Structural and Functional Study of the Type III Pantothenate Kinase from Thermotoga Maritima

dc.contributor.advisorZhang, Hongen
dc.creatorYang, Kunen
dc.date.accessioned2010-07-12T17:28:55Z
dc.date.available2010-07-12T17:28:55Z
dc.date.issued2007-08-08
dc.description.abstractCoenzyme A (CoA) is one of the most ubiquitous and essential cofactors in all living organisms. Pantothenate kinase (PanK) catalyzes the first step in the five-step universal pathway of CoA biosynthesis. Three types of PanK have been characterized so far. Prokaryotic PanK (PanK-I) and eukaryotic PanK (PanK-II) were identified previously. A third type of PanK (encoded by coaX gene) was identified by genetic complementation in 2005. PanK-III has a wider phylogenetic distribution than the long known PanK-I, and is nearly universally present in most of the major bacteria divisions, including many pathogenic bacteria. Different from the type I and type II PanKs, PanK-III is not feedback inhibited by CoA, and can not use pantothenamide antibiotics as substrate. In addition, PanK-III has a high Km for ATP (in the mM range) and requires a monovalent cation to have activity. The focus of my research is to unravel the underlying molecular basis for the unique enzymatic properties of PanK-III through crystallographic and other biochemical methods. I have solved the first crystal structure of PanK-III from Thermotoga maritima (TmCoaX). As the structure reveals, PanK-III belong to the acetate and sugar kinase/heat shocks protein 70/actin (ASKHA) protein superfamily, same as PanK-II, whereas PanK-I belongs to P-loop kinase superfamily. Recently, I also solved the crystal structures of two binary complexes of PanK-III with substrate pantothenate and product phospho-pantothenate, respectively, as well as a ternary complex of PanK-III with pantothenate and ADP. Combined with isothermal titration calorimetry, we present a detailed structural and thermodynamic characterization of the interactions between PanK-III and its substrates ATP and pantothenate. Comparison of substrate binding and catalytic sites of PanK-III with that of eukaryotic PanK-II revealed drastic differences in the binding modes of both ATP and pantothenate, even though both PanK-II and PanK-III belong to the same ASKHA superfamily and may share a common catalytic mechanism. In conclusion, our studies not only are important for understanding the fundamental metabolic pathways in PanK-III-harboring pathogenic bacteria, but also provide a structural basis for designing specific inhibitors.en
dc.format.digitalOriginborn digitalen
dc.format.mediumElectronicen
dc.format.mimetypeapplication/pdfen
dc.identifier.oclc756835737
dc.identifier.urihttps://hdl.handle.net/2152.5/294
dc.language.isoenen
dc.subjectBacterial Proteinsen
dc.subjectPhosphotransferases (Alcohol Group Acceptor)en
dc.subjectCoenzyme Aen
dc.subjectThermotoga maritimaen
dc.titleStructural and Functional Study of the Type III Pantothenate Kinase from Thermotoga Maritimaen
dc.typeThesisen
dc.type.genredissertationen
dc.type.materialTexten
thesis.date.available2008-08-08
thesis.degree.departmentGraduate School of Biomedical Sciencesen
thesis.degree.disciplineBiological Chemistryen
thesis.degree.grantorUT Southwestern Medical Centeren
thesis.degree.levelDoctoralen
thesis.degree.nameDoctor of Philosophyen

Files

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
yangkun.pdf
Size:
2.59 MB
Format:
Adobe Portable Document Format

License bundle

Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
941 B
Format:
Item-specific license agreed upon to submission
Description: