Sequential Actions of VCP/p97 and the Proteasome 19S Regulatory Particle in Sterol-Accelerated, ER-Associated Degradation of HMG CoA Reductase

Date

2014-05-28

Journal Title

Journal ISSN

Volume Title

Publisher

Abstract

Accelerated endoplasmic reticulum (ER)-associated degradation (ERAD) of the cholesterol biosynthetic enzyme HMG CoA reductase results from its sterol-induced binding to ER membrane proteins called Insig-1 and Insig-2. This binding allows for subsequent ubiquitination of reductase by Insig-associated ubiquitin ligases. Once ubiquitinated, reductase becomes dislocated from ER membranes into the cytosol for degradation by 26S proteasomes through poorly defined reactions mediated by the AAA-ATPase VCP/p97 and augmented by the nonsterol isoprenoid geranylgeraniol. Here, we report that the oxysterol 25-hydroxycholesterol and geranylgeraniol combine to trigger extraction of reductase across ER membranes prior to its cytosolic release. This conclusion was drawn from studies utilizing a novel assay that measures membrane extraction of reductase by determining susceptibility of a lumenal epitope in the enzyme to in vitro protease digestion. Susceptibility of the lumenal epitope to protease digestion, and thus membrane extraction of reductase, was tightly regulated by 25-hydroxycholesterol and geranylgeraniol. The reaction was inhibited by RNA interference mediated knockdown of either Insigs or VCP/p97. In contrast, reductase continued to become membrane extracted, but not cytosolically dislocated, in cells deficient for AAA-ATPases of the proteasome 19S regulatory particle. These findings establish sequential roles for VCP/p97 and the 19S regulatory particle in the sterol-accelerated ERAD of reductase that may be applicable to the ERAD of other substrates.

General Notes

Table of Contents

Subjects

Adenosine Triphosphatases, Endoplasmic Reticulum, Hydroxymethylglutaryl CoA Reductases, Metalloendopeptidases, Proteolysis, Sterols

Citation

Related URI