• Login
    View Item 
    •   UTSW DSpace Home
    • UT Southwestern Electronic Theses and Dissertations
    • UT Southwestern Electronic Theses and Dissertations
    • View Item
    •   UTSW DSpace Home
    • UT Southwestern Electronic Theses and Dissertations
    • UT Southwestern Electronic Theses and Dissertations
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Serum Amyloid A is a Retinol Binding Protein that Transports Retinol during Bacterial Infection

    Thumbnail
    View/Open
    ZLATKOV-DISSERTATION-2014.pdf (3.488Mb)
    Date
    2014-07-17
    Author
    Zlatkov, Clare Marie
    Metadata
    Show full item record
    Abstract
    Retinol plays a vital role in the immune response to infection, however it remains unclear which proteins mediate retinol transport during infection. Serum amyloid A (SAA) proteins are produced by the liver following acute systemic infection and are also induced by bacteria in the intestine. SAAs have been proposed to play a role in the inflammatory response to infection and injury, but their exact functions have not been well defined. In this dissertation, I present data that demonstrates the acute phase protein SAA is a novel retinol binding protein that transports retinol during infection. SAA proteins are induced by bacteria and additionally require retinol for their expression. I demonstrate that SAA’s requirement for retinol is not restricted to the small intestine, as mice on a vitamin A deficient diet have reduced SAA expression in the liver as well. Additionally, I demonstrate in fluorescence based binding assays that SAAs are capable of binding retinol at nanomolar affinities, which is comparable to a known retinol binding protein. I also found that SAA proteins associate with retinol in the serum following a bacterial challenge in wild-type mice. This phenotype was not observed in SAA1/2-/- mice following bacterial challenge. Furthermore, SAA1/2-/- mice have greater bacterial loads in their spleens and livers following bacterial infection. In parallel with my studies, Dr. Mehabaw Derebe, a post-doctoral researcher in the Hooper lab, recently solved the mSAA3 crystal structure, demonstrating the protein oligomerizes to form a tetramer. This tetramer unit contains a central pore-like cavity, lined with hydrophobic amino acid residues, which would allow a lipophilic ligand to bind. A single amino acid mutation within this hydrophobic core resulted in reduced mSAA3 retinol binding. This structural insight describes how SAA, as a small and mostly alpha-helical protein, can protect a lipophilic ligand from the aqueous environment. Altogether, these data demonstrated that SAAs are a family of microbe-induced retinol binding proteins, reveal a unique protein architecture involved in retinol binding, and provide insight into the acute response to infection.
    URI
    http://hdl.handle.net/2152.5/3584
    Collections
    • UT Southwestern Electronic Theses and Dissertations

    UT Southwestern Health Sciences Digital Library and Learning Center | 5323 Harry Hines Boulevard, Dallas, Texas 75390-9049
    Telephone 214-648-2001 | Email
    Library Home | UT Southwestern Home
    DSpace software copyright © 2002-2016  DuraSpace
    Contact Us | Send Feedback
    TDL
    Theme by 
    Atmire NV
     

     

    Browse

    All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

    My Account

    Login

    UT Southwestern Health Sciences Digital Library and Learning Center | 5323 Harry Hines Boulevard, Dallas, Texas 75390-9049
    Telephone 214-648-2001 | Email
    Library Home | UT Southwestern Home
    DSpace software copyright © 2002-2016  DuraSpace
    Contact Us | Send Feedback
    TDL
    Theme by 
    Atmire NV