Chemical Intervention of Influenza Virus mRNA Nuclear Export

Date

2020-07-15

Journal Title

Journal ISSN

Volume Title

Publisher

Abstract

Influenza A viruses are human pathogens with limited therapeutic options, making it crucial to devise strategies for the identification of new classes of antiviral medications. The influenza A virus genome is constituted of 8 RNA segments. Two of these viral RNAs are transcribed into mRNAs that are alternatively spliced. The M1 mRNA encodes the M1 protein but is also alternatively spliced to yield the M2 mRNA during infection. M1 to M2 mRNA splicing occurs at nuclear speckles, and M1 and M2 mRNAs are exported to the cytoplasm for translation. M1 and M2 proteins are critical for viral trafficking, assembly, and budding. We show that influenza virus utilizes nuclear speckles to promote post-transcriptional splicing of its M1 mRNA. We assign previously unknown roles for the viral NS1 protein and cellular factors to an intranuclear trafficking pathway that targets the viral M1 mRNA to nuclear speckles, mediates splicing at these nuclear bodies, and exports the spliced M2 mRNA from the nucleus. In addition, gene knockout of the cellular protein NS1-BP, a constituent of the M mRNA speckle-export pathway, inhibits M mRNA nuclear export without significantly altering bulk cellular mRNA export, providing an avenue to preferentially target influenza virus. We performed a high-content, image-based chemical screen using single-molecule RNA-FISH to label viral M mRNAs followed by multistep quantitative approaches to assess cellular mRNA and cell toxicity. We identified inhibitors of viral mRNA biogenesis and nuclear export that exhibited no significant activity towards bulk cellular mRNA at non-cytotoxic concentrations. Among the hits is a small molecule that inhibits nuclear export of a subset of viral and cellular mRNAs via the mRNA export factor UAP56 without altering bulk cellular mRNA nuclear export. These findings underscore specific nuclear export requirements for viral mRNA nuclear export. This RNA export inhibitor also impaired replication of diverse influenza virus strains at non-toxic concentrations. Thus, this screening strategy yielded compounds that alone or in combination may serve as leads to new ways of treating influenza virus infection and are novel tools for studying viral RNA trafficking in the nucleus.

General Notes

Table of Contents

Citation

Related URI