Incorporating Real-Time Audiovisual and Haptic Feedback in a Novel Thoracostomy Tube Training Model
Date
Authors
Journal Title
Journal ISSN
Volume Title
Publisher
Content Notes
Abstract
INTRODUCTION: Simulation-based training can enhance clinical performance, but chest tube insertion is challenging to simulate due to the precision needed for controlled pleural entry. This study evaluates the efficacy of a novel training model with real-time pressure monitoring and audiovisual feedback for force and time to pleural entry in a model. METHODS: The model consisted of a Kelly clamp with force sensors installed at the index finger (sensor 1) and both finger loops (sensors 2 and 3) and a manikin with a replaceable chest wall pad. Data obtained from experts indicated standard force value for pleural entry (Newtons, "N") and acceptable time to completion (3000-5000 milliseconds, "ms"). Thirteen participants ranging from PGY-1 to PGY-6 were introduced to the procedure and model. Force and time were measured from dermal entry to pleural space puncture. A significant drop in pressure suggested puncturing through the chest wall. RESULTS: Force was measured in the linear, plateau, and drop phases of the procedure. Linear phase (~3,000ms) was from start to point of maximum force (<30N). Plateau phase was from maximum force until drop phase. Drop phase was a drop in pressure by >5 Newtons within 150ms indicating procedure completion (pleural entry). All participants successfully completed the task. Pleural entry force ranged from 17N to 30N, and time to pleural entry ranged from 7,500-15,000ms. Of note, left-handed participants relied more on sensors 1 and 3 while right-handed participants relied more on sensors 1 and 2. Thus, only force measurements from sensor 1 were utilized to standardize our assessment. CONCLUSIONS: This novel chest tube trainer with continuous force monitoring can be applied to training for a variety of scenarios, including vascular access, trocar placement and other common procedures. Next steps involve evaluating its impact on trainee accuracy and efficiency.