• Login
    View Item 
    •   UTSW DSpace Home
    • UT Southwestern Electronic Theses and Dissertations
    • UT Southwestern Graduate School of Biomedical Sciences
    • View Item
    •   UTSW DSpace Home
    • UT Southwestern Electronic Theses and Dissertations
    • UT Southwestern Graduate School of Biomedical Sciences
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    The Impact of Lipid Nanoparticle Chemistry on RNA Delivery and Therapeutic Outcomes

    Thumbnail
    View/Open
    JOHNSON-PRIMARY-2022.pdf (13.18Mb)
    Date
    2022-12-01
    Author
    Johnson, Lindsay Taylor
    0000-0002-4563-5486
    Metadata
    Show full item record
    Abstract

    This dissertation aims to understand how two individual components of the traditional four-component lipid nanoparticle system, the PEG lipid component and the ionizable cationic lipid component, impact RNA delivery. To systematically investigate how PEG lipid chemistry impacted LNP formulation and RNA delivery, a series of linear-dendritic poly(ethylene glycol) (PEG) lipids were synthesized with modulated hydrophobic domains. The chemical structure of the hydrophobic domain did not impact the formulation of 5A2-SC8 LNPs, including nanoparticle size, RNA encapsulation, and stability. However, the chemical structure did affect RNA delivery efficacy both in vitro and in vivo. The chemical structure of the hydrophobic domain of the PEG lipids impacted the escape of 5A2-SC8 LNPs from endosomes at early cell incubation time points. Overall, the results indicated that PEG lipid anchoring and chemical structure modulated RNA delivery. Although most LNPs accumulate in the liver after intravenous administration (suggesting that liver delivery is straightforward), it was observed that two similar LNP formulations (5A2-SC8 and 3A5-SC14 LNPs) resulted in distinct RNA delivery within the liver organ. Despite both LNPs possessing similar physical properties, the ability to silence RNA in vitro, strong accumulation within the liver, and sharing a pKa of 6.5, only 5A2-SC8 LNPs were able to functionally deliver RNA to hepatocytes. Protein corona analysis indicated that 5A2-SC8 LNPs bind Apolipoprotein E (ApoE), which can drive LDL-R receptor mediated endocytosis in hepatocytes. In contrast, the surface of 3A5-SC14 LNPs was enriched in Albumin but depleted in ApoE, which likely led to Kupffer cell delivery and detargeting of hepatocytes. In an aggressive MYC-driven liver cancer model, 5A2-SC8 LNPs carrying let-7g miRNA were able to significantly extend survival compared the non-treatment group. Since disease targets exist in an organ- and cell-type specific manner, the clinical development of RNA LNP therapeutics will require an improved understanding of LNP cellular tropism within organs. Overall, the results from this work illustrates the importance of understanding the cellular localization of RNA delivery and incorporating further checkpoints when choosing nanoparticles beyond biochemical and physical characterization, as small changes in the chemical composition of LNPs can have an impact on both the biofate of LNPs and therapeutic outcomes.

    Subject
    Lipids
    Nanoparticles
    Polyethylene Glycols
    RNA, Small Interfering
    URI
    https://hdl.handle.net/2152.5/10019
    Collections
    • UT Southwestern Graduate School of Biomedical Sciences

    UT Southwestern Health Sciences Digital Library and Learning Center | 5323 Harry Hines Boulevard, Dallas, Texas 75390-9049
    Telephone 214-648-2001 | Email
    Library Home | UT Southwestern Home
    DSpace software copyright © 2002-2016  DuraSpace
    Contact Us | Send Feedback
    TDL
    Theme by 
    Atmire NV
     

     

    Browse

    All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

    My Account

    Login

    UT Southwestern Health Sciences Digital Library and Learning Center | 5323 Harry Hines Boulevard, Dallas, Texas 75390-9049
    Telephone 214-648-2001 | Email
    Library Home | UT Southwestern Home
    DSpace software copyright © 2002-2016  DuraSpace
    Contact Us | Send Feedback
    TDL
    Theme by 
    Atmire NV