HP1BP3, A Chromatin Retention Factor for Co-Transcriptional MicroRNA Processing

Date

2016-06-27

Journal Title

Journal ISSN

Volume Title

Publisher

Abstract

RNA interference (RNAi) is a post-transcriptional gene silencing mechanism found in all eukaryotic organisms. It is characterized by a family of small non-coding RNAs, either endogenous (in the case of microRNAs) or exogenous (in the case of siRNAs), that inhibits gene expression post-transcriptionally. MicroRNAs (miRNAs) are a family of ~21-nt cellular RNAs that govern numerous pathological and physiological processes by mediating translational repression and deadenylation/decay of cognate mRNA. Dysregulation of miRNA expression have been associated with various types of cancer and developmental diseases. Typically, primary (pri-)miRNA transcripts are processed by Drosha complex into precursor (pre-)miRNAs, and then by cytoplasmic Dicer complex into mature miRNAs. The processing of pri-miRNAs is the most highly regulated step in the miRNA biogenesis pathway. Therefore, understanding the molecular mechanisms of pri-miRNA processing and its regulation represents a very important objective in the miRNA filed. Recent studies suggest that the Drosha-DGCR8 complex can be recruited to chromatin to catalyze co-transcriptional processing of primary microRNAs (pri-miRNAs) in mammalian cells. However, the molecular mechanism of co-transcriptional miRNA processing is poorly understood. Here, we find that HP1BP3, a histone H1-like chromatin protein, specifically associates with the Microprocessor and promotes global miRNA biogenesis in HeLa cells. Accordingly, chromatin immunoprecipitation (ChIP) studies reveal genome-wide co-localization of HP1BP3 & Drosha and HP1BP3-dependent Drosha binding to actively transcribed miRNA loci. Moreover, HP1BP3 exhibits a novel pri-miRNA binding activity and promotes the Drosha-pri-miRNA association in vivo. Knockdown of HP1BP3 compromises pri-miRNA processing by resulting in premature release of pri-miRNA transcripts from the chromatin. Taken together, these studies suggest that HP1BP3 promotes co-transcriptional miRNA processing via chromatin retention of nascent pri-miRNA transcripts. This work expands the functional repertoire of the H1 family of proteins and suggests a new concept of chromatin retention factor for widespread co-transcriptional miRNA processing.

General Notes

Table of Contents

Citation

Related URI