was composed of 5 blocks and each block was composed of 2 

convolution layers and a max pooling layer. Symmetrically, the expansion path contained 6 blocks 

and each block contained 1 deconvolution layer and 2 convolution layers. The networks were 

implemented in Python with Keras as the backend. We  used  Adam [117], a method  for  efficient  

stochastic  optimization, to  optimize  the  network by  minimizing  the mean-square-error cost 

function with the initial learning rate set to from 1e-3 to 1e-7 (each time multiplying by 2 or 5) and 

β1and β2  set as default. Model training starts with initial learning rate at 5e-5 have the best 

performance. The initial filter number was 20 and the size of each layer was shown in Figure 3-3 

(A) and (B). The batch size of the training model was 4. We also trained the model with batch size 

of 8 while performance did not improve. 

Both U-net-3C and U-net-4C were incorporated into the SMEIR workflow to fine-tune the 

estimated inter-phase DVFs, and the output DVFs were used to update the motion-compensated 

CBCT and the other phase CBCTs as a final step, before outputting the final 4D-CBCTs, as it is 

shown in the Figure 3-4. Based on different models used, we named the corresponding modified 

SMEIR algorithm as either SMEIR-U-net-3C or SMEIR-U-net-4C.  
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Figure 3-4 SMEIR-U-net workflow.  

The trained model served as one fine-tuning step. The dark green region included processes to 

generate ART-TV images and initial DVFs before the SMEIR iteration. The light green region 

included processes to fine-tune the DVFs using U-net based methods. 

 

3.2.2 Materials  

 

To evaluate our method, we used a dataset consisting of 4D-CT images of 11 lung cancer 

patients [118]. The 4D-CT images were acquired by a 16-slice CT scanner (Brilliance, Philips 

Medical Systems, Cleveland, OH). Images were acquired in 3 different resolution levels 
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(0.7813×0.7813×1.5 mm3 , 0.9375×0.9375×1.5mm3 and 0.9766×0.9766×1.5 mm3 ), and were 

resized into the same resolution level of 1.5×1.5×1.5 mm3. In order to evaluate the feasibility of 

clinical usage of the proposed method, we applied Monte Carlo (MC) simulation using the toolkit 

gDRR [119, 120], which is a GPU-based MC simulation package, to generate projections with 

scatter to simulate the acquired CBCT projections from Linac. We used simulated projections with 

scatter to process the training, validation and testing.  

For each patient, we performed MC simulation on 4D-CT images to obtain 4D-CBCT 

projections with scatterings and noise. For each phase, we used half-fan scanning protocol to 

simulate 80 projections with scan angles evenly distributed across 360°. The simulation source-to-

axis distance was 1000 𝑚𝑚 and the source-to-image distance was 1500 𝑚𝑚, while offset in X 

direction (Left-Right) is 148 𝑚𝑚  to include the lung boundary. Each projection contained 

512×384 pixels, with resolution 0.776×0.776𝑚𝑚2 . We zeros-padded half-fan projections to 

synchronize rotation center and imager center to obtain the full-fan-sized projections. We down-

sampled projections by two in each direction and the size of reconstructed images are 

256×256×256. The SMEIR method was applied to reconstruct 4D-CBCTs and estimate intra-

phase DVFs with resolution 1.5×1.5×1.5  mm3 , with dimension 256×256×256. The other 

reconstruction parameters were the same as those in our previous publication [46]. For SMEIR-

Bio, the other parameters were also the same as those in our previous publication [108].  

Four of the 11 lung SBRT patients had 10 phase images and the other had 8 phases. We 

can generate a total of 85 DVFs between the end-of-exhale (EE) phase (reference phase) and other 

4D-CT phases to train the proposed model. The 11 patients were separated into 5 groups to form 

5 folders, each containing DVFs from 2 or 3 patients, to perform a 5-fold cross validation. Each 

time we selected 3 folders for training, 1 for validation, and 1 for testing. For the two CNN-based 
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techniques, before CNN updates, we down-sampled the input DVFs generated by SMEIR (from 

256×256×256) to 128×128×128 along each direction to tailor to the GPU memory limits. After 

CNN updates, we up-sampled the updated DVFs back to size 256×256×256 using cubic 

interpolation [121]. We used a NVIDIA Tesla v100-sxm2 GPU card for training. We trained the 

model of each fold for 400 epochs and saved the weights of the model at the 400th epoch. Then the 

training process continued based on the saved model weights and were stopped if the minimal 

validation loss did not change for 50 epochs. The computation time for each-fold training was 

around 6 hours. After we finished the training process, the trained network took roughly 10 seconds 

to output improved DVFs of size 128×128×128, for both U-net-3C and U-net-4C. 

We compared the quality of the reconstructed images between SMEIR, SMEIR-Bio, 

SMEIR-U-net-3C and SMEIR-U-net-4C using metrics including the root-mean-square-error 

(RMSE) [99], the universal quality index (UQI) [101] and the normalized cross-correlation [100]. 

Since the study was focused on improving the reconstruction quality of intra-lung regions with 

fine details, we selected 10 relevant regions-of-interests (ROIs) inside the lung to compute these 

metrics. We used the original CT images as the ‘gold-standard’ reference to evaluate the 

reconstruct CBCT images.  

For each 4D-CT set, around 80 landmarks were manually identified by expert physicians 

to track intra-lung motion from the EE to the end-of-inhale (EI) phases (872 in total). Using these 

landmarks, we evaluated the accuracy of DVFs estimated by the original SMEIR algorithm, 

SMEIR-Bio, SMEIR-U-net-3C, and SMEIR-U-net-4C. The DVF residual error was defined as the 

magnitude of the 3D difference between the manually-tracked landmark motion and DVF-tracked 

landmark motion. 
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To further evaluate the proposed method, we used 4D-CBCT data from SPARE 

challenge[122]. We selected 3 patients (with diaphragm covered by field-of-view) in the SPARE 

challenge dataset to test our trained models. We applied SMEIR reconstruction on those 3 patients 

to obtain reference phase image and raw DVFs. The estimated DVFs are truncated and down-

sampled into the same size as our network structures. We applied fine-tuned DVFs in the MC-

SART to obtain the updated reference phase image. The quantitative comparison between SMEIR-

U-net-3C, SMEIR-U-net-4C and SMEIR methods are based on image quality. RMSE, UQI and 

NCC metrics are used. 

 

3.3 RESULTS 

3.3.1 Monte Carlo simulation data 

 

Comparison between different DVFs was shown in Figure 3-5. The input intra-lung DVF 

was not well estimated by the original SMEIR algorithm. Compared with the input DVFs, the 

updated DVFs had visually improved accuracy for intra-lung regions. With additional channel 

input specifying lung heterogeneity information, the U-net-4C DVFs appeared more similar to the 

Demons DVF. 
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Figure 3-5 Comparison between DVFs for two patient cases: (A) and (B).  

For each subfigure, the first column showed the input DVFs estimated by the original SMEIR 

algorithm. The second and third columns showed the updated DVFs by U-net-3C and U-net-4C, 

respectively. The fourth column showed the reference Demons DVFs, which were used as the 

‘ground-truth’ for network training and validation. Row 1-2, 3-4 and 5-6 showed DVFs in axial, 

coronal and sagittal views, respectively, for two different slice locations. All DVFs were shown 

by window level [0, 10] voxels.  

 

Figure 3-6 illustrated the residual DVF errors for different methods. Compared with 

SMEIR and SMEIR-Bio methods, CNN-based methods (U-net-3C and U-net-4C) achieved higher 

DVF accuracy. The average (± standard deviation) landmarks motion is 6.53 ± 5.15 𝑚𝑚. When 

the input used 3-channel DVFs only (U-net-3C), the average residual error was 3.88 ± 3.12  𝑚𝑚. 

When reference phase CBCT was added as an additional channel to the input layer (U-net-4C), 

the average residual error was reduced to 3.71 ± 2.90 𝑚𝑚. The average DVF residual error was 

5.73 ± 4.61𝑚𝑚 for SMEIR method and 3.75 ± 3.40 𝑚𝑚  for the SMEIR-Bio method. We applied 

Wilcoxon signed test on DVFs residual error of all 872 landmarks to evaluate the statistical 

significance for each pair of methods. SMEIR are statistically significant with both U-net based 

method (p<0.001). No statistical significance was found between the SMEIR-Bio method and 

either CNN-based method (p>0.05). No statistical significance was found between SMEIR-U-net-

3C and SMEIR-U-net-4C (p>0.0083). We did Bonferroni correction [123, 124] for multiple 

comparisons. 
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Figure 3-6 Boxplots of average residual DVF errors of all patients for SMEIR, SMEIR-Bio, 

SMEIR-U-net-3C and SMEIR-U-net-4C based on MC simulation projections.  

The blue box shows the interquartile range (IQR) from 25th percentile (Q1) to 75th percentile (Q3). 

The dotted line extended from Q1-1.5×IQR to Q3+1.5×IQR. Red dots show the outliers. 
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Figure 3-7 Extracted and zoomed-in details for 4 ROIs in the reconstructed reference phase 

CBCT image of one patient case.  

The locations of the ROIs were highlighted by squares in the left-column. The 2nd to 5th columns 

on the right showed the zoomed-in ROIs from CBCTs reconstructed by SMEIR, SMEIR-Bio, U-

net-3C and U-net-4C. The rightmost column showed the ‘ground-truth’ CT image at the reference 

phase. The display window (attenuation coefficient) for all images was [0, 0.04]. 

 

The corresponding CBCT images (at the reference EE phase) reconstructed by different 

methods were included in Figure 3-7. For each patient, we selected 10 ROIs inside lung. As shown, 

CBCT images reconstructed using DVFs updated by CNN-based methods can better recover fine 

details inside the lung. Figure 3-8 shows the boxplots of the quantitative metrics evaluating the 

similarity between the reconstructed CBCT images and the original CT images. The average (± 

standard deviation) RMSEs of the evaluated ROIs were 0.0046 ± 0.0004 (SMEIR), 0.0037 ± 

0.0005 (SMEIR-Bio), 0.0037 ± 0.0005 (SMEIR-U-net-3C) and 0.0038 ± 0.0004 (SMEIR-U-net-

4C). The average UQIs of the evaluated ROIs were 0.61 ± 0.04 (SMEIR), 0.82 ± 0.03 (SMEIR-

1

2

3 4
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Bio), 0.82 ± 0.04 (SMEIR-U-net-3C) and 0.84 ± 0.04 (SMEIR-U-net-4C). Similarly, the average 

NCCs for SMEIR, SMEIR-Bio, SMEIR-U-net-3C and SMEIR-U-net-4C were 0.69 ± 0.05, 0.83 

± 0.04, 0.84 ± 0.06 and 0.87 ± 0.06, respectively. Overall, CNN-based SMEIR methods achieved 

better image reconstruction accuracy. We did Wilcoxon signed-rank test to evaluate the statistical 

significance of the UQI difference of images reconstructed by different methods. According to the 

results, there is statistical significance of UQI difference between SMEIR and SMEIR-U-net-3C 

as well as between SMEIR and SMEIR-U-net-4C (p<0.001). No statistical significance of UQI 

difference was found between SMEIR-Bio and SMEIR-U-net-3C, nor between SMEIR-Bio and 

SMEIR-U-net-4C (p>0.0083). There is no statistical significance of UQI difference between 

SMEIR-U-net-3C and SMEIR-U-net-4C (p>0.0083).  

 

Figure 3-8 Boxplots of RMSE, UQI and NCC metrics for SMEIR, SMEIR-Bio, SMEIR-U-

net-3C and SMEIR-U-net-4C.  

 

In order to evaluate the influence brought by splitting training and validation dataset, we 

fixed the group 5 (Patient 10 and 11) as test group. We select 1-3 (patient 1-7) groups as training 
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dataset and groups 4 (patient 8 and 9) as validation dataset to train a model. Then, we selected 1, 

3 and 4 group (patient 1, 2 and 5-9 ) as training dataset and group 2 (patient 3 and 4) as validation 

dataset to train the second model. The influence brought by splitting training/validation dataset is 

evaluated on manually tracked landmarks of patient 10 and patient 11. The DVFs residual errors 

calculated based on different training/validation splitting are displayed in Table 3-1. Different split 

of training and validation does not influence the accuracy of predicted DVFs. 

Table 3-1 Influence of different training/validation split. Averaged (± standard derivation) 

DVFs residual errors calculated based on DVFs obtained from model trained by different 

training/validation split. (Unit:mm) 

DVFs residual errors U-net-3C U-net-4C 

Training (1-3)/ Validation(4) 3.84 ± 2.22  3.73 ± 2.13 

Training(1,3,4)/Validation(2) 3.89 ± 2.41 3.80 ± 1.99 

 

We separated landmarks by their locations, including inner lung and tumor. We calculated 

the residual error of DVFs of different methods based on landmarks in different groups to evaluate 

the location-specific improvement bring by proposed method. We focused on inner lung markers 

and markers inside tumor. The comparison results are shown in Table 3-2. Based on the results, 

we considered that proposed U-net based methods can improve the accuracy for DVFs estimation 

for inside lung region (including the tumor) compared with SMEIR method. The performances of 

U-net based methods are similar to that of SMEIR-Bio method. We applied the Wilcoxon signed-

rank test to evaluate the statistical significance between different methods. For inner lung 

landmarks, the residual DVF error difference between the SMEIR method and either CNN-based 

method was statistically significant (p<0.005). The residual DVF error difference between the U-

net-3C and U-net-4C method was statistically significant (p<0.005). The residual DVF error 
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difference between the U-net-3C and SMEIR-Bio method was statistically significant (p<0.005) 

while there is no statistical significance between SMEIR-Bio and U-net-4C. The residual DVF 

error difference between the U-net-3C and U-net-4C method was statistically significant 

(p<0.005). There are no statistical significance between SMEIR-Bio and U-net-4C (p>0.1) and 

between SMEIR-Bio and U-net-3C (p>0.05). 

Table 3-2 The location-specific DVFs residual error (Unit: mm).  

 SMEIR SMEIR-Bio U-Net-3C U-Net-4C 

Tumor markers (110) 4.03 3.03 2.98 2.75 

Inner markers (433) 6.87 3.82 3.52 3.56 

 

To evaluate the smoothness of the DVFs in the spatial domain, we calculated the total 

variation (TV) of DVFs generated from U-net based method and compared to the total variation 

of DVFs from Demons. The averaged total variation of DVFs obtained from U-net-3C, U-net-4C 

and Demons are 2.7383e+05, 3.1249e+05 and 3.0409e+05. The value of total variation calculated 

based on DVFs from different methods are in the same level. DVFs obtained from U-net-3C are 

smoother compared with DVFs from U-net-4C. It is reasonable since there is one additional input 

channel offering heterogeneous information for the network to learn from. 

 

3.3.1.1 SPARE challenge data 

We used metrics of RMSE, UQI and NCC to evaluate the quality of reconstructed images. 

The “gold-standard” images are reconstructed based on fully-sampled projections. For each patient, 

we select 10 ROIs inside of lung to evaluate the performance of detailed lung structure 
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reconstruction. Some of the ROIs are shown in Figure 3-9. The quantitative comparisons based on 

RMSE, UQI and NCC metrics are shown in Figure 3-10. You can see in the picture that SMEIR-

Bio, SMEIR-U-net3C and SMEIR-U-net-4C have similar results for restoring intra-lung detailed 

structures. U-net-4C can have better performance for some ROIs.  

 

Figure 3-9 Extracted and zoomed-in details for 4 ROIs in the reconstructed reference phase 

CBCT image of 3 patients.  
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The locations of the ROIs were highlighted by squares in the left-column. The 2nd to 5th columns 

on the right showed the zoomed-in ROIs from CBCTs reconstructed by SMEIR, SMEIR-Bio, U-

net-3C and U-net-4C. The rightmost column showed the ‘Gold-standard’ CBCT image at the 

reference phase reconstructed from fully-sampled projections. The display window (attenuation 

coefficient) for all images was [0, 0.03]. 

 

Figure 3-10 Boxplots of RMSE, UQI and NCC metrics for SMEIR, SMEIR-Bio, SMEIR-U-

net-3C and SMEIR-U-net-4C. 

 

The evaluations based on the whole images are shown in the Table 3-3. SMEIR-U-net 

based methods outperform SMEIR method in reconstructing fine-details inside lung. SMEIR-Bio 

and SMEIR-U-net methods have similar results.  

Table 3-3 Quantitative evaluation of SPARE reference phase image of SMEIR, SMEIR-Bio, 

SMEIR-U-net-3C and SMEIR-U-net-4C method.  

The images reconstructed from fully-sampled dense projections are used as the reference for 

evaluation. 

 RMSE NCC UQI 

SMEIR 0.0045 0.91 0.94 

SMEIR-Bio 0.0035 0.94 0.96 

SMEIR-U-net-3C 0.0036 0.93 0.96 

SMEIR-U-net-4C 0.0033 0.93 0.97 
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3.4 DISCUSSION  

In this study, we proposed a CNN-based DVF fine-tuning framework to improve the 

accuracy of intra-lung DVFs estimated by 2D-3D deformation for SMEIR. Since the lung contains 

many small fine structures, their deformation is hard to be estimated accurately, especially using 

only limited-view 4D-CBCT projections. Our U-net based techniques were able to update and 

fine-tune the 2D-3D DVFs from provided lung contours and lung images (Figure 3-3), through 

inferencing the relationship between the 2D-3D DVFs and the ‘ground-truth’ Demons DVFs via 

the lung structural information. The comparison between the U-net-based methods and the original 

SMIER algorithm demonstrated that the accuracy of the DVFs (Figure 3-6) and the CBCT images 

was substantially improved (Figure 3-7), especially for those small lung details. Accurate 

deformation and reconstruction of these small lung details are important for adequate dose 

accumulation for adaptive therapy [125], and could contribute to important dosimetric biomarkers 

to assess the toxicity of lung stereotactic body radiation therapy.   

In our study, we found the DVF residual errors generated by SMEIR-Bio, SMEIR-U-net-

3C and SMEIR-U-net-4C were comparable. No statistical significance was found for the DVF 

residual error difference between these three methods. As for models trained on MC-simulated 

dataset, the average DVF residual error was slightly higher for SMEIR-U-net-3C (3.88 mm), as 

compared to the SMEIR-Bio (3.75 mm) and SMEIR-U-net-4C (3.71 mm) methods. The 

introduction of image intensity information into SMEIR-U-net-4C potentially helps the method to 

better align the local intensity differences with local deformation field variations, which however 
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requires further investigation and verification. For the quantitative metrics of the reconstructed 

images (RMSE, UQI and NCC), both the U-net-based methods achieved better NCCs as compared 

to SMEIR-Bio. In terms of the UQI, the performances of U-net-based methods are similar to that 

of SMEIR-Bio. The RMSE values were comparable between the three methods, while the SMEIR-

U-net-4C generated slightly better results. Since SMEIR-Bio used a biomechanical modeling 

approach assuming homogeneous lung tissues [103, 116], it didn’t consider the local 

heterogeneities and might over-smooth the DVFs as well as the 4D-CBCT images with prominent 

local variations. Future studies comparing the U-net-based methods to biomechanical modeling 

with heterogeneity material modeling are warranted [126]. For SMEIR-Bio, the average DVF fine-

tuning time was 74.2 ± 11.4 seconds for biomechanical modeling. In comparison, the U-net-based 

methods took 10.7 ± 1.0 seconds in average to update the DVFs with GPU acceleration. Using the 

U-net-based methods can further improve the clinical efficiency of the SMEIR-type algorithms.  

In this work, we used the Demons DVFs obtained between high-quality 4D-CT images as 

the ‘ground-truth’ to train the fine-tuning model. The average residual DVF error of these Demons 

DVFs, calculated using manually-tracked lung landmarks, was 2.27 ± 1.08 𝑚𝑚. Considering the 

inter- and intra-observer variations in localizing the lung landmarks, as well as the limitation posed 

by the CT voxel resolution and slice thickness (1.5 mm), the accuracy of the Demons DVF was 

slightly over the size of one voxel, and was acceptable for our study. In future, more accurate 

registration algorithms [127] could be employed to serve a better ‘ground-truth’ to train a more 

accurate model, and the results could be compared with our current findings. 

In our model, the size of DVFs and images were all down-sampled to tailor to the GPU 

memory limits (32 GB). The down-sampling might lead to loss of detailed information, which 

impacted the CNN’s accuracy. Though we up-sampled the DVFs back to the original size after the 
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CNN, the information was not fully recoverable via the cubic interpolation. Similarly, in 

consideration of the GPU memory limits, we used a batch size of 4 for CNN. Different batch size 

selections can lead to substantial variations in model performance [128]. The model accuracy can 

potentially be further improved when a GPU with larger memory becomes available, and further 

evaluations and comparisons are warranted. 

The simulation study enables us to evaluate the reconstructions quantitatively. The 

feasibility of proposed method is evaluated with Monte Carlo simulated 4D-CBCT projections.  

 

3.5 CONCLUSION 

In this study, we developed two U-net based architectures to fine-tune DVFs to improve 

the accuracy of inter-phase motion models estimated by 2D-3D deformable registration for 4D-

CBCT reconstruction. The feasibility of the proposed methods is demonstrated using data 

simulated by a Monte-Carlo package and a publicly-available dataset (SPARE). The proposed 

methods can improve the accuracy and the efficiency of 4D-CBCT reconstruction, which can 

benefit applications like image-guided radiation therapy and adaptive radiation therapy. The 

application of 4D-CBCT in clinical practice is investigated in CHAPTER FOUR.   
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4 CHAPTER FOUR 

Evaluating motion variation and reconstructing dose for lung Stereotactic 

Body Radiation Therapy (SBRT) patients using on-board 4D cone-beam CT 

4.1 INTRODUCTION  

Stereotactic body radiation therapy (SBRT) has become a standard treatment for patients 

with inoperable, peripherally located early-stage non-small cell lung cancer (NSCLC) because of 

its superior conformality which can result in high local control rate compared with standard 

fractionated external beam radiotherapy [129]. Since SBRT is a sophisticated radiation regimen 

characterized by a high fraction dose and few fractions through the whole treatment course, tumor 

localization is especially essential for accurate beam delivery. In the lung regions, respiration 

motion substantially increases the uncertainty of tumor localization, thus large margins are added 

to the tumor contour to account for tumor localization uncertainty.  

With image guidance techniques, inter- and intra-fractional tumor localization errors have 

been analyzed based on in-room 3D volumetric imaging such as on-board cone-beam computed 

tomography (CBCT). By matching on-treatment CBCT images acquired at different time points 

during a treatment fraction to the planning CT images, the intra-fractional deviation of target 

localization can be accessed [130-132]. However, static 3D-CBCT imaging cannot provide tumor 

motion range information during a treatment. Comparisons between tumor localization using 3D-

CBCT and four-dimensional (4D) CBCT, which characterizes tumor motion over the respiration 

cycle, have shown that 4D-CBCT can provide more precise lung tumor targeting that considers 

respiration motion and can achieve better inter-observer agreement [133]. Therefore, 4D-CBCT 

was considered as a preferred method for tumor localization [134, 135].  
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 The proposed simultaneous motion estimation and image reconstruction (SMEIR) method, 

dedicated for 4D-CBCT, yields 4D-CBCT images and inter-phase motion models, represented by 

deformation vector fields (DVFs) which can be used for analyzing tumor motion and dose 

accumulation [46].  

Dose calculation based on CBCT images has been proposed to reconstruct the dose 

delivered to the patient during treatment [67, 136-139]. By using either a dedicated CBCT 

Hounsfield Unit (HU) to electron density curve or corrected HU number from planning CT, 

CBCT-based dose calculation can achieve satisfactory results for static sites. However, for motion 

involves sites such as lung, motion artifacts in CBCT led to significant dose discrepancies between 

the doses calculated from planning CT and CBCT images [136]. Therefore, high quality 4D-CBCT 

with inter-phase motion information is needed for motion involves sites to calculate and 

accumulate the delivered dose. Enabled by SMEIR-reconstructed high-quality 4D-CBCT and 

inter-phase DVFs, we evaluated the tumor motion variation in lung SBRT patients among different 

treatment fractions and developed a 4D-CBCT image-based dose calculation and accumulation 

tool to reconstruct the actually delivered dose. This 4D-CBCT based dose reconstruction scheme 

utilizes most updated patient motion model and offers a way to evaluate delivered dose for quality 

assurance and adaptive radiation therapy.  

 

4.2 METHODS AND MATERIALS 

Fourteen targets from 12 lung cancer patients who received SBRT were used to evaluate 

the motion variation and reconstruct delivered dose based on SMEIR-reconstructed 4D-CBCT. 

4D-CT images were acquired with a helical CT scanner (Brilliance Big Bore, Phillips Healthcare, 
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Cleveland, OH). All treatment plans were generated in the treatment planning system (PINNACLE, 

Philips Medical Systems, Madison, WI) for an Elekta Synergy system. One patient’s treatment 

had 3 fractions, while the others’ had 5 fractions. At each treatment fraction, CBCT acquired right 

before the beam delivery were used for the analysis. In total, we obtained 68 (13*5+1*3) groups 

of 4D-CBCT images for dose reconstruction and inter-fractional motion variation evaluation. The 

number of projections in each CBCT scan ranged from 650 to 710. Using the SMEIR method, we 

reconstructed 4D-CBCT at each fraction and built a respiration motion model to evaluate the 

motion pattern variation between CT and CBCT as well as between different treatment fractions. 

The 4D-CBCT images reconstructed by SMEIR were then used to calculate and evaluate the 

delivered dose.  

 

4.2.1 SMEIR method 

 

Simultaneous motion estimation and image reconstruction (SMEIR) [46] is a 

reconstruction algorithm that iterates and alternates between motion-compensated reconstruction 

and intensity matching-based motion estimation. In this method, CBCT projections are divided 

into 10 phases based on the diaphragm’s motion. The ART-TV[36]  method is used to 

independently reconstruct the initial image of each phase. In this study, we selected the end-of-

exhale phase as the reference phase. We used the demons registration algorithm [43] to generate 

initial DVFs from all other phases to the reference phase (phase 10). The workflow of SMEIR 

method shows in Figure 3-1 and the detailed the description of SMEIR method is in CHAPTER 

TWO 2.2.1.1 and 2.2.1.2.  
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4.2.2 Motion variation evaluation 

 

We extracted tumor motion trajectories from 4D images and compared motion trajectories 

extracted from planning 4D-CT and 4D-CBCT acquired at each treatment fraction. We also 

evaluated inter-fraction motion variation, denoted by the difference in motion trajectories between 

different treatment fractions. 

For 4D-CT images, we chose end-of-exhale as the reference phase. We used the B-Spline 

deformable image registration (Elastix [140]), to generate inter-phase DVFs between the reference 

phase and other phases. Tumor contours in the reference phase were propagated to other phases 

using these DVFs. We extracted the tumor center of mass for each phase to form the trajectory of 

tumor motion during the planning CT acquisition. Displacements of tumor center of mass in the 

superior-inferior (SI), left-right (LR), and anterior-posterior (AP) directions were extracted 

separately and combined to form the 3D vectors’ motion magnitude.  

Table 4-1 Registration accuracy evaluation using 11 lung SBRT patients with landmarks 

  Number of Landmarks 
Landmarks motion 

(mm) (EI vs EE) 

Registration Residual 

(mm) 

Patient 01  74 4.3 1.4 

Patient 02  80 6.3 2.1 

Patient 03  79 5.4 2.1 

Patient 04  80 6.2 2.0 

Patient 05  79 6.8 2.3 
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Patient 06  70 6.4 2.2 

Patient 07  80 4.3 1.6 

Patient 08  90 10.8 3.0 

Patient 09  80 6.2 3.0 

Patient 10  80 6.0 1.5 

Patient 11  80 8.3 2.6 

 

 

We evaluate the deformation registration accuracy using 4D lung SBRT patient data with 

landmarks [118]. We use the same parameter in the B-Spline to deform the reference phase to 

other phases and generate the DVFs between the reference phases to other 4D-CT phases. We 

evaluate the accuracy of DVFs by comparing the displacement of landmarks with the displacement 

of landmarks extracted from the DVFs generated by B-Spline. The results are shown in the Table 

4-1. The comparison shows that the B-Spline deformable image registration we used can achieve 

high accuracy DVF estimation. Landmarks motion defined as the magnitude of landmarks 

displacement between end-of-inhale phase and end-of-exhale phase. Meanwhile the registration 

residual defined as the magnitude of the difference between landmarks displacement and 

displacement extracted from DVFs. Compared with registration residual in previous publication 

[118], the deformable registration we can achieve high accuracy and can be used in motion 

evaluate. 

For 4D-CBCT images, we also chose end-of-exhale as the reference phase. SMEIR outputs 

motion models in the form of DVFs to describe the displacement between the reference phase and 

the other phases. The tumor center of mass on the 4D-CBCT images were identified from tumor 

contours. From the DVFs resulted from SMEIR, we extracted the displacements of tumors’ centers 
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of mass from the reference phase to other phases using the average value of a 2x2x2 voxel cube 

around the center of mass to form the trajectory of tumor motion on the treatment day. 

We compared the motion trajectory of 4D-CT images with that of any 4D-CBCT images 

to evaluate the tumor motion consistency between planning and treatment for each patient. We 

also compared the trajectories of 4D-CBCT images of different fractions to evaluate the 

consistency of tumor motion throughout the treatment course. We used the Wilcoxon signed-rank 

test [141] to evaluate inter-fraction motion pattern differences as well as the motion pattern 

difference between 4D-CBCT and planning 4D-CT.  

 

4.2.3 Dose recalculation 

 

Figure 4-1 shows the workflow for dose reconstruction and evaluation based on 4D-CBCT 

images. First, we obtained 4D-CBCT images using SMEIR algorithm and 3D-CBCT image using 

ART-TV. We also obtained the average CT from 10 phases of 4D-CT images. We used Elastix to 

rigidly register the 3D-CBCT image to the average CT image. In our clinic, CT based average 

intensity projection (AIP) are aligned to 3D-CBCT tumor for patient setup in SBRT lung treatment. 

Since the treatment plan was based on the coordinates of the CT image, we transformed the 3D-

CBCT image to the same location in the CT field of view after rigid registration. The third image 

(from left to right) in Figure 4-1(B) shows an example of this location transformation. Second, 

4D-CT images were deformably registered to the 4D-CBCT images, phase by phase, using Elastix. 

Modified 4D-CBCT (m4D-CBCT) images keep the geometric anatomy from 4D-CBCT images 
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while having the corrected HU number from the 4D-CT images. The fourth image (from left to 

right) in Figure 4-1(B) shows the registration result.  

 

 

 

 

Figure 4-1(A) Workflow of 4D-CBCT based dose reconstruction process (B) Examples of the 

results after each registration 

 

We used the Eclipse treatment planning system (Varian Medical Systems, Palo Alto, CA, 

USA) to recalculate the dose based on each phase of the m4D-CBCT images, employing the 

delivered SBRT treatment plan. Internal target volume drawn by physicians is based on the 
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maximum intensity projection (MIP) of tumor fusing all phases. An isotropic 5 mm margin is 

added to the ITV to obtain the planning target volume (PTV).  

Using the DVFs generated from SMEIR, we deformed the dose calculated from other 

phases to the reference phase dose to form the 4D-CBCT based accumulated dose. This 

accumulated dose at each treatment fraction was then deformed and accumulated to the first 

treatment fraction, which was considered as the dose delivered during the whole treatment course. 

Doses were also calculated based on each phase of planning 4D-CT, using the same plan. Using 

the inter-phase DVFs generated between the 4D-CT reference phase and the other phases, we 

deformed the dose calculated from each phase 4D-CT image to the 4D-CT reference phase dose 

to form the accumulated 4D-CT dose, which is the planned dose for the treatment course. 

We compared the accumulated 4D-CBCT dose with the planning 4D-CT dose to 

investigate the potential discrepancy between the delivered dose and the planned dose. The tumor 

and organs-at-risk, including the spinal cord, lung, and body, were contoured on the reference 

phase 4D-CT image. DVFs between the reference 4D-CT image and the 4D-CBCT image were 

obtained using Elastix. Contours were deformed to the 4D-CBCT images from the 4D-CT images. 

We compared the dose-volume histograms (DVH) from the planning 4D-CT and accumulated 4D-

CBCT doses. 

 

4.3 RESULTS 

4.3.1 Motion variation evaluation 
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For a 4D image, motion between the reference phase and other phases is denoted by the 

displacement of the target’s center of mass, represented as a 3D vector containing the displacement 

in the SI, AP, and LR directions. The motion magnitude is defined as the Euclidean distance 

between the target’s center of mass at the end-of-exhale (reference) phase and at other phases, 

which is the length of the 3D displacement vector. Figure 4-2 Motion patterns of 4D-CT and 4D-

CBCT images for each fraction shows the motion variation of each target. Each point denotes one 

value of motion magnitude for that phase in the respiration cycle. Compared to motion pattern 

variations among different treatment fractions, motion patterns changed more between planning 

4D-CT and 4D-CBCT, as shown in Figure 4-2. 

We used the Wilcoxon signed-rank test to evaluate the motion pattern differences. For each 

target, we tested the motion pattern difference between planning CT and 4D-CBCT images at each 

fraction. For each fraction, the motion magnitude of all phases composed one vector. For planning 

CT, we composed one motion magnitude vector. Therefore, in total, there are 68 pairs of 4D-CT 

and 4D-CBCT images for motion pattern comparison. Fifty-nine of the 68 pairs showed a 

statistically significant (p<0.05) difference between the 3D vector displacement of the planning 

CT and 4D-CBCT. For Target 7, we found no statistically significant differences between 4D-CT 

and 4D-CBCT motion patterns for all 5 fractions. For each target, we also tested the CBCT motion 

pattern difference between fractions. For each patient, there are 3 or 5 fractions and we can extract 

the motion pattern for every fraction. The comparison is made between each pair of fractions. For 

targets with 5 fractions, we can generate 10 comparisons for every pair of fraction. For targets with 

3 fractions, we can generate 3 pairs of comparisons. In total, there are 133 inter-fraction pairs of 

CBCT images for comparing inter-fraction motion patterns. Thirty-five of the 133 pairs showed 
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statistically significant differences between fractions (p<0.005) (The value is 0.005 since 

Bonferroni correction was applied for multi-comparison test). 

 

Figure 4-2 Motion patterns of 4D-CT and 4D-CBCT images for each fraction 

The red line denotes the tumor trajectory from 4D-CT, and the dashed blue line denotes the tumor 

trajectory from 4D-CBCT. 

 

4.3.2 Dose calculation 
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Comparisons between the accumulated 4D-CBCT and planning 4D-CT doses for each 

patient are shown in Figure 4-3 and Figure 4-4. Tumor size and tumor location inside the lung 

varied between tumors. Tumor motion patterns also diverged, as shown in section 4.3.1. However, 

from the DVH of the gross tumor volume (GTV), all targets except Targets 4, 13, and 14 showed 

high dosimetry agreement between the planning 4D-CT and accumulated 4D-CBCT doses. The 

motion patterns between 4D-CT and 4D-CBCT and among 4D-CBCT fractions showed 

statistically significant differences for Target 4, which may account for the DVH difference of the 

GTV. Our evaluation of the motion variation showed that Target 13’s CBCT motion range is 

greater than its 4D-CT motion range, so the plan may not cover the whole tumor motion during 

treatment, which may account for the different dose distribution. Target 14 has 2 fractions in which 

the 4D-CBCT motion range is only half of the CT motion range. This also contributes to the 

difference between delivered and planned dose distributions. For organs-at-risk, all targets showed 

high agreement between the accumulated 4D-CBCT and planning 4D-CT doses. The prescribed 

dose for target 11 is 60 Gy. The DVH matched well before 70 Gy for target 11since, the target 11 

the motion range of 4D-CT is larger than that of the 4D-CBCT the tumor is fully covered for dose 

delivery. 

Table 4-2 Quantitative comparison between the 4D-CBCT accumulated dose and the 

planning 4D-CT dose of GTV. 

Target 
Prescription 

Dose (Gy) 

4D-CBCT 4D-CT 

𝐷100 (Gy) 𝐷90 (Gy) 𝑉100 𝐷100 (Gy) 𝐷90 (Gy) 𝑉100 

1 40 41.2 49.2 100% 43.5 50.0 100% 

2 50 43.7 57.6 99.28% 52.1 57.8 100% 

3 50 50.8 66.7 100% 56.2 67.9 100% 

4 50 59.1 65.4 100% 65.5 68.8 100% 
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5 60 72.8 81.3 100% 76.9 82.8 100% 

6 60 77.7 82.9 100% 80.2 85.9 100% 

7 42 43.1 46.7 100% 42.9 46.2 100% 

8 54 75.0 76.3 100% 75.2 76.2 100% 

9 60 74.8 79.4 100% 71.9 73.9 100% 

10 60 77.5 82.8 100% 78 83.5 100% 

11 60 63.5 68.2 100% 65.5 70.0 100% 

12 60 60.6 65.2 100% 64.7 67.7 100% 

13 60 54 65.2 97.49% 64.7 67.7 100% 

14 60 59.2 69.6 99.99% 74.0 77.3 100% 
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Figure 4-3 DVHs of the accumulated 4D-CBCT dose and the planning 4D-CT dose for 

Targets 1-8.  

The DVH of the accumulated 4D-CBCT is shown by the dashed line, and the accumulated 4D-CT 

dose is shown by the solid line. For each target, DVHs of the GTV and three organs-at-risk (spinal 

cord, lung and body) are shown on the left, and one slice of the m4D-CBCT image is shown on 

the right with the tumor location circled in red. 
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Figure 4-4 DVHs of the accumulated 4D-CBCT dose and the planning 4D-CT dose for 

Targets 9-14. 

The DVH of the accumulated 4D-CBCT is shown by the dashed line, and the planning 4D-CT 

dose is shown by the solid line. For each target, DVHs of the GTV and three organs-of-risk (spinal 

cord, lung and body) are shown on the left, and one slice of the m4D-CBCT image is shown on 

the right with the tumor location circled in red. 

 

 

We quantified the dose calculation using 𝐷100  (Gy), 𝐷90  (Gy), and 𝑉100 . The quantitative 

analysis and comparison are shown in Table 4-2. All 𝑉100 for accumulated 4D-CBCT doses were 

greater than 97%, meaning more than 97% of the GTV received the prescribed dose. However, 3 

of 14 targets, 𝐷100 of the GTV were smaller than the prescription dose.  
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Target 14Target 13
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4.4 DISCUSSION AND CONCLUSION 

This study investigated inter-fraction motion variation as well as motion pattern changes 

between planning 4D-CT and 4D-CBCT images for lung cancer patients receiving SBRT. In 

current clinical practice, the tumor motion range at each treatment fraction is not assessed in the 

standard lung SBRT protocol. Based on the tumor motion characterized by 4D-CT acquired on the 

simulation day, patient-specific internal margins can be applied to generate an internal treatment 

volume (ITV). However, tumor motion range and pattern may vary day-to-day as shown in several 

previous analyses [142-146]. One study[142] based on repeated 4D-CT scans on 8 patients during 

lung SBRT treatment indicated that the random variation of the motion range for lower lobe tumors 

is 3.4 mm along the craniocaudal direction in different treatment fractions; the tumor motion range 

change was more than 10 mm for one patient. Another study[143] on repeated 4D-CT scans also 

showed tumor motion amplitude changes more than 5 mm in 5 out of 10 patients within the first 

week of radiotherapy treatment. The results reported in this work echo those previous findings and 

suggest the importance of re-evaluating tumor motion range and pattern at each treatment fraction. 

By taking the motion variation between planning 4D-CT and on-treatment 4D-CBCT in to account, 

the clinical target volume (CTV) margin can be updated to match the motion-of-the-day to avoid 

missing treatment target and reduce unnecessary margins.   

To investigate the influence of tumor motion variation on the delivered dose, we calculated 

the delivered dose based on 4D-CBCT images obtained at each treatment fraction. We compared 

the planned dose based on simulation 4D-CT with the accumulated dose based on 4D-CBCT. In 

the dose reconstruction tool, we used image registration to assign HU value of CT images to CBCT 

images to obtain the correct HU of the CT images while keeping the CBCT images’ geometric 

information. While the current lung SBRT practice can achieve 100% coverage for GTV in most 
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of targets, 3 out of 14 GTVs did not receive 100% prescription dose due to large motion variation 

between planning 4D-CT and on-treatment 4D-CBCT. The tool we developed for dose 

accumulation based on 4D-CBCT can be used to evaluate the target dose for adaptive radiation 

therapy.  

Our methods applied an advanced 4D-CBCT reconstruction methods which can use 3D-

CBCT projections to generate 4D-CBCT images which saved acquisition time and limited on-

board image dose obtained by patients, compared with 4D-CBCT acquisition protocol. The 

SMEIR method we applied can generate the inter-phase motion model simultaneously during the 

reconstruction. We can directly applied the motion estimated through the SMEIR method to 

estimate the tumor motion on the treatment day and further applied in the 4D dose calculation as 

a better measurement for tumor dose received. By applying the advanced 4D-CBCT reconstruction 

in the 4D dose estimation system, the tool we developed shown its advantage in evaluating the 

accumulate dose for lung SBRT patients. However, the limitation lies in the speed for image 

reconstruction, which takes several ours to obtain high-quality 4D-CBCT images. Considering the 

SBRT treatment protocol that each fraction are delivered daily or every other day [147], the time 

requirement is acceptable our method. And the other challenge thing is that for lung SBRT, 

detector cannot always cover the whole body due to the limitation of detector size which will bring 

FOV truncation for 4D-CBCT images. The outside FOV regions are assigned with 4D-CT images 

from the corresponding phases, which may bring uncertainty in dose calculation due to the 

difference between 4D-CT and 4D-CBCT geometry. 

 

In summary, we investigated the tumor motion variation between planning 4D-CT 

acquisition and each treatment fraction characterized by 4D-CBCT reconstructed by the SMEIR 
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technique. Tumor motion patterns changed between simulation and treatments while the motion 

patterns were more consistent during different treatment fractions. We developed a tool that uses 

4D-CBCT images to calculate the accumulated 4D radiation dose for lung SBRT. This dose 

reconstruction tool offers needed information for lung SBRT adaptive radiation therapy. 
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5 CHAPTER FIVE  

Conclusion and future work 

5.1 CONCLUSION 

To improve the 4D-CBCT image quality for its utilization in IGRT, we have investigated 

two methods to improve the inter-phase motion model accuracy for a simultaneous motion 

estimation and image reconstruction (SMEIR) 4D-CBCT scheme. Then, the feasibility of using 

4D-CBCT reconstructed with SMEIR reconstruction scheme for IGRT in motion management and 

dose calculation is evaluated.  

The SMEIR method integrates motion estimation and motion-compensated reconstruction 

into an alternatively iterative loop to update image as well as the inter-phase motion model.  The 

2D-3D registration in the motion estimation step in SMEIR is based on projection domain intensity 

matching, which can perform well in the region where projection has high contrast such as lung 

boundary while the motion model accuracy is low inside lung where the projection contrast in low. 

The high accuracy motion model at the lung boundary serves as the boundary condition in the 

biomechanical modeling, which is a physics-driven method by introducing lung tissue related 

elasticity properties to derive the inner lung motion model from the boundary condition. The 

comparisons between the original SMEIR and SMEIR-Bio are performed on two aspects: the 

accuracy of generated DVFs and the 4D-CBCT reconstructed using DVFs generated by different 

methods. The accuracy of DVFs is evaluated using landmarks’ displacement inside of the lung as 

“ground-truth”. 4D-CT is regarded as the “gold-standard” to evaluate reconstructed 4D-CBCT. 

SMEIR-Bio outperforms SMEIR in both aspects that it can obtain motion estimation inside of the 

lung with higher accuracy as well as better intricate structures restoration inside lung in 4D-CBCT 

reconstruction.  
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In addition to biomechanical modeling based motion estimation, CNN based DVFs fine-

tuning framework is proposed under the assumption that the relationship exists between boundary 

deformation and inner lung deformation and can be learned and employed to solve the inner lung 

motion model when the boundary DVFs are available. Information stores in the boundary DVFs 

are extracted and used to estimate the inside lung DVFs through U-net structure.  The performance 

of CNN based DVFs fine-tuning method is compared with the original SMEIR and SMEIR-Bio. 

Using Monte Carlo simulated projections, U-net based method can bring higher accuracy for the 

updated inner lung DVFs compared with SMEIR. While U-net and biomechanical modeling have 

similar performance on the inner lung DVFs derivation. In terms of time, U-net based method 

outperforms biomechanical modeling with at least 10 times computation time reduction. U-net 

based methods improve the efficiency for inner lung motion estimation which facilitates clinical 

adaptation of high quality 4D-CBCT.  

High-quality 4D-CBCT images are useful in several aspects of IGART. The first aspect is 

tumor motion estimation and analysis. 4D-CBCT increases the tumor localization accuracy by 

offering anatomy of each respiration phase. Therefore, the tumor motion pattern consisting of 

tumor displacement from reference phase to each respiration phase can be generated and compared 

with motion pattern obtained from 4D-CT. For most targets, we observed the tumor motion range 

is larger in CT than CBCT while inter-fraction motion range agreed with each other for most cases. 

The second aspect is for 4D accumulated dose calculations. As the beam delivery is a dynamic 

process, dose calculated based on each respiration phase are deformed to the reference phase to 

obtain accumulated 4D dose. 4D-CBCT accumulated doses are compared to planned dose to 

monitor and evaluate the delivered dose. The 4D-CBCT based dose reconstruction tool achieves 

high accuracy, which can be used to evaluate delivered dose for adaptive radiation therapy. 
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5.2 FUTURE WORK 

In this dissertation, methods using biomechanical modeling and CNN are applied to obtain 

the inner organ motion models when boundary DVFs are available. We can extend the CNN based 

method to other organs and combine CNN method with biomechanical modeling to improve the 

accuracy of estimated inner-organ motion model. For example, in the liver region, it is hard to 

delineate tumor in CBCT image due to low inherent contrast. Deforming contours on CT images 

to CBCT image can be an alternative method for tumor targeting by estimating DVFs from 

biomechanical modeling. Biomechanical modeling requires high quality boundary deformation to 

derive inner liver motion model. 2D-3D registration method is applied to obtain relative high 

accuracy DVFs in the region that the projection has high contrast such as liver upper boundary. 

For liver lower boundary region, it is challenging to differentiate liver from surrounding tissues 

resulting in low accuracy DVFs. In order to obtain high accuracy boundary DVFs, CNN based 

method can be utilized here to build the relationship between upper and lower boundary DVFs. By 

inputting upper boundary DVFs, whole liver boundary DVFs can be obtained and used in the 

biomechanical modeling to generate whole liver motion model.  

The CNN based motion estimation scheme has the potential to be used for other image 

modalities. One example is for real-time lung tumor motion tracking from a single projection. The 

relationship between the tumor motion in image domain and tumor motion in projection domain 

can be described and extracted using convolutional neural network.  When a new projection comes, 

the CNN based model can be used to generate the image-domain DVFs. A more sophisticated 

CNN architecture may be designed for this application.  
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