• Login
    View Item 
    •   UTSW DSpace Home
    • UT Southwestern Electronic Theses and Dissertations
    • UT Southwestern Electronic Theses and Dissertations
    • View Item
    •   UTSW DSpace Home
    • UT Southwestern Electronic Theses and Dissertations
    • UT Southwestern Electronic Theses and Dissertations
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Uncovering Reversible AMPylation of BiP Mediated by dFic During ER Homeostasis

    Thumbnail
    View/Open
    HAM-THESIS-2015.pdf (3.611Mb)
    Date
    2015-01-16
    Author
    Ham, Hyeilin
    Metadata
    Show full item record
    Abstract
    AMPylation is a posttranslational modification involving a covalent attachment of an AMP moiety from ATP to hydroxyl side chains of target substrates. Fic domain which mediates AMPylation is highly conserved across species, including higher eukaryotes, implicating an essential role of this modification in cellular function. Despite the recent discoveries and characterization of a number of bacterial AMPylators and their targets during pathogenesis, the knowledge of AMPylation in eukaryotic system is still elusive. Therefore, the goal of my thesis is to determine the eukaryotic function of AMPylation and identifying the endogenous substrates of this novel modification. In an attempt to understand the physiological function of AMPylation in eukaryotes, we used Drosophila melanogaster as our genetic model organism and created mutant flies lacking functional Drosophila Fic (dFic). We found that the flies without enzymatic function of dFic exhibit blind phenotype due to impaired synaptic transmission. dFic enzymatic activity is required in glial cells for the normal visual neurotransmission. This suggests that a target of dFic may be a component of the visual signaling pathway. dFic was observed in the cell surface of the glial cells particularly enriched in capitate projections. However, dFic is localized to the ER in a number of fly tissues and also in the S2 cells, indicating that there may be another target of dFic in the ER that plays a more general role in the cellular function. In this study, we identified an ER molecular chaperone BiP/GRP78 as a novel substrate for dFic-mediated AMPylation. BiP was predominantly labeled with AMP by dFic in S2 cell lysate. AMPylation of BiP decreases during ER stress but increases upon the reduction of unfolded proteins. Both dFic and BiP are transcriptionally activated upon ER stress induction, implicating a role for dFic in the UPR. We identified a conserved threonine residue, Thr366, as the AMPylation site, which is in close proximity to the ATP binding site of BiP's ATPase domain. Our study presents the first substrate of AMPylation by a eukaryotic protein and proposes a new mode of posttranslational regulation of BiP, which is likely to serve a crucial role in maintaining ER protein homeostasis.
    URI
    http://hdl.handle.net/2152.5/4109
    Collections
    • UT Southwestern Electronic Theses and Dissertations

    UT Southwestern Health Sciences Digital Library and Learning Center | 5323 Harry Hines Boulevard, Dallas, Texas 75390-9049
    Telephone 214-648-2001 | Email
    Library Home | UT Southwestern Home
    DSpace software copyright © 2002-2016  DuraSpace
    Contact Us | Send Feedback
    TDL
    Theme by 
    Atmire NV
     

     

    Browse

    All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

    My Account

    Login

    UT Southwestern Health Sciences Digital Library and Learning Center | 5323 Harry Hines Boulevard, Dallas, Texas 75390-9049
    Telephone 214-648-2001 | Email
    Library Home | UT Southwestern Home
    DSpace software copyright © 2002-2016  DuraSpace
    Contact Us | Send Feedback
    TDL
    Theme by 
    Atmire NV