Calcium Triggered Synaptic Vesicle Exocytosis




Pang, Zhiping

Journal Title

Journal ISSN

Volume Title


Content Notes


Neurotransmitter release is triggered by the action potential induced influx of Ca 2+ into nerve terminals. One of the central questions in neuroscience is how Ca 2+ promotes synaptic vesicles from rest to fusion leading to release of neurotransmitters. In this thesis, I first addressed if synaptogmin-1/SNARE binding is important for synaptic vesicle release. Using two knock-in mouse lines each with single amino-acid substitution, namely D232N and D238N in synaptotagmin-1, combined with electrophysiology, I found evoked release in D232N mutant neuronal cultures is significantly increased, whereas in D238N cultures release is slightly but significantly decreased. Ca 2+ titration curves indicated the apparent Ca 2+-affinity for vesicle release significantly increased in D232N synapses. These data are consistent with biochemical studies that showed that the D232N substitution in synaptotagmin-1 increases Ca 2+-dependent SNARE bindings but leaves phospholipid binding unchanged, whereas the D238N mutant slightly decreased phospholipid binding but leaves SNARE binding insignificantly changed. Second, I addressed if synaptotamgin-2 is another Ca 2+-sensor for synaptic vesicle release. I and my colleagues used two mouse lines: one contains a single amino acid mutation in synaptotagmin-2 (I377N) and one has synaptotagmin-2 ablated from the genome. By using a combination of biophysical, biochemical and functional techniques, we determined that synaptotagmin-2 is a fast synchronous Ca 2+-sensor. Third, in collaboration with Jianyuan Sun, we explored the biophysical properties of the slow Ca 2+-sensor in the Calyx of Held. Using Ca 2+-uncaging combined with electrophysiology, we mapped increasing Ca 2+ concentrations in relation to neurotransmitter release and built a comprehensive mathematical model for the Ca 2+ control of synaptic vesicle fusion. We found compelling evidence for the existence of two Ca 2+- sensors: one (synaptotagmin-2 in the Calyx of Held) is responsible for fast synchronous release, and the other one is responsible for slow delayed synaptic release. Surprisingly, we found the two Ca 2+-sensors have similar apparent Ca 2+ affinities. This study showed clearly that synaptotagmin-2 is a fast Ca 2+-sensor, and gave us a prediction that narrows down the potential candidate for the slow Ca 2+-sensor.

General Notes

Table of Contents


Related URI