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Congestive heart failure (CHF) is one of the leading causes of morbidity and mortality in 
the United, impacting nearly 1 in 5 individuals during the course of their lifetime. In 
addition to the well established understanding of the role of myocyte contractile 
dysfunction and neurohormonal dysregulation in the pathogenesis of CHF, abnormalities 
of cardiac electrical activation have recently been recognized as contributing to the 
progression ofCHF. Multisite, biventricular pacing has emerged as an effective therapy 
for CHF complicated by electromechanical dyssynchrony in combination with traditional 
pharmacologic therapy. This Grand Rounds will review the principles underlying cardiac 
dyssynchrony, the importance ofbiventricular pacing in correcting this abnormality 
(termed cardiac resynchronization therapy, or CRT), predictors of success with CRT and 
future directions for biventricular pacing. 

Conduction Abnormalities and Electro-mechanical Dyssynchrony 

Arrhythmias are more prevalent in the setting of CHF and are an important cause of 
morbidity and mortality. In addition, it has become apparent that electrical conduction 
abnormalities, in the absence of discrete arrhythmia, can directly impact on CHF severity 
and prognosis. Altered or delayed conduction can lead to dyssynchronous myocardial 
contraction, manifest on multiple levels, including: 1) atrioventricular (A V) 
dyssynchrony involving excessive delay between atrial and ventricular systole; 2) 
interventricular dyssynchrony involving discordant onset of right and left ventricular 
systole; and/or 3) intraventricular dyssynchrony characterized by delayed between peak 
contraction of the various segments of the left ventricular myocardium. These various 
types of electromechanical dyssynchrony may be manifest on the surface 
electrocardiogram as a prolonged PR interval as well as interventricular conduction delay 

100% 

.~ 90% 
~ 
:::J 
rn 
Cl> 80% 
~ 
..!!! 
:::J 

E 
:::J 70% 

0 

QRS 
Duratlo 
n 
(msec) 

<90 

90-
120 
120·17 

>220 
60% -h-T""T""T"'T""T'""T""T'""T""r-r-,-, 

0 60 120 180 240 300 360 

Days in Trial 

(IVCD), typically left bundle branch block (LBBB)? 

Prolongation of the QRS duration regardless of 
morphology correlates total mortality as well as 
arrhythmic death in subjects with CHF (Fig. 1).3

• 
4 In 

addition, the altered ventricular mechanics caused by 
IVCD have profound effects on hemodynamics. 
LBBB is associated with significant delay in 
electrical and mechanical activation of the lateral left 
ventricular wall relative to the left ventricular septum . 
As a result, septal and lateral LV segments contract 
sequentially rather than simultaneously, delaying and 
diminishing LV force generation, since a component 
of septal contraction is expended displacing the 
lateral wall. In addition, since intracavitary pressure 
rise prior to the onset of lateral wall activation, these 

Figure 1: Survival as a function of segments experience increase wall stress and 
QRS duration . from Gottioatv. et al. myocardial oxygen demand. These factors combine 

to delay the time between QRS onset and the 
generation of sufficient pressure to open the aortic valve, known as the pre-systolic time 
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interval (LVPSI).2
' s-s If dyssynchrony is severe, lateral wall contraction may actually 

occur after aortic valve closure, significantly reducing ejection fraction and developed 
pressure.9 The net result is a reduction in stroke volume, ejection fraction (EF), developed 
force ( dP/dt) and cardiac output. Interestingly, even in the setting of RBBB, significant 
LV electrical dyssynchrony has may be present. The increased wall stress in the 
segments of delayed activation elevates myocardial oxygen consumption and reduces 

regional myocardial blood flow 
reserve.10

' 
11 

These alterations are evident both in 
traditional echocardiography as well as 
in newer tissue Doppler modalities. 
LBBB is associated with an increased 
L VPSI as well as the interventricular 
delay (IVD; the difference in the RV 
and LV pre-systolic time intervals). In 
addition, significant delay between 
contraction of the left ventricular 
septum and lateral walls may be noted 
by M mode imaging (the 
septaVposterior wall motion delay; 
SPWMD). Tissue Doppler imaging is 

Figure 2: Tissue DoppJer imaging comparing septal to 
lateral contraction velocity. Note the delay in lateral 
activation until. after closure of the aortic valve (middle 
white line. F rom Sogaard. 

a modality that measures the regional 
LV segments may also illustrate significant longitudinal contraction of individual 

regional delays (Fig. 2).2
' 
9

' 
12
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Ventricular dyssynchrony is manifest on a sub cellular level as well. 16 In dog models of 
CHF with LBBB, regions of delayed 

End Atr. syst/ LV Diastole contraction show elevations of stress 

Figure 3: The reduction of passive LV filling time due to 
BBB and PR prolongation. 
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induced kinases, such as p-erk, 
compared with earlier-activated 
segments. These delayed regions 
also show reductions in the calcium­
handling proteins, Phospholamban 
and SERCA2a, as well as down 
regulation of the gap junction 
subunit, connexin-43 (CX43). 
These changes may reflect a genetic 
program activated in response to 
elevated wall stress and provide 
further evidence of the regional 

effect of myocardial dyssynchrony. 
In addition, the regional down 
regulation of CX43 may lead to 



dispersion of conduction properties and may underlie or contribute to the heightened 
arrhythmogenesis associated with the QRS prolongation. 

Electromechanical dyssynchrony also alters LV diastolic function. Prolonged systolic 
activation times due to IVCD shorten available time for passive left ventricular filing 
prior to the onset of atrial contraction. In the combined setting of IVCD and PR 
prolongation (A V dyssynchrony), the delay between atrial contraction and the onset of 
ventricular activation further limits the time for passive LV filling. Atrial contraction 
may complete prior to the onset of ventricular contraction resulting in a short segment 
during which the mitral valves may displace passively into the atrial tissue with resultant 
mitral regurgitation during diastole (Fig. 3).6 

Recent reports of CHF exacerbation in the setting of RV pacing further highlights the 
significance of ventricular dyssynchrony. RV apical pacing delays LV mechanical 
activation in a manner similar to LBBB. Several clinical studies demonstrate a direct 
correlation between the extent ofRV apical pacing and the development of clinical CHF. 
The DAVID trial, a study designed to explore the utility of dual chamber pacing at 70 
bpm (DDDR-70) to facilitate up-titration of ~-blockers in heart failure patients, 

•JS demonstrated an increase in heart 

0.8 

0.6 Unadjl.l9ted P < 0001 

failure hospitalization and a trend 
towards increased mortality among 
those randomized to DDDR-70 
compared with those with low-rate, 
backup pacing (VVI-40). 17 Subjects 
assigned to DDDR-70 had 56% 
ventricular pacing compared with a 
2% pacing in the VVI group (Fig.4). 

r- -

Figure 4: CHF Hospitalization or Death in MADIT-ll as 
a function of percentage RV pacing. 
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Likewise, in the MADIT-II study, 
comparing lCD to conventional 
medical therapy in patients with 

depressed LV function due to prior myocardial infarction, the lCD arm was associated 
with a 23% increased risk of heart failure hospitalizations, likely due to the presence of 
intermittent right ventricular pacing. In fact, obligate RV pacing in those patients with 
complete heart block negated the mortality benefit from an ICD. 18 

Figure 5: Leads in 
CRT. From Jacho1 

Cardiac Resynchronization with Biventricular Pacing 

The recognition of the detrimental role of ventricular dyssynchrony 
on myocardial performance has led to the development of pacing 
modalities designed to "resynchronize" myocardial contraction, 
termed cardiac resynchronization therapy (CRT). CRT is 
accomplished by simultaneous pacing the RV apex (or septum) with 
the area of LV late activation (typically on the lateral LV wall). 
Initially mediated by surgical placement of an epicardial LV lead in 
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conjunction with a standard pacing system, CRT is now implanted percutaneously; the 
LV lead is placed in an epicardial LV vein via the coronary sinus in conjunction with a 

rro 
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ECG 

Figure 6: Hemodynamic changes due to 
acute biventricular pacing (arrow). 

conventional pacemaker or ICD system (Fig.5). 

Multiple studies have demonstrated the acute 
benefit of CRT. 10

' 
19

' 
20 Initiation of CRT 

increases in systolic pressure, and dP/dt while 
decreasing in left ventricular end-diastolic 
pressure, and mitral regurgitation (Fig 6). Unlike 
inotropic therapy, however, the improvement in 
dP/dt is accompanied by a reduction in 
myocardial 0 2 consumption (Fig. 7). In addition, 
a significant reduction in sympathetic neural 
activity has been observed with biventricular 
pacing compared with RV pacing or intrinsic 
conduction in patients with IVCD. 
Echocardiography also reveals acute re­

establishment of near simultaneous septal and lateral wall contraction; this finding may 
also be observed in M-mode echocardiography as in normalization the SPWMD.13 

Studies of Chronic CRT 

Several multi-center, randomized clinical trials 
have demonstrated the chronic benefits of CRT. 
Despite subtle differences in enrollment criteria, 
these studies generally enrolled subjects with 
NYHA Class III and IV CHF, an LVEF of:S 35%, 
an LV end-diastolic dimension > 55 mm, and a 

&oo 100 soo goo QRS duration > 120-130 msec and optimal 
dP/dtmax (mm/Hg/s) 

Figure 7: Change in MV02 due to CRT 
(diamonds) or dobutamine (squares). 
From Nelson. 

medical therapy with a ~-blockers and ACE-I. 
When assigned to CRT, patients in the MUSTIC 
study demonstrated statistically significant 
improvements in NYHA class, exercise capacity 
and quality of life compared to periods during 
which they were crossed over to intrinsic 

ventricular activation (Fig. 8)?1 Non-blinded, non-randomized extensions of this study 
continue to demonstrate the long-term benefit of CRT therapy.22 

The larger MIRACLE trial enrolled patients in a parallel manner comparing CRT to 
optimal medical therapy without an implanted device. Again, patients assigned to CRT 
demonstrated a statistically significant improvement in NYHA class, exercise capacity 
and quality of life. In addition, this study demonstrated a statistically significant 50% 
reduction in hospitalization for CHF due to CRT. The subsequent RHYTHM-ICD study 
demonstrated similar results when comparing patients receiving ICD therapy with and 
without CRT.23 
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Figure 8: Results of the MUSTIC Study. Changes in quality of life (left) and 6-minute walk distance 
at baseline and during active and inactive period of CRT. From Cazeau. 

The COMPANION study was a mortality trial comparing patients on optimal medical 
therapy for CHF with both CRT-pacing and CRT-ICD therapy. Both CRT arms 
demonstrated statistically significantly reductions in heart failure hospitalization (25% 
and 27%, respectively). In addition the CRT-ICD arm demonstrated a statistically 
significant reduction in all-cause mortality (36%). A clinical reduction in mortality was 
T~----·-------·----·-·- associated with the CRT-pacing (24%); however 

75 

this did not reach statistical significance in-part due 
to the premature cessation of the study. A 32% 

M>t·h~11,.,.~, reduction in CHF mortality did reach significance. 24 

A recent meta-analysis of over 6,000 patients 
enrolled in these and other smaller CRT trials 
confirmed both the functional improvements as well 

o-oG~---r---y-~-.----,lll0,---.-~~-.--1000,._,._-.-...--.noo as a 21% all-cause mortality reduction associated 

Figure 9: All-cause mortality in the 
CARE-HF study. From Cleland. 

with CRT driven largely by reduction in CHF 
mortality. 25 The recently reported CARE-HF trial 
not only mirrored the results of the prior studies but 
also demonstrated a clear statistically-significant 

36% relative, 10% absolute reduction in all cause mortality associated with CRT-pacing 
even in the absence ofiCD therapy (Fig. 9).2

' 
26 

CRT and Reverse Remodeling 

The clinical benefits associated with chronic CRT are mirrored by objective metrics of 
improved myocardial performance. The above studies have consistently demonstrated 
improvements in L VEF, with decreases in LV volumes and mitral regurgitation due to 
changes in cardiac sphericity. Yu, et al found that following three months of CRT, a 
significant component of improved LV performance was maintained when biventricular 
pacing was immediately withheld, and gradually deteriorated towards pre-pacing levels 
over time (Fig. 10).14 These data indicate that CRT acutely improves LV synchrony and 
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chronically stimulates a reversal of the detrimental remodeling associated with CHF. 
More efficient myocardial oxygen metabolism has been reported along with 
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improvements in myocardial 
blood flow reserve?7 In 
addition, CARE-HF and other 
studies demonstrated a 
reduction in BNP suggesting 

_ that the improvement in 
~ myocardial performance 
~ impact the neurohormonal 

axis. 12
• 

26 Similarly, reductions 
in HRV have been reported. 
At present, it remains unclear 
how CRT impacts the genetic 
program m the failing 
myocyte . 

Figure 10: Evidence of reverse remodeling due to CRT. The mechanism underlying 
Changes in dP/dt and MR before, during and after cessation of CRT -mediated reverse 
CRT. From Yu. remodeling is complex. 

Perhaps counterintuitive, LV -based pacing does not markedly reduce the time to peak 
contraction of delayed LV segments (Fig. 11). Rather, CRT delays early-activated 
segments to create a more uniform pattern of contraction. The resultant reduction in 
intraventricular dyssynchrony facilitates recruitment of segments of post-systolic 
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Figure 11: Time to peak systolic contraction at various LV 
segments before and after CRT. B, basal; M, mid; AS, 
anterior-septal; A, anterior; L, lateral; P, posterior; 
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contraction thus increasing 
dP /dt, L VEF and cardiac 
output, and reducing wall 
stress and MR.14

' 
28 The RV 

pacing component of CRT also 
delays RV activation, thus 
reducing interventricular delay. 
Finally, the timing of 
ventricular activation during 
CRT diminishes A V delay; in 
conjunction with the reduction 
in ventricular activation time, 
this reduction m A V 
dyssynchrony mcreases 
diastolic filling time. 
Chronically, the beneficial 
effects of CRT on all three 
aspects 
facilitate 

of dyssynchrony 
reverse LV 

remodeling. 



The Dark Side of CRT 

Despite the robust clinical data supporting CRT, several pitfalls have been identified. LV 
lead placement may be hindered by anomalous CS and LV venous anatomy as well as the 
proximity of appropriate target sites to the phrenic nerve. The rate of successful LV lead 
delivery ranges from 88%-95% with a 2% post-procedure incidence of lead 
dislodgement. 

Study Non-responders(%) Measure 

Pitzalis, et al. 40% ! LVESVI 2': 15% 

More importantly, a 
common feature of 
CRT trials has been 
the observation that 
approximately one­
third of patients do 
not seem to respond 
to therapy (Table). 
Poor response to 
CRT likely stems 
from inadequate 

Penicka, et al. 45% j EF 2': 25% 

Yu, et al. 43% ! LVESV2': 15% 

delivery of therapy due to poor LV lead position and an absence of baseline 
dyssynchrony. Several acute and chronic studies have examined optimal LV lead 
position. The site of greatest electrical and mechanical delay may differ making it 
difficult to individualize appropriate LV lead positioning. This is further complication in 
patients with prior MI and nonviable myocardium in the lateral wall. Unlike laterally 
positioned leads, anterior and anterior lateral LV leads do not render a significant chronic 
improvement in NYHA class or EF (Fig. 12).29 Acutely, up to 33% of patients 
demonstrate worsened hemodynamics with LV leads in the anterior LV vein. 30 
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Figure 12: The role of LV lead position in the success of 
CRT. A/AL, anterior/anteriorlateral; L/PL, 
lateral/posteriorlateral. From Rossieri. 
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The principle reason for the 
presence of nonresponders to 
CRT likely relates to the 
inaccuracy of QRS to predict 
significant ventricular 
dyssynchrony. QRS duration 
(particularly > 150 msec) 
correlates with clinical response 
to CRT. However, when 
echocardiography is used to 
evaluate for LV dyssynchrony, 
up to 30% of patients with QRS 
duration > 150 show no 

significant electromechanical 
delay. 12

' 
13

' 
28

' 
31 Among patient 

with QRS duration of 120-150 
msec dyssynchrony was evident 



in only 50%. Conversely, 25-20% of patients with LV systolic dysfunction and a normal 
QRS duration have echocardiographic evidence of dyssynchrony suggesting that a 
subpopulation of"normal QRS" patients may benefit from CRT.32

• 
33 

Multiple echocardiographic modalities, including M-mode, tissue Doppler, tissue 
tracking and strain rate imaging have used. to evaluate non-responders to CRT.6

• 
9

• 
12

• 
13

• 
15

• 
29

• 
31

• 
34

-
38 Uniformly, echocardiographic measures of dyssynchrony correlate well with 

response. Using a 15% reduction in LV end-systolic volume as a metric for response, 
two measures have emerged. as robust markers: 1) the standard. deviation of the time to 
peak systolic contraction of 12 LV segments (Ts-SD), and. 2) the septal-posterior wall 
motion delay (SPWMD). 13

' 
28 When prospectively assessed, a SPWMD effectively 

distinguished. subjects with improvement in LVEF (92% sensitivity, 78% specificity) and 
clinical CHF exacerbations. Unfortunately, measurements such as Ts-SD currently 
require complex off-line analysis and SPWMD is hampered in the setting of septal wall­
motion abnormalities. Simpler thresholds, such as a LV pre-systolic interval or the IVD 
may be adequate. Two groups demonstrated an 85% response to CRT (measured by a 
15% reduction in LV end-systolic volume). 6• 

34 Furthermore, the requirement that 
subjects enrolled in CARE-HF with a QRS duration between 120-150 msec also have a 
L VPSI > 140 msec, an IVD >40 msec or a diastolic interval of <40% may account for the 
impressive reduction in morbidity and mortality in this study. 

Future Roles for CRT 

Functional mitral regurgitation is common with LV systolic dysfunction. Remodeling 
that leads to a more spherical left ventricular shape, altered activation of the posterior 
papillary muscle, and restriction to leaflet movement due to both elevated LA pressure 
and dilated LV dimension, combine to increase the mitral/atrial valve orifice area with 
resultant mitral regurgitation. Resynchronization therapy has been associated with a 
decrease in functional MR due principally to the re-coordination of papillary muscle 
contraction and reverse remodeling. In fact some studies suggest that CRT's success is 
due principally to the reduction of mitral regurgitation, although the mere presence of 
MR does not distinguish responders. A potential role for CRT in the treatment of 
functional MR, even in the absence of significant QRS prolongation, is being explored. 

CRT may also suppress ventricular arrhythmia. PVCs and appropriate ICD therapy are 
less common during CRT. A case of suppression of sustained VT in a patient with prior 
MI using CRT has been reported. In addition, we demonstrated biventricular pacing 
reduces the induction of ventricular arrhythmias in patients with LV dysfunction and a 
prior MI.39

• 
4° CRT may become as an alternate therapy for arrhythmia suppression in 

ischemic patients with recurrent VT. 
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Summary 

In summary, cardiac resynchronization therapy by means of biventricular pacing has 
emerged as an effective therapy for moderate and severe heart failure in patient with left 
ventricular dysfunction and electromechanical delay, when delivered in conjunction with 
optimal medical therapy. While a significant proportion of patients fail to respond to 
CRT, echocardiography may provide the necessary incremental information to identify 
patients who will derive benefit. Future studies will likely reveal the promise of other 
scenarios in which CRT renders favorable outcomes. 
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