Browsing by Subject "Chromatin Assembly and Disassembly"
Now showing 1 - 2 of 2
- Results Per Page
- Sort Options
Item Small Molecules Modulate Chromatin Accessibility to Promote NEUROG2-Mediated Fibroblast-to-Neuron Reprogramming(2016-07-12) Smith, Derek Kurtis; Johnson, Jane E.; Kim, Tae-Kyung; Olson, Eric N.; Zhang, Chun-LiThe activity of pro-neural signaling molecules and transcription factors is sufficient to induce the transdifferentiation of lineage-restricted fibroblasts into functional neurons; however, a mechanistic model of the immediate-early events that catalyze this conversion has not been well defined. We utilized a high-efficiency reprogramming system of NEUROG2, forskolin (F), and dorsomorphin (D) to characterize the genetic and epigenetic events that initiate an acquisition of neuronal identity in fetal human fibroblasts. NEUROG2 immediately activates a neurogenic program, but is only sufficient to impart a functional identity in the presence of FD. These small molecules promote NEUROG2 and CREB1 co-transcription, induce SOX4 expression, and promote SOX4-dependent chromatin remodeling. Genome-wide occupancy analysis revealed that SOX4 targets numerous SWI/SNF complex subunits and co-binds with NEUROG2 to enhance the expression of diverse neurogenic factors. The overexpression of SWI/SNF chromatin remodeling factors or treatment with small molecules that modify chromatin accessibility enhanced NEUROG2-mediated neuronal reprogramming of adult human skin fibroblasts. This work represents the first comprehensive mechanism for the immediate events that catalyze neuronal transdifferentiation.Item Transcription Factor Dynamics Investigated through Single-Molecule Imaging, High-Throughput Sequencing, and Neural Networks(2020-08-01T05:00:00.000Z) Stevens, Evan McAllister; Brekken, Rolf A.; D'Orso, Iván; Le, Lu Q.Recent chromatin characterization and sequencing technologies, paired with growing power in computational and bioinformatic analysis, have enabled a deeper understanding of the highly sequence-dependent nature of protein-DNA interactions. Further, these tools have brought to the forefront gaps in our understanding of how changing chromatin landscapes shape cell and tissue identity, and particularly how proteins with stable and transient DNA associations provide feedback to this process. Chromatin remodeling and reorganization serve as umbrella terms to describe diverse mechanisms altering cell epigenetic identity. Transcription factors interacting with chromatin can be influenced by chromatin remodeling processes specifically through cognate sites modifications or generally through a variety of mechanisms, but the degree to which chromatin remodeling alters transcription factor dynamics and activity through general or specific mechanisms is poorly understood. We applied the techniques of Single-Molecule Tracking (SMT) to study the changing dynamics of transcription factors through a B cell activation process marked by widespread chromatin reorganization. First, we identified that during B cell activation, and specifically by the process of nanodomain decompaction, residence time for transcription factors is decreased, suggesting an increased efficiency in transcription. Further studies will be needed to determine if this association between transcription factor residence time and gene transcription is reproducible, and the mechanism underlying it. Second, we identified that the process by which transcription factors scan DNA to identify cognate binding sites, measured by transcription factor random collisions and search time, occurred more rapidly in activated B cells. Given that our work gave additional evidence of the effect of chromatin organization on transcription factor residence time and transcription, we aimed to systematically identify proteins that work upstream to influence the accessibility of chromatin. We generated datasets measuring chromatin accessibility in a variety of mouse tissues and cells, with significant contribution of immune cell subsets. Our accessibility data showed patterns for regulatory elements that fall in line with literature describing significant regions of the genome dedicated to cell-specific regulation, rather than universal regulation. Using a neural network tool known as DeepLIFT with motif identification tools TF-MoDISco and HOMER, we tracked patterns of transcription factor contributions to accessibility across these cell and tissue types, and especially through cell lineages. We identified orphan motifs with no assigned transcription factor, and further identified pleiotropic transcription factors predicting overlooked immune cell functions. Our work stands as a valuable resource for connecting chromatin reorganization and transcription factor dynamics, as well as for testing limits for systematic approaches to predicting contributions of transcription factors to chromatin accessibility.