Molecular Dissection of Bsc2: A Novel Negative Regulator of Triglyceride Lipolysis for a Lipid Droplet Subpopulation

Date

December 2023

Authors

Speer, Natalie Ortiz

Journal Title

Journal ISSN

Volume Title

Publisher

Content Notes

Abstract

Eukaryotic cells store lipids in the form of triglyceride (TG) and sterol-ester (SE) in cytoplasmic organelles called lipid droplets (LDs). Distinct pools of LDs with unique surface proteomes exist in cells, but a pervasive question is how proteins localize to and convey functions to specific LD subsets. Here, we show the yeast protein Bsc2 localizes to a specific subset of TG-containing LDs, and reveal it negatively regulates TG lipolysis. Mechanistically, Bsc2 LD targeting requires TG, and LD targeting is mediated by specific N-terminal hydrophobic regions (HRs) sufficient for Bsc2 function. Molecular dynamics simulations reveal these Bsc2 HRs interact extensively with TG on modeled LDs, and adopt a specific conformation on TG-rich LDs versus SE-rich LDs or a modeled ER bilayer. Bsc2-deficient yeast display no defect in LD biogenesis, but exhibit enhanced TG lipolysis dependent on the major TG lipase Tgl3. Remarkably, over-expression of Bsc2, but not LD protein Pln1, causes TG accumulation without altering SE levels. Finally, we find that Bsc2-deficient cells display altered LD accumulation during stationary phase growth. We propose that Bsc2 is a novel regulator of TG lipolysis that localizes to a subset of TG-enriched LDs and locally regulates TG lipolysis.

General Notes

Table of Contents

Citation

Related URI